This CL allows the programmatic control of the target hardware vector size when creating a MaterializeVectorsPass.
This is useful for registering passes for the tutorial.
PiperOrigin-RevId: 240996136
This CL removes the reliance of the vectorize pass on the specification of a `fastestVaryingDim` parameter. This parameter is a restriction meant to more easily target a particular loop/memref combination for vectorization and is mainly used for testing.
This also had the side-effect of restricting vectorization patterns to only the ones in which all memrefs were contiguous along the same loop dimension. This simple restriction prevented matmul to vectorize in 2-D.
this CL removes the restriction and adds the matmul test which vectorizes in 2-D along the parallel loops. Support for reduction loops is left for future work.
PiperOrigin-RevId: 240993827
This CL allows vectorization to be called and configured in other ways than just via command line arguments.
This allows triggering vectorization programmatically.
PiperOrigin-RevId: 240638208
Currently, regions can only be constructed by passing in a `Function` or an
`Instruction` pointer referencing the parent object, unlike `Function`s or
`Instruction`s themselves that can be created without a parent. It leads to a
rather complex flow in operation construction where one has to create the
operation first before being able to work with its regions. It may be
necessary to work with the regions before the operation is created. In
particular, in `build` and `parse` functions that are executed _before_ the
operation is created in cases where boilerplate region manipulation is required
(for example, inserting the hypothetical default terminator in affine regions).
Allow creating standalone regions. Such regions are meant to own a list of
blocks and transfer them to other regions on demand.
Each instruction stores a fixed number of regions as trailing objects and has
ownership of them. This decreases the size of the Instruction object for the
common case of instructions without regions. Keep this behavior intact. To
allow some flexibility in construction, make OperationState store an owning
vector of regions. When the Builder creates an Instruction from
OperationState, the bodies of the regions are transferred into the
instruction-owned regions to minimize copying. Thus, it becomes possible to
fill standalone regions with blocks and move them to an operation when it is
constructed, or move blocks from a region to an operation region, e.g., for
inlining.
PiperOrigin-RevId: 240368183
a pointer. This makes it consistent with all the other methods in
FunctionPass, as well as with ModulePass::getModule(). NFC.
PiperOrigin-RevId: 240257910
inherited constructors, which is cleaner and means you can now use DimOp()
to get a null op, instead of having to use Instruction::getNull<DimOp>().
This removes another 200 lines of code.
PiperOrigin-RevId: 240068113
- change this for consistency - everything else similar takes/returns a
Function pointer - the FuncBuilder ctor,
Block/Value/Instruction::getFunction(), etc.
- saves a whole bunch of &s everywhere
PiperOrigin-RevId: 236928761
This CL changes dialect op source files (.h, .cpp, .td) to follow the following
convention:
<full-dialect-name>/<dialect-namespace>Ops.{h|cpp|td}
Builtin and standard dialects are specially treated, though. Both of them do
not have dialect namespace; the former is still named as BuiltinOps.* and the
latter is named as Ops.*.
Purely mechanical. NFC.
PiperOrigin-RevId: 236371358
A performance issue was reported due to the usage of NestedMatcher in
ComposeAffineMaps. The main culprit was the ubiquitous copies that were
occuring when appending even a single element in `matchOne`.
This CL generally simplifies the implementation and removes one level of indirection by getting rid of
auxiliary storage as well as simplifying the API.
The users of the API are updated accordingly.
The implementation was tested on a heavily unrolled example with
ComposeAffineMaps and is now close in performance with an implementation based
on stateless InstWalker.
As a reminder, the whole ComposeAffineMaps pass is slated to disappear but the bug report was very useful as a stress test for NestedMatchers.
Lastly, the following cleanups reported by @aminim were addressed:
1. make NestedPatternContext scoped within runFunction rather than at the Pass level. This was caused by a previous misunderstanding of Pass lifetime;
2. use defensive assertions in the constructor of NestedPatternContext to make it clear a unique such locally scoped context is allowed to exist.
PiperOrigin-RevId: 231781279
This CL follows up on a memory leak issue related to SmallVector growth that
escapes the BumpPtrAllocator.
The fix is to properly use ArrayRef and placement new to define away the
issue.
The following renaming is also applied:
1. MLFunctionMatcher -> NestedPattern
2. MLFunctionMatches -> NestedMatch
As a consequence all allocations are now guaranteed to live on the BumpPtrAllocator.
PiperOrigin-RevId: 231047766
Example:
dma-generate options:
-dma-fast-mem-capacity - Set fast memory space ...
-dma-fast-mem-space=<uint> - Set fast memory space ...
loop-fusion options:
-fusion-compute-tolerance=<number> - Fractional increase in ...
-fusion-maximal - Enables maximal loop fusion
loop-tile options:
-tile-size=<uint> - Use this tile size for ...
loop-unroll options:
-unroll-factor=<uint> - Use this unroll factor ...
-unroll-full - Fully unroll loops
-unroll-full-threshold=<uint> - Unroll all loops with ...
-unroll-num-reps=<uint> - Unroll innermost loops ...
loop-unroll-jam options:
-unroll-jam-factor=<uint> - Use this unroll jam factor ...
PiperOrigin-RevId: 231019363
Function::walk functionality into f->walkInsts/Ops which allows visiting all
instructions, not just ops. Eliminate Function::getBody() and
Function::getReturn() helpers which crash in CFG functions, and were only kept
around as a bridge.
This is step 25/n towards merging instructions and statements.
PiperOrigin-RevId: 227243966
consistent and moving the using declarations over. Hopefully this is the last
truly massive patch in this refactoring.
This is step 21/n towards merging instructions and statements, NFC.
PiperOrigin-RevId: 227178245
StmtResult -> InstResult, StmtOperand -> InstOperand, and remove the old names.
This is step 17/n towards merging instructions and statements, NFC.
PiperOrigin-RevId: 227121537
FuncBuilder class. Also rename SSAValue.cpp to Value.cpp
This is step 12/n towards merging instructions and statements, NFC.
PiperOrigin-RevId: 227067644
is the new base of the SSA value hierarchy. This CL also standardizes all the
nomenclature and comments to use 'Value' where appropriate. This also eliminates a large number of cast<MLValue>(x)'s, which is very soothing.
This is step 11/n towards merging instructions and statements, NFC.
PiperOrigin-RevId: 227064624