39 Commits

Author SHA1 Message Date
River Riddle
b6eb26fd0e [mlir][NFC] Move around the code related to PatternRewriting to improve layering
There are several pieces of pattern rewriting infra in IR/ that really shouldn't be there. This revision moves those pieces to a better location such that they are easier to evolve in the future(e.g. with PDL). More concretely this revision does the following:

* Create a Transforms/GreedyPatternRewriteDriver.h and move the apply*andFold methods there.
The definitions for these methods are already in Transforms/ so it doesn't make sense for the declarations to be in IR.

* Create a new lib/Rewrite library and move PatternApplicator there.
This new library will be focused on applying rewrites, and will also include compiling rewrites with PDL.

Differential Revision: https://reviews.llvm.org/D89103
2020-10-26 18:01:06 -07:00
Thomas Raoux
bd07be4f3f [mlir][vector] Update doc strings for insert_map/extract_map and fix insert_map semantic
Based on discourse discussion, fix the doc string and remove examples with
wrong semantic. Also fix insert_map semantic by adding missing operand for
vector we are inserting into.

Differential Revision: https://reviews.llvm.org/D89563
2020-10-26 10:47:01 -07:00
MaheshRavishankar
b6204b995e [mlir][Vector] Introduce UnrollVectorOptions to control vector unrolling.
The current pattern for vector unrolling takes the native shape to
unroll to at pattern instantiation time, but the native shape might
defer based on the types of the operand. Introduce a
UnrollVectorOptions struct which allows for using a function that will
return the native shape based on the operation. Move other options of
unrolling like `filterConstraints` into this struct.

Differential Revision: https://reviews.llvm.org/D89744
2020-10-23 13:52:26 -07:00
Thomas Raoux
edbdea7466 [mlir][vector] Add unrolling patterns for Transfer read/write
Adding unroll support for transfer read and transfer write operation. This
allows to pick the ideal size for the memory access for a given target.

Differential Revision: https://reviews.llvm.org/D89289
2020-10-15 15:17:36 -07:00
Thomas Raoux
cf402a1987 [mlir][vector] Add unit test for vector distribute by block
When distributing a vector larger than the given multiplicity, we can
distribute it by block where each id gets a chunk of consecutive element
along the dimension distributed. This adds a test for this case and adds extra
checks to make sure we don't distribute for cases not multiple of multiplicity.

Differential Revision: https://reviews.llvm.org/D89061
2020-10-08 14:44:03 -07:00
Thomas Raoux
d1c8e179d8 [mlir][vector] Add canonicalization patterns for extractMap/insertMap
Add basic canonicalization patterns for the extractMap/insertMap to allow them
to be folded into Transfer ops.
Also mark transferRead as memory read so that it can be removed by dead code.

Differential Revision: https://reviews.llvm.org/D88622
2020-10-02 10:13:11 -07:00
Thomas Raoux
dd14e58252 [mlir][vector] First step of vector distribution transformation
This is the first of several steps to support distributing large vectors. This
adds instructions extract_map and insert_map that allow us to do incremental
lowering. Right now the transformation only apply to simple pointwise operation
with a vector size matching the multiplicity of the IDs used to distribute the
vector.
This can be used to distribute large vectors to loops or SPMD.

Differential Revision: https://reviews.llvm.org/D88341
2020-09-30 13:14:55 -07:00
Mehdi Amini
f9dc2b7079 Separate the Registration from Loading dialects in the Context
This changes the behavior of constructing MLIRContext to no longer load globally
registered dialects on construction. Instead Dialects are only loaded explicitly
on demand:
- the Parser is lazily loading Dialects in the context as it encounters them
during parsing. This is the only purpose for registering dialects and not load
them in the context.
- Passes are expected to declare the dialects they will create entity from
(Operations, Attributes, or Types), and the PassManager is loading Dialects into
the Context when starting a pipeline.

This changes simplifies the configuration of the registration: a compiler only
need to load the dialect for the IR it will emit, and the optimizer is
self-contained and load the required Dialects. For example in the Toy tutorial,
the compiler only needs to load the Toy dialect in the Context, all the others
(linalg, affine, std, LLVM, ...) are automatically loaded depending on the
optimization pipeline enabled.

To adjust to this change, stop using the existing dialect registration: the
global registry will be removed soon.

