Continue from #87196 as author did not have much time, I have taken over
working on this PR. We would like to have this so it'll be easier to
package for Nix.
Can be tested by copying cmake, bolt, third-party, and llvm directories
out into their own directory with this PR applied and then build bolt.
---------
Co-authored-by: pca006132 <john.lck40@gmail.com>
RuntimeDyld has been deprecated in favor of JITLink. [1] This patch
replaces all uses of RuntimeDyld in BOLT with JITLink.
Care has been taken to minimize the impact on the code structure in
order to ease the inspection of this (rather large) changeset. Since
BOLT relied on the RuntimeDyld API in multiple places, this wasn't
always possible though and I'll explain the changes in code structure
first.
Design note: BOLT uses a JIT linker to perform what essentially is
static linking. No linked code is ever executed; the result of linking
is simply written back to an executable file. For this reason, I
restricted myself to the use of the core JITLink library and avoided ORC
as much as possible.
RuntimeDyld contains methods for loading objects (loadObject) and symbol
lookup (getSymbol). Since JITLink doesn't provide a class with a similar
interface, the BOLTLinker abstract class was added to implement it. It
was added to Core since both the Rewrite and RuntimeLibs libraries make
use of it. Wherever a RuntimeDyld object was used before, it was
replaced with a BOLTLinker object.
There is one major difference between the RuntimeDyld and BOLTLinker
interfaces: in JITLink, section allocation and the application of fixups
(relocation) happens in a single call (jitlink::link). That is, there is
no separate method like finalizeWithMemoryManagerLocking in RuntimeDyld.
BOLT used to remap sections between allocating (loadObject) and linking
them (finalizeWithMemoryManagerLocking). This doesn't work anymore with
JITLink. Instead, BOLTLinker::loadObject accepts a callback that is
called before fixups are applied which is used to remap sections.
The actual implementation of the BOLTLinker interface lives in the
JITLinkLinker class in the Rewrite library. It's the only part of the
BOLT code that should directly interact with the JITLink API.
For loading object, JITLinkLinker first creates a LinkGraph
(jitlink::createLinkGraphFromObject) and then links it (jitlink::link).
For the latter, it uses a custom JITLinkContext with the following
properties:
- Use BOLT's ExecutableFileMemoryManager. This one was updated to
implement the JITLinkMemoryManager interface. Since BOLT never
executes code, its finalization step is a no-op.
- Pass config: don't use the default target passes since they modify
DWARF sections in a way that seems incompatible with BOLT. Also run a
custom pre-prune pass that makes sure sections without symbols are not
pruned by JITLink.
- Implement symbol lookup. This used to be implemented by
BOLTSymbolResolver.
- Call the section mapper callback before the final linking step.
- Copy symbol values when the LinkGraph is resolved. Symbols are stored
inside JITLinkLinker to ensure that later objects (i.e.,
instrumentation libraries) can find them. This functionality used to
be provided by RuntimeDyld but I did not find a way to use JITLink
directly for this.
Some more minor points of interest:
- BinarySection::SectionID: JITLink doesn't have something equivalent to
RuntimeDyld's Section IDs. Instead, sections can only be referred to
by name. Hence, SectionID was updated to a string.
- There seem to be no tests for Mach-O. I've tested a small hello-world
style binary but not more than that.
- On Mach-O, JITLink "normalizes" section names to include the segment
name. I had to parse the section name back from this manually which
feels slightly hacky.
[1] https://reviews.llvm.org/D145686#4222642
Reviewed By: rafauler
Differential Revision: https://reviews.llvm.org/D147544
This patch adds the huge pages support (-hugify) for PIE/no-PIE
binaries. Also returned functionality to support the kernels < 5.10
where there is a problem in a dynamic loader with the alignment of
pages addresses.
Differential Revision: https://reviews.llvm.org/D129107
I went over the output of the following mess of a command:
`(ulimit -m 2000000; ulimit -v 2000000; git ls-files -z | parallel --xargs -0 cat | aspell list --mode=none --ignore-case | grep -E '^[A-Za-z][a-z]*$' | sort | uniq -c | sort -n | grep -vE '.{25}' | aspell pipe -W3 | grep : | cut -d' ' -f2 | less)`
and proceeded to spend a few days looking at it to find probable typos
and fixed a few hundred of them in all of the llvm project (note, the
ones I found are not anywhere near all of them, but it seems like a
good start).
Reviewed By: Amir, maksfb
Differential Revision: https://reviews.llvm.org/D130824
Summary:
Moves source files into separate components, and make explicit
component dependency on each other, so LLVM build system knows how to
build BOLT in BUILD_SHARED_LIBS=ON.
Please use the -c merge.renamelimit=230 git option when rebasing your
work on top of this change.
To achieve this, we create a new library to hold core IR files (most
classes beginning with Binary in their names), a new library to hold
Utils, some command line options shared across both RewriteInstance
and core IR files, a new library called Rewrite to hold most classes
concerned with running top-level functions coordinating the binary
rewriting process, and a new library called Profile to hold classes
dealing with profile reading and writing.
To remove the dependency from BinaryContext into X86-specific classes,
we do some refactoring on the BinaryContext constructor to receive a
reference to the specific backend directly from RewriteInstance. Then,
the dependency on X86 or AArch64-specific classes is transfered to the
Rewrite library. We can't have the Core library depend on targets
because targets depend on Core (which would create a cycle).
Files implementing the entry point of a tool are transferred to the
tools/ folder. All header files are transferred to the include/
folder. The src/ folder was renamed to lib/.
(cherry picked from FBD32746834)