With the addition of the `willreturn` attribute, functions that may
not return (e.g. due to an infinite loop) are well defined, if they are
not marked as `willreturn`.
This patch updates `wouldInstructionBeTriviallyDead` to not consider
calls that may not return as dead.
This patch still provides an escape hatch for intrinsics, which are
still assumed as willreturn unconditionally. It will be removed once
all intrinsics definitions have been reviewed and updated.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D94106
When removing catchpad's from catchswitch, if that removes a successor,
we need to record that in DomTreeUpdater.
This fixes PostDomTree preservation failure in an existing test.
This appears to be the single issue that i see in my current test coverage.
When DomTreeUpdater is in lazy update mode, the blocks
that were scheduled to be removed, won't be removed
until the updates are flushed, e.g. by asking
DomTreeUpdater for a up-to-date DomTree.
From the function's current code, it is pretty evident
that the support for the lazy mode is an afterthought,
see e.g. how we roll-back NumRemoved statistic..
So instead of considering all the unreachable blocks
as the blocks-to-be-removed, simply additionally skip
all the blocks that are already scheduled to be removed
We need to handle this case before dealing with the case of constant
branch condition, because if the destinations match, latter fold
would try to remove the DomTree edge that would still be present.
This allows to make that particular DomTree update non-permissive
* Update valueCoversEntireFragment to use TypeSize.
* Add a regression test.
* Assertions have been added to protect untested codepaths.
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D91806
This migrates all LLVM (except Kaleidoscope and
CodeGen/StackProtector.cpp) DebugLoc::get to DILocation::get.
The CodeGen/StackProtector.cpp usage may have a nullptr Scope
and can trigger an assertion failure, so I don't migrate it.
Reviewed By: #debug-info, dblaikie
Differential Revision: https://reviews.llvm.org/D93087
CallInst::updateProfWeight() creates branch_weights with i64 instead of i32.
To be more consistent everywhere and remove lots of casts from uint64_t
to uint32_t, use i64 for branch_weights.
Reviewed By: davidxl
Differential Revision: https://reviews.llvm.org/D88609
CallInst::updateProfWeight() creates branch_weights with i64 instead of i32.
To be more consistent everywhere and remove lots of casts from uint64_t
to uint32_t, use i64 for branch_weights.
Reviewed By: davidxl
Differential Revision: https://reviews.llvm.org/D88609
This change introduces a GC parseable lowering for element atomic
memcpy/memmove intrinsics. This way runtime can provide an
implementation which can take a safepoint during copy operation.
See "GC-parseable element atomic memcpy/memmove" thread on llvm-dev
for the background and details:
https://groups.google.com/g/llvm-dev/c/NnENHzmX-b8/m/3PyN8Y2pCAAJ
Differential Revision: https://reviews.llvm.org/D88861
Add basic vector handling to recognizeBSwapOrBitReverseIdiom/collectBitParts - this works at the element level, all vector element operations must match (splat constants etc.) and there is no cross-element support (insert/extract/shuffle etc.).
If we're bswap'ing some bytes and zero'ing the remainder we can perform this as a bswap+mask which helps us match 'partial' bswaps as a first step towards folding into a more complex bswap pattern.
Reapplied with early-out if recognizeBSwapOrBitReverseIdiom collects a source wider than the result type.
Differential Revision: https://reviews.llvm.org/D88578
If we're bswap'ing some bytes and zero'ing the remainder we can perform this as a bswap+mask which helps us match 'partial' bswaps as a first step towards folding into a more complex bswap pattern.
Differential Revision: https://reviews.llvm.org/D88578
Make sure we're using getScalarSizeInBits instead of cast<IntegerType> to get Type bit widths.
This is preliminary cleanup before we can start adding vector support to the bswap/bitreverse (element level) matching.
There doesn't seem to be any good reason for having a separate path for when we bswap/bitreverse at a smaller size than the destination size - so merge these to make the instruction generation a lot clearer.
Fix a number of WShadow warnings (I was used as the instruction and index......) and fix cases to match style.
Also, replaced the Bit APInt mask check in AND instructions with a direct APInt[] bit check.
PR39793 demonstrated an issue where we fail to recognize 'partial' bswap patterns of the lower bytes of an integer source.
In fact, most of this is already in place collectBitParts suitably tags zero bits, so we just need to correctly handle this case by finding the zero'd upper bits and reducing the bswap pattern just to the active demanded bits.
Differential Revision: https://reviews.llvm.org/D88316
Pulled from D87452, this is a fixed version of the collectBitParts fshl/fshr handling which as @nikic noticed wasn't checking for different providers or had correct bit ordering (which was hid by only testing shift amounts of bitwidth/2).
Differential Revision: https://reviews.llvm.org/D88292
I want to export this function, and the current API was a bit
weird: It took an additional Alignment argument that didn't really
have anything to do with what the function does. Drop it, and
perform a max at the callsite.
Also rename it to tryEnforceAlignment().
When a switch case is folded into default's case, that's an IR change that
should be reported, update ConstantFoldTerminator accordingly.
Differential Revision: https://reviews.llvm.org/D87142
EarlyCSE has a mode to verify the invariant that hash equality equals
key equality, but EliminateDuplicatePHINodes() doesn't.
I've verified that this would have caught the stage2-stage3 mismatches
5ec2b757cc7d37ff0d03b36ee863b0962fe78108 revert has fixed,
that were introduced last time in 3e69871ab5a66fb55913a2a2f5e7f5b42899a4c9.
When removing instructions from unreachable blocks, and only debug info
intrinsics were removed, InstCombine could incorrectly return a false
Modified status.
This is fixed by making removeAllNonTerminatorAndEHPadInstructions()
also return how many debug info intrinsics that were removed, and take
that into account.
This was caught using the check introduced by D80916.
Reviewed By: majnemer
Differential Revision: https://reviews.llvm.org/D85839