1) For passes, you need to override the method:

virtual void getDependentDialects(DialectRegistry &registry) const {}

and registery on the provided registry any dialect that this pass can produce.
Passes defined in TableGen can provide this list in the dependentDialects list
field.

2) For dialects, on construction you can register dependent dialects using the
provided MLIRContext: `context.getOrLoadDialect<DialectName>()`
This is useful if a dialect may canonicalize or have interfaces involving
another dialect.

3) For loading IR, dialect that can be in the input file must be explicitly
registered with the context. `MlirOptMain()` is taking an explicit registry for
this purpose. See how the standalone-opt.cpp example is setup:

  mlir::DialectRegistry registry;
  registry.insert<mlir::standalone::StandaloneDialect>();
  registry.insert<mlir::StandardOpsDialect>();

Only operations from these two dialects can be in the input file. To include all
of the dialects in MLIR Core, you can populate the registry this way:

  mlir::registerAllDialects(registry);

4) For `mlir-translate` callback, as well as frontend, Dialects can be loaded in
the context before emitting the IR: context.getOrLoadDialect<ToyDialect>()

Differential Revision: https://reviews.llvm.org/D85622
2020-08-19 01:19:03 +00:00
Mehdi Amini
e75bc5c791 Revert "Separate the Registration from Loading dialects in the Context"
This reverts commit d14cf45735b0d09d7d3caf0824779520dd20ef10.
The build is broken with GCC-5.
2020-08-19 01:19:03 +00:00
Mehdi Amini
d14cf45735 Separate the Registration from Loading dialects in the Context
This changes the behavior of constructing MLIRContext to no longer load globally
registered dialects on construction. Instead Dialects are only loaded explicitly
on demand:
- the Parser is lazily loading Dialects in the context as it encounters them
during parsing. This is the only purpose for registering dialects and not load
them in the context.
- Passes are expected to declare the dialects they will create entity from
(Operations, Attributes, or Types), and the PassManager is loading Dialects into
the Context when starting a pipeline.

This changes simplifies the configuration of the registration: a compiler only
need to load the dialect for the IR it will emit, and the optimizer is
self-contained and load the required Dialects. For example in the Toy tutorial,
the compiler only needs to load the Toy dialect in the Context, all the others
(linalg, affine, std, LLVM, ...) are automatically loaded depending on the
optimization pipeline enabled.

To adjust to this change, stop using the existing dialect registration: the
global registry will be removed soon.

1) For passes, you need to override the method:

virtual void getDependentDialects(DialectRegistry &registry) const {}

and registery on the provided registry any dialect that this pass can produce.
Passes defined in TableGen can provide this list in the dependentDialects list
field.

2) For dialects, on construction you can register dependent dialects using the
provided MLIRContext: `context.getOrLoadDialect<DialectName>()`
This is useful if a dialect may canonicalize or have interfaces involving
another dialect.

3) For loading IR, dialect that can be in the input file must be explicitly
registered with the context. `MlirOptMain()` is taking an explicit registry for
this purpose. See how the standalone-opt.cpp example is setup:

  mlir::DialectRegistry registry;
  registry.insert<mlir::standalone::StandaloneDialect>();
  registry.insert<mlir::StandardOpsDialect>();

Only operations from these two dialects can be in the input file. To include all
of the dialects in MLIR Core, you can populate the registry this way:

  mlir::registerAllDialects(registry);

4) For `mlir-translate` callback, as well as frontend, Dialects can be loaded in
the context before emitting the IR: context.getOrLoadDialect<ToyDialect>()

Differential Revision: https://reviews.llvm.org/D85622
2020-08-18 23:23:56 +00:00
Mehdi Amini
d84fe55e0d Revert "Separate the Registration from Loading dialects in the Context"
This reverts commit e1de2b75501e5eaf8777bd5248382a7c55a44fd6.
Broke a build bot.
2020-08-18 22:16:34 +00:00
Mehdi Amini
e1de2b7550 Separate the Registration from Loading dialects in the Context
This changes the behavior of constructing MLIRContext to no longer load globally
registered dialects on construction. Instead Dialects are only loaded explicitly
on demand:
- the Parser is lazily loading Dialects in the context as it encounters them
during parsing. This is the only purpose for registering dialects and not load
them in the context.
- Passes are expected to declare the dialects they will create entity from
(Operations, Attributes, or Types), and the PassManager is loading Dialects into
the Context when starting a pipeline.

This changes simplifies the configuration of the registration: a compiler only
need to load the dialect for the IR it will emit, and the optimizer is
self-contained and load the required Dialects. For example in the Toy tutorial,
the compiler only needs to load the Toy dialect in the Context, all the others
(linalg, affine, std, LLVM, ...) are automatically loaded depending on the
optimization pipeline enabled.

To adjust to this change, stop using the existing dialect registration: the
global registry will be removed soon.

1) For passes, you need to override the method:

virtual void getDependentDialects(DialectRegistry &registry) const {}

and registery on the provided registry any dialect that this pass can produce.
Passes defined in TableGen can provide this list in the dependentDialects list
field.

2) For dialects, on construction you can register dependent dialects using the
provided MLIRContext: `context.getOrLoadDialect<DialectName>()`
This is useful if a dialect may canonicalize or have interfaces involving
another dialect.

3) For loading IR, dialect that can be in the input file must be explicitly
registered with the context. `MlirOptMain()` is taking an explicit registry for
this purpose. See how the standalone-opt.cpp example is setup:

  mlir::DialectRegistry registry;
  mlir::registerDialect<mlir::standalone::StandaloneDialect>();
  mlir::registerDialect<mlir::StandardOpsDialect>();

Only operations from these two dialects can be in the input file. To include all
of the dialects in MLIR Core, you can populate the registry this way:

  mlir::registerAllDialects(registry);

4) For `mlir-translate` callback, as well as frontend, Dialects can be loaded in
the context before emitting the IR: context.getOrLoadDialect<ToyDialect>()
2020-08-18 21:14:39 +00:00
Mehdi Amini
25ee851746 Revert "Separate the Registration from Loading dialects in the Context"
This reverts commit 20563933875a9396c8ace9c9770ecf6a988c4ea6.

Build is broken on a few bots
2020-08-15 09:21:47 +00:00
Mehdi Amini
2056393387 Separate the Registration from Loading dialects in the Context
This changes the behavior of constructing MLIRContext to no longer load globally registered dialects on construction. Instead Dialects are only loaded explicitly on demand:
- the Parser is lazily loading Dialects in the context as it encounters them during parsing. This is the only purpose for registering dialects and not load them in the context.
- Passes are expected to declare the dialects they will create entity from (Operations, Attributes, or Types), and the PassManager is loading Dialects into the Context when starting a pipeline.

This changes simplifies the configuration of the registration: a compiler only need to load the dialect for the IR it will emit, and the optimizer is self-contained and load the required Dialects. For example in the Toy tutorial, the compiler only needs to load the Toy dialect in the Context, all the others (linalg, affine, std, LLVM, ...) are automatically loaded depending on the optimization pipeline enabled.

Differential Revision: https://reviews.llvm.org/D85622
2020-08-15 08:07:31 +00:00
Mehdi Amini
ba92dadf05 Revert "Separate the Registration from Loading dialects in the Context"
This was landed by accident, will reland with the right comments
addressed from the reviews.
Also revert dependent build fixes.
2020-08-15 07:35:10 +00:00
Mehdi Amini
ebf521e784 Separate the Registration from Loading dialects in the Context
This changes the behavior of constructing MLIRContext to no longer load globally registered dialects on construction. Instead Dialects are only loaded explicitly on demand:
- the Parser is lazily loading Dialects in the context as it encounters them during parsing. This is the only purpose for registering dialects and not load them in the context.
- Passes are expected to declare the dialects they will create entity from (Operations, Attributes, or Types), and the PassManager is loading Dialects into the Context when starting a pipeline.

This changes simplifies the configuration of the registration: a compiler only need to load the dialect for the IR it will emit, and the optimizer is self-contained and load the required Dialects. For example in the Toy tutorial, the compiler only needs to load the Toy dialect in the Context, all the others (linalg, affine, std, LLVM, ...) are automatically loaded depending on the optimization pipeline enabled.
2020-08-14 09:40:27 +00:00
Nicolas Vasilache
1a4263d394 [mlir][Vector] Add linalg.copy-based pattern for splitting vector.transfer_read into full and partial copies.
This revision adds a transformation and a pattern that rewrites a "maybe masked" `vector.transfer_read %view[...], %pad `into a pattern resembling:

```
   %1:3 = scf.if (%inBounds) {
      scf.yield %view : memref<A...>, index, index
    } else {
      %2 = linalg.fill(%extra_alloc, %pad)
      %3 = subview %view [...][...][...]
      linalg.copy(%3, %alloc)
      memref_cast %extra_alloc: memref<B...> to memref<A...>
      scf.yield %4 : memref<A...>, index, index
   }
   %res= vector.transfer_read %1#0[%1#1, %1#2] {masked = [false ... false]}
```
where `extra_alloc` is a top of the function alloca'ed buffer of one vector.

This rewrite makes it possible to realize the "always full tile" abstraction where vector.transfer_read operations are guaranteed to read from a padded full buffer.
The extra work only occurs on the boundary tiles.
2020-08-04 08:46:08 -04:00
Nicolas Vasilache
d313e9c12e [mlir][Vector] Add transformation + pattern to split vector.transfer_read into full and partial copies.
This revision adds a transformation and a pattern that rewrites a "maybe masked" `vector.transfer_read %view[...], %pad `into a pattern resembling:

```
   %1:3 = scf.if (%inBounds) {
      scf.yield %view : memref<A...>, index, index
    } else {
      %2 = vector.transfer_read %view[...], %pad : memref<A...>, vector<...>
      %3 = vector.type_cast %extra_alloc : memref<...> to
      memref<vector<...>> store %2, %3[] : memref<vector<...>> %4 =
      memref_cast %extra_alloc: memref<B...> to memref<A...> scf.yield %4 :
      memref<A...>, index, index
   }
   %res= vector.transfer_read %1#0[%1#1, %1#2] {masked = [false ... false]}
```
where `extra_alloc` is a top of the function alloca'ed buffer of one vector.

This rewrite makes it possible to realize the "always full tile" abstraction where vector.transfer_read operations are guaranteed to read from a padded full buffer.
The extra work only occurs on the boundary tiles.

Differential Revision: https://reviews.llvm.org/D84631
2020-08-03 12:58:18 -04:00
Mehdi Amini
7ba82a7320 Revert "[mlir][Vector] Add transformation + pattern to split vector.transfer_read into full and partial copies."
This reverts commit 35b65be041127db9fe23d3128a004c888893cbae.

Build is broken with -DBUILD_SHARED_LIBS=ON with some undefined
references like:

VectorTransforms.cpp:(.text._ZN4llvm12function_refIFvllEE11callback_fnIZL24createScopedInBoundsCondN4mlir25VectorTransferOpInterfaceEE3$_8EEvlll+0xa5): undefined reference to `mlir::edsc::op::operator+(mlir::Value, mlir::Value)'
2020-08-03 16:16:47 +00:00
Nicolas Vasilache
35b65be041 [mlir][Vector] Add transformation + pattern to split vector.transfer_read into full and partial copies.
This revision adds a transformation and a pattern that rewrites a "maybe masked" `vector.transfer_read %view[...], %pad `into a pattern resembling:

```
   %1:3 = scf.if (%inBounds) {
      scf.yield %view : memref<A...>, index, index
    } else {
      %2 = vector.transfer_read %view[...], %pad : memref<A...>, vector<...>
      %3 = vector.type_cast %extra_alloc : memref<...> to
      memref<vector<...>> store %2, %3[] : memref<vector<...>> %4 =
      memref_cast %extra_alloc: memref<B...> to memref<A...> scf.yield %4 :
      memref<A...>, index, index
   }
   %res= vector.transfer_read %1#0[%1#1, %1#2] {masked = [false ... false]}
```
where `extra_alloc` is a top of the function alloca'ed buffer of one vector.

This rewrite makes it possible to realize the "always full tile" abstraction where vector.transfer_read operations are guaranteed to read from a padded full buffer.
The extra work only occurs on the boundary tiles.

Differential Revision: https://reviews.llvm.org/D84631
2020-08-03 04:53:43 -04:00
Nicolas Vasilache
64cdd5b3da [mlir][Vector] Drop declarative transforms
For the purpose of vector transforms, the Tablegen-based infra is subsumed by simple C++ pattern application. Deprecate declarative transforms whose complexity does not pay for itself.

Differential Revision: https://reviews.llvm.org/D84753
2020-07-28 13:11:16 -04:00
Pierre Oechsel
ec62e37c86 [mlir] [vector] Add an optional filter to vector contract lowering patterns.
Summary: Vector contract patterns were only parameterized by a `vectorTransformsOptions`. As a result, even if an mlir file was containing several occurrences of `vector.contract`, all of them would be lowered in the same way. More granularity might be required . This Diff adds a `constraint` argument to each of these patterns which allows the user to specify with more precision on which `vector.contract` should each of the lowering apply.

Differential Revision: https://reviews.llvm.org/D83960
2020-07-17 12:03:13 -04:00
aartbik
365434a584 [mlir] [VectorOps] Merge OUTER/AXPY vector.contract lowering into single case
We temporarily had separate OUTER lowering (for matmat flavors) and
AXPY lowering (for matvec flavors). With the new generalized
"vector.outerproduct" semantics, these cases can be merged into
a single lowering method. This refactoring will simplify future
decisions on cost models and lowering heuristics.

Reviewed By: nicolasvasilache

Differential Revision: https://reviews.llvm.org/D83585
2020-07-10 13:11:54 -07:00
Nicolas Vasilache
05c65dc0fe [mlir][Vector] Add a VectorUnrollInterface and expose UnrollVectorPattern.
The UnrollVectorPattern is can be used in a programmable fashion by:
```
OwningRewritePatternList patterns;
    patterns.insert<UnrollVectorPattern<AddFOp>>(ArrayRef<int64_t>{2, 2}, ctx);
    patterns.insert<UnrollVectorPattern<vector::ContractionOp>>(
        ArrayRef<int64_t>{2, 2, 2}, ctx);
    ...
    applyPatternsAndFoldGreedily(getFunction(), patterns);
```

Differential revision: https://reviews.llvm.org/D83064
2020-07-06 08:09:06 -04:00
aartbik
ee01c7a740 [mlir] [VectorOps] Add choice between dot and axpy lowering of vector.contract
Default vector.contract lowering essentially yields a series of sdot/ddot
operations. However, for some layouts a series of saxpy/daxpy operations,
chained through fma are more efficient. This CL introduces a choice between
the two lowering paths. A default heuristic is to follow.

Some preliminary avx2 performance numbers for matrix-times-vector.
Here, dot performs best for 64x64 A x b and saxpy for 64x64 A^T x b.

```
------------------------------------------------------------
            A x b                          A^T x b
------------------------------------------------------------
GFLOPS    sdot (reassoc)    saxpy    sdot (reassoc)    saxpy
------------------------------------------------------------
1x1        0.6               0.9       0.6             0.9
2x2        2.5               3.2       2.4             3.5
4x4        6.4               8.4       4.9             11.8
8x8       11.7               6.1       5.0             29.6
16x16     20.7              10.8       7.3             43.3
32x32     29.3               7.9       6.4             51.8
64x64     38.9                                         79.3
128x128   32.4                                         40.7
------------------------------------------------------------
```

Reviewed By: nicolasvasilache, ftynse

Differential Revision: https://reviews.llvm.org/D83012
2020-07-02 13:21:17 -07:00
aartbik
6391da98f4 [mlir] [VectorOps] Use 'vector.flat_transpose' for 2-D 'vector.tranpose'
Summary:
Progressive lowering of vector.transpose into an operation that
is closer to an intrinsic, and thus the hardware ISA. Currently
under the common vector transform testing flag, as we prepare
deploying this transformation in the LLVM lowering pipeline.

Reviewers: nicolasvasilache, reidtatge, andydavis1, ftynse

Reviewed By: nicolasvasilache, ftynse

Subscribers: mehdi_amini, rriddle, jpienaar, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, liufengdb, stephenneuendorffer, Joonsoo, grosul1, frgossen, Kayjukh, jurahul, llvm-commits

Tags: #llvm, #mlir

Differential Revision: https://reviews.llvm.org/D80772
2020-06-03 14:55:50 -07:00
Nicolas Vasilache
9578a54f50 [mlir][Vector] Add vector contraction to outerproduct lowering
This revision adds the additional lowering and exposes the patterns at a finer granularity for better programmatic reuse. The unit test makes use of the finer grained pattern for simpler checks.

As the ContractionOpLowering is exposed programmatically, cleanup opportunities appear and static class methods are turned into free functions with static visibility.

Differential Revision: https://reviews.llvm.org/D80375
2020-05-26 09:31:26 -04:00
Uday Bondhugula
a5b9316b24 [MLIR][NFC] applyPatternsGreedily -> applyPatternsAndFoldGreedily
Rename mlir::applyPatternsGreