There were 3 definitions of the mergeDefaultFunctionDefinitionAttributes
function: A private implementation, a version exposed in CodeGen, a
version exposed in CodeGenModule.
This patch removes the private and the CodeGenModule versions and keeps
a single definition in CodeGen.
Reviewed By: jhuber6
Differential Revision: https://reviews.llvm.org/D159256
This patch deletes the unused `addDefaultFunctionDefinitionAttributes(llvm::Function);` function,
while it still keeps `void addDefaultFunctionDefinitionAttributes(llvm::AttrBuilder &attrs);` which is being used.
Differential Revision: https://reviews.llvm.org/D158990
Update DeviceRTL and the AMDGPU plugin to support code
object version 5. Default is code object version 4.
CodeGen for __builtin_amdgpu_workgroup_size generates code
for cov4 as well as cov5 if -mcode-object-version=none
is specified. DeviceRTL compilation passes this argument
via Xclang option to generate abi-agnostic code.
Generated code for the above builtin uses a clang
control constant "llvm.amdgcn.abi.version" to branch on
the abi version, which is available during linking of
user's OpenMP code. Load of this constant gets eliminated
during linking.
AMDGPU plugin queries the ELF for code object version
and then prepares various implicitargs accordingly.
Differential Revision: https://reviews.llvm.org/D139730
Reviewed By: jhuber6, yaxunl
Reemission is only needed in incremental mode. With this early return,
we avoid overhead from addEmittedDeferredDecl in non-incremental mode.
Differential Revision: https://reviews.llvm.org/D157379
GlobalDecls should only be added to EmittedDeferredDecls if they
need reemission. This is checked in addEmittedDeferredDecl, which
is called via addDeferredDeclToEmit. Extend these checks to also
handle VarDecls (for lambdas, as tested in Interpreter/lambda.cpp)
and remove the direct access of EmittedDeferredDecls in EmitGlobal
that may actually end up duplicating FunctionDecls.
Differential Revision: https://reviews.llvm.org/D156897
Turned out we were making overly simple assumptions about which sections (& section flags) would be used when emitting a global into a custom section. This lead to sections with read-only flags being used for globals of struct types with mutable members.
Fixed by porting the codegen function with the more nuanced handling/checking for mutable members out of codegen for use in the sema code that does this initial checking/mapping to section flags.
Differential Revision: https://reviews.llvm.org/D156726
It looks like the definition was removed in cd21d541397e but the
declaration was not. Surprisingly (to me), that doesn't seem to produce
any kind of diagnostic.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D156182
Similar to D156016 for MapVector.
This brings back commit fae7b98c221b5b28797f7b56b656b6b819d99f27 with a
fix to llvm/unittests/Support/ThreadPool.cpp's `_WIN32` code path.
This reverts commit 0d12683046ca75fb08e285f4622f2af5c82609dc and
reapplies ef9ec4bbcca2fa4f64df47bc426f1d1c59ea47e2 with an extension to
fix the Flang build.
Differential Revision: https://reviews.llvm.org/D156184
This is failing on Windows MSVC builds:
llvm\unittests\Support\ThreadPool.cpp(380): error C2440: 'return': cannot convert from 'Vector' to 'std::vector<llvm::BitVector,std::allocator<llvm::BitVector>>'
with
[
Vector=llvm::SmallVector<llvm::BitVector,0>
]
CUDA and HIP have kernel attributes to tune the code generation (in the
backend). To reuse this functionality for OpenMP target regions we
introduce the `ompx_attribute` clause that takes these kernel
attributes and emits code as if they had been attached to the kernel
fuction (which is implicitly generated).
To limit the impact, we only support three kernel attributes:
`amdgpu_waves_per_eu`, for AMDGPU
`amdgpu_flat_work_group_size`, for AMDGPU
`launch_bounds`, for NVPTX
The existing implementations of those attributes are used for error
checking and code generation. `ompx_attribute` can be attached to any
executable target region and it can hold more than one kernel attribute.
Differential Revision: https://reviews.llvm.org/D156184
The conversion iterates over CodeGenModule::Replacements (a StringMap)
and replaces C2/D2 and moves C1/D1 (
commit 0196a1d98f8a206259a4b5ce93c21807243af92f in 2013, to make the
output look nicer). The iteration order is not guaranteed to be
deterministic, and may cause destructors.cpp to exhibit different
function orders. Use a MapVector instead.
While here, fix an IWYU issue by adding an explicit include, though
MapVector is already used in CodeGenModule.h.
- When the destination is a final class type that does not derive from
the source type, the cast always fails and is now emitted as a null
pointer or call to __cxa_bad_cast.
- When the destination is a final class type that does derive from the
source type, emit a direct comparison against the corresponding base
class vptr value(s). There may be more than one such value in the case
of multiple inheritance; check them all.
For now, this is supported only for the Itanium ABI. I expect the same thing is
possible for the MS ABI too, but I don't know what guarantees are made about
vfptr uniqueness.
Reviewed By: rjmccall
Differential Revision: https://reviews.llvm.org/D154658
The last use was removed by:
commit 46f366494f3ca8cc98daa6fb4f29c7c446c176b6
Author: Fangrui Song <i@maskray.me>
Date: Sat May 20 08:24:20 2023 -0700
This patch also removes RTTIProxyMap, which becomes unused once I
remove GetOrCreateRTTIProxyGlobalVariable.
Differential Revision: https://reviews.llvm.org/D152782
Device libs make use of patterns like this:
```
__attribute__((target("gfx11-insts")))
static unsigned do_intrin_stuff(void)
{
return __builtin_amdgcn_s_sendmsg_rtnl(0x0);
}
```
For functions that are assumed to be eliminated if the currennt GPU target doesn't support them.
At O0 such functions aren't eliminated by common optimizations but often by AMDGPURemoveIncompatibleFunctions instead, which sees the "+gfx11-insts" attribute on, say, GFX9 and knows it's not valid, so it removes the function.
D142907 accidentally made it so such attributes were dropped during bitcode linking, making it impossible for RemoveIncompatibleFunctions to catch the functions and causing ISel to catch fire eventually.
This fixes the issue and adds a new test to ensure we don't accidentally fall into this trap again.
Fixes SWDEV-403642
Reviewed By: arsenm, yaxunl
Differential Revision: https://reviews.llvm.org/D152251
This is stricter than the default "ieee", and should probably be the
default. This patch leaves the default alone. I can change this in a
future patch.
There are non-reversible transforms I would like to perform which are
legal under IEEE denormal handling, but illegal with flushing zero
behavior. Namely, conversions between llvm.is.fpclass and fcmp with
zeroes.
Under "ieee" handling, it is legal to translate between
llvm.is.fpclass(x, fcZero) and fcmp x, 0.
Under "preserve-sign" handling, it is legal to translate between
llvm.is.fpclass(x, fcSubnormal|fcZero) and fcmp x, 0.
I would like to compile and distribute some math library functions in
a mode where it's callable from code with and without denormals
enabled, which requires not changing the compares with denormals or
zeroes.
If an IEEE function transforms an llvm.is.fpclass call into an fcmp 0,
it is no longer possible to call the function from code with denormals
enabled, or write an optimization to move the function into a denormal
flushing mode. For the original function, if x was a denormal, the
class would evaluate to false. If the function compiled with denormal
handling was converted to or called from a preserve-sign function, the
fcmp now evaluates to true.
This could also be of use for strictfp handling, where code may be
changing the denormal mode.
Alternative name could be "unknown".
Replaces the old AMDGPU custom inlining logic with more conservative
logic which tries to permit inlining for callees with dynamic handling
and avoids inlining other mismatched modes.
Reported By Static Analyzer Tool, Coverity:
Big parameter passed by value
Copying large values is inefficient, consider passing by reference; Low, medium, and high size thresholds for detection can be adjusted.
1. Inside "CodeGenModule.cpp" file, in clang::CodeGen::CodeGenModule::EmitBackendOptionsMetadata(clang::CodeGenOptions): A very large function call parameter exceeding the high threshold is passed by value.
pass_by_value: Passing parameter CodeGenOpts of type clang::CodeGenOptions const (size 2168 bytes) by value, which exceeds the high threshold of 512 bytes.
2. Inside "SemaType.cpp" file, in IsNoDerefableChunk(clang::DeclaratorChunk): A large function call parameter exceeding the low threshold is passed by value.
pass_by_value: Passing parameter Chunk of type clang::DeclaratorChunk (size 176 bytes) by value, which exceeds the low threshold of 128 bytes.
3. Inside "CGNonTrivialStruct.cpp" file, in <unnamed>::getParamAddrs<1ull, <0ull...>>(std::integer_sequence<unsigned long long, T2...>, std::array<clang::CharUnits, T1>, clang::CodeGen::FunctionArgList, clang::CodeGen::CodeGenFunction *): A large function call parameter exceeding the low threshold is passed by value.
.i. pass_by_value: Passing parameter Args of type clang::CodeGen::FunctionArgList (size 144 bytes) by value, which exceeds the low threshold of 128 bytes.
4. Inside "CGGPUBuiltin.cpp" file, in <unnamed>::containsNonScalarVarargs(clang::CodeGen::CodeGenFunction *, clang::CodeGen::CallArgList): A very large function call parameter exceeding the high threshold is passed by value.
i. pass_by_value: Passing parameter Args of type clang::CodeGen::CallArgList (size 1176 bytes) by value, which exceeds the high threshold of 512 bytes.
Reviewed By: tahonermann
Differential Revision: https://reviews.llvm.org/D149163
This follows 2b4fa53 which made Clang not emit destructor calls for such
objects. However, they would still not get emitted as constants since
CodeGenModule::isTypeConstant() returns false if the destructor is
constexpr. This change adds a param to make isTypeConstant() ignore the
dtor, allowing the caller to check it instead.
Fixes Issue #61212
Differential revision: https://reviews.llvm.org/D145369
Prior to this, metadata pertaining to the size or address point offsets
into a relative vtable were twice the value they should be (treating
component widths as pointer width rather than 4 bytes). This prevented
some vtables from being devirtualized with D134320. This ensures the
correct metadata is written so whole program devirtualization can catch
these remaining devirt targets.
Differential Revision: https://reviews.llvm.org/D134687
This patch mechanically replaces None with std::nullopt where the
compiler would warn if None were deprecated. The intent is to reduce
the amount of manual work required in migrating from Optional to
std::optional.
This is part of an effort to migrate from llvm::Optional to
std::optional:
https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716
This patch teaches clang to parse statements on the global scope to allow:
```
./bin/clang-repl
clang-repl> int i = 12;
clang-repl> ++i;
clang-repl> extern "C" int printf(const char*,...);
clang-repl> printf("%d\n", i);
13
clang-repl> %quit
```
Generally, disambiguating between statements and declarations is a non-trivial
task for a C++ parser. The challenge is to allow both standard C++ to be
translated as if this patch does not exist and in the cases where the user typed
a statement to be executed as if it were in a function body.
Clang's Parser does pretty well in disambiguating between declarations and
expressions. We have added DisambiguatingWithExpression flag which allows us to
preserve the existing and optimized behavior where needed and implement the
extra rules for disambiguating. Only few cases require additional attention:
* Constructors/destructors -- Parser::isConstructorDeclarator was used in to
disambiguate between ctor-looking declarations and statements on the global
scope(eg. `Ns::f()`).
* The template keyword -- the template keyword can appear in both declarations
and statements. This patch considers the template keyword to be a declaration
starter which breaks a few cases in incremental mode which will be tackled
later.
* The inline (and similar) keyword -- looking at the first token in many cases
allows us to classify what is a declaration.
* Other language keywords and specifiers -- ObjC/ObjC++/OpenCL/OpenMP rely on
pragmas or special tokens which will be handled in subsequent patches.
The patch conceptually models a "top-level" statement into a TopLevelStmtDecl.
The TopLevelStmtDecl is lowered into a void function with no arguments.
We attach this function to the global initializer list to execute the statement
blocks in the correct order.
Differential revision: https://reviews.llvm.org/D127284
The KCFI sanitizer, enabled with `-fsanitize=kcfi`, implements a
forward-edge control flow integrity scheme for indirect calls. It
uses a !kcfi_type metadata node to attach a type identifier for each
function and injects verification code before indirect calls.
Unlike the current CFI schemes implemented in LLVM, KCFI does not
require LTO, does not alter function references to point to a jump
table, and never breaks function address equality. KCFI is intended
to be used in low-level code, such as operating system kernels,
where the existing schemes can cause undue complications because
of the aforementioned properties. However, unlike the existing
schemes, KCFI is limited to validating only function pointers and is
not compatible with executable-only memory.
KCFI does not provide runtime support, but always traps when a
type mismatch is encountered. Users of the scheme are expected
to handle the trap. With `-fsanitize=kcfi`, Clang emits a `kcfi`
operand bundle to indirect calls, and LLVM lowers this to a
known architecture-specific sequence of instructions for each
callsite to make runtime patching easier for users who require this
functionality.
A KCFI type identifier is a 32-bit constant produced by taking the
lower half of xxHash64 from a C++ mangled typename. If a program
contains indirect calls to assembly functions, they must be
manually annotated with the expected type identifiers to prevent
errors. To make this easier, Clang generates a weak SHN_ABS
`__kcfi_typeid_<function>` symbol for each address-taken function
declaration, which can be used to annotate functions in assembly
as long as at least one C translation unit linked into the program
takes the function address. For example on AArch64, we might have
the following code:
```
.c:
int f(void);
int (*p)(void) = f;
p();
.s:
.4byte __kcfi_typeid_f
.global f
f:
...
```
Note that X86 uses a different preamble format for compatibility
with Linux kernel tooling. See the comments in
`X86AsmPrinter::emitKCFITypeId` for details.
As users of KCFI may need to locate trap locations for binary
validation and error handling, LLVM can additionally emit the
locations of traps to a `.kcfi_traps` section.
Similarly to other sanitizers, KCFI checking can be disabled for a
function with a `no_sanitize("kcfi")` function attribute.
Relands 67504c95494ff05be2a613129110c9bcf17f6c13 with a fix for
32-bit builds.
Reviewed By: nickdesaulniers, kees, joaomoreira, MaskRay
Differential Revision: https://reviews.llvm.org/D119296
The KCFI sanitizer, enabled with `-fsanitize=kcfi`, implements a
forward-edge control flow integrity scheme for indirect calls. It
uses a !kcfi_type metadata node to attach a type identifier for each
function and injects verification code before indirect calls.
Unlike the current CFI schemes implemented in LLVM, KCFI does not
require LTO, does not alter function references to point to a jump
table, and never breaks function address equality. KCFI is intended
to be used in low-level code, such as operating system kernels,
where the existing schemes can cause undue complications because
of the aforementioned properties. However, unlike the existing
schemes, KCFI is limited to validating only function pointers and is
not compatible with executable-only memory.
KCFI does not provide runtime support, but always traps when a
type mismatch is encountered. Users of the scheme are expected
to handle the trap. With `-fsanitize=kcfi`, Clang emits a `kcfi`
operand bundle to indirect calls, and LLVM lowers this to a
known architecture-specific sequence of instructions for each
callsite to make runtime patching easier for users who require this
functionality.
A KCFI type identifier is a 32-bit constant produced by taking the
lower half of xxHash64 from a C++ mangled typename. If a program
contains indirect calls to assembly functions, they must be
manually annotated with the expected type identifiers to prevent
errors. To make this easier, Clang generates a weak SHN_ABS
`__kcfi_typeid_<function>` symbol for each address-taken function
declaration, which can be used to annotate functions in assembly
as long as at least one C translation unit linked into the program
takes the function address. For example on AArch64, we might have
the following code:
```
.c:
int f(void);
int (*p)(void) = f;
p();
.s:
.4byte __kcfi_typeid_f
.global f
f:
...
```
Note that X86 uses a different preamble format for compatibility
with Linux kernel tooling. See the comments in
`X86AsmPrinter::emitKCFITypeId` for details.
As users of KCFI may need to locate trap locations for binary
validation and error handling, LLVM can additionally emit the
locations of traps to a `.kcfi_traps` section.
Similarly to other sanitizers, KCFI checking can be disabled for a
function with a `no_sanitize("kcfi")` function attribute.
Reviewed By: nickdesaulniers, kees, joaomoreira, MaskRay
Differential Revision: https://reviews.llvm.org/D119296
Fixes https://github.com/llvm/llvm-project/issues/55804
The lexing order is already bookkept in DelayedCXXInitPosition but we
were not using it based on the wrong assumption that inline variable is
unordered. This patch fixes it by ordering entries in llvm.global_ctors
by orders in DelayedCXXInitPosition.
for llvm.global_ctors entries without a lexing order, ordering them by
the insertion order.
(This *mostly* orders the template instantiation in
https://reviews.llvm.org/D126341 intuitively, minus one tweak for which I'll
submit a separate patch.)
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D127233
In D130807 we added the `skipprofile` attribute. This commit
changes the format so we can either `forbid` or `skip` profiling
functions by adding the `noprofile` or `skipprofile` attributes,
respectively. The behavior of the original format remains
unchanged.
Also, add the `skipprofile` attribute when using
`-fprofile-function-groups`.
This was originally landed as https://reviews.llvm.org/D130808 but was
reverted due to a Windows test failure.
Differential Revision: https://reviews.llvm.org/D131195
In D130807 we added the `skipprofile` attribute. This commit
changes the format so we can either `forbid` or `skip` profiling
functions by adding the `noprofile` or `skipprofile` attributes,
respectively. The behavior of the original format remains
unchanged.
Also, add the `skipprofile` attribute when using
`-fprofile-function-groups`.
Reviewed By: phosek
Differential Revision: https://reviews.llvm.org/D130808
The re-land fixes module map module dependencies seen on Greendragon, but
not in the clang test suite.
---
Currently we only implement this for the Itanium ABI since the correct
mangling for the initializers in other ABIs is not yet known.
Intended result:
For a module interface [which includes partition interface and implementation
units] (instead of the generic CXX initializer) we emit a module init that:
- wraps the contained initializations in a control variable to ensure that
the inits only happen once, even if a module is imported many times by
imports of the main unit.
- calls module initializers for imported modules first. Note that the
order of module import is not significant, and therefore neither is the
order of imported module initializers.
- We then call initializers for the Global Module Fragment (if present)
- We then call initializers for the current module.
- We then call initializers for the Private Module Fragment (if present)
For a module implementation unit, or a non-module TU that imports at least one
module we emit a regular CXX init that:
- Calls the initializers for any imported modules first.
- Then proceeds as normal with remaining inits.
For all module unit kinds we include a global constructor entry, this allows
for the (in most cases unusual) possibility that a module object could be
included in a final binary without a specific call to its initializer.
Implementation:
- We provide the module pointer in the AST Context so that CodeGen can act
on it and its sub-modules.
- We need to account for module build lines like this:
` clang -cc1 -std=c++20 Foo.pcm -emit-obj -o Foo.o` or
` clang -cc1 -std=c++20 -xc++-module Foo.cpp -emit-obj -o Foo.o`
- in order to do this, we add to ParseAST to set the module pointer in
the ASTContext, once we establish that this is a module build and we
know the module pointer. To be able to do this, we make the query for
current module public in Sema.
- In CodeGen, we determine if the current build requires a CXX20-style module
init and, if so, we defer any module initializers during the "Eagerly
Emitted" phase.
- We then walk the module initializers at the end of the TU but before
emitting deferred inits (which adds any hidden and static ones, fixing
https://github.com/llvm/llvm-project/issues/51873 ).
- We then proceed to emit the deferred inits and continue to emit the CXX
init function.
Differential Revision: https://reviews.llvm.org/D126189
Add two options, `-fprofile-function-groups=N` and `-fprofile-selected-function-group=i` used to partition functions into `N` groups and only instrument the functions in group `i`. Similar options were added to xray in https://reviews.llvm.org/D87953 and the goal is the same; to reduce instrumented size overhead by spreading the overhead across multiple builds. Raw profiles from different groups can be added like normal using the `llvm-profdata merge` command.
Reviewed By: ianlevesque
Differential Revision: https://reviews.llvm.org/D129594
This patch adds a new field called EmittedDeferredDecls in CodeGenModule
that keeps track of decls that were deferred and have been emitted.
The intention of this patch is to solve issues in the incremental c++,
we'll lose info of decls that are lazily emitted when we undo their
usage.
See example below:
clang-repl> inline int foo() { return 42;}
clang-repl> int bar = foo();
clang-repl> %undo
clang-repl> int baz = foo();
JIT session error: Symbols not found: [ _Z3foov ]
error: Failed to materialize symbols: { (main, { baz, $.incr_module_2.inits.0,
orc_init_func.incr_module_2 }) }
Signed-off-by: Jun Zhang <jun@junz.org>
Differential Revision: https://reviews.llvm.org/D128782
Currently we only implement this for the Itanium ABI since the correct
mangling for the initializers in other ABIs is not yet known.
Intended result:
For a module interface [which includes partition interface and implementation
units] (instead of the generic CXX initializer) we emit a module init that:
- wraps the contained initializations in a control variable to ensure that
the inits only happen once, even if a module is imported many times by
imports of the main unit.
- calls module initializers for imported modules first. Note that the
order of module import is not significant, and therefore neither is the
order of imported module initializers.
- We then call initializers for the Global Module Fragment (if present)
- We then call initializers for the current module.
- We then call initializers for the Private Module Fragment (if present)
For a module implementation unit, or a non-module TU that imports at least one
module we emit a regular CXX init that:
- Calls the initializers for any imported modules first.
- Then proceeds as normal with remaining inits.
For all module unit kinds we include a global constructor entry, this allows
for the (in most cases unusual) possibility that a module object could be
included in a final binary without a specific call to its initializer.
Implementation:
- We provide the module pointer in the AST Context so that CodeGen can act
on it and its sub-modules.
- We need to account for module build lines like this:
` clang -cc1 -std=c++20 Foo.pcm -emit-obj -o Foo.o` or
` clang -cc1 -std=c++20 -xc++-module Foo.cpp -emit-obj -o Foo.o`
- in order to do this, we add to ParseAST to set the module pointer in
the ASTContext, once we establish that this is a module build and we
know the module pointer. To be able to do this, we make the query for
current module public in Sema.
- In CodeGen, we determine if the current build requires a CXX20-style module
init and, if so, we defer any module initializers during the "Eagerly
Emitted" phase.
- We then walk the module initializers at the end of the TU but before
emitting deferred inits (which adds any hidden and static ones, fixing
https://github.com/llvm/llvm-project/issues/51873 ).
- We then proceed to emit the deferred inits and continue to emit the CXX
init function.
Differential Revision: https://reviews.llvm.org/D126189
Information in the function `Prologue Data` is intentionally opaque.
When a function with `Prologue Data` is duplicated. The self (global
value) references inside `Prologue Data` is still pointing to the
original function. This may cause errors like `fatal error: error in backend: Cannot represent a difference across sections`.
This patch detaches the information from function `Prologue Data`
and attaches it to a function metadata node.
This and D116130 fix https://github.com/llvm/llvm-project/issues/49689.
Reviewed By: pcc
Differential Revision: https://reviews.llvm.org/D115844
Add option -fhip-kernel-arg-name to emit kernel argument
name metadata, which is needed for certain HIP applications.
Reviewed by: Artem Belevich, Fangrui Song, Brian Sumner
Differential Revision: https://reviews.llvm.org/D128022
This reverts commits:
d3ddc251acae631bf5ab4da13878f7e8b5b5a451
d90eecff5c9e7e9f8263de6cd72d70322400829f
It turned out there're some options turned on that leaks the memory
intentionally, which fires the asan builds after the patch being
applied. The issue has been fixed in
7bc00ce5cd41aad5fd0775f58c8e85a0a8d9ee56, so reland it.
Below is the original commit message:
The intent of this patch is to selectively carry some states over to
the Builder so we won't lose the information of the previous symbols.
This used to be several downstream patches of Cling, it aims to fix
errors in Clang Interpreter when trying to use inline functions.
Before this patch:
clang-repl> inline int foo() { return 42;}
clang-repl> int x = foo();
JIT session error: Symbols not found: [ _Z3foov ]
error: Failed to materialize symbols:
{ (main, { x, $.incr_module_1.__inits.0, __orc_init_func.incr_module_1 }) }
Co-authored-by: Axel Naumann <Axel.Naumann@cern.ch>
Signed-off-by: Jun Zhang <jun@junz.org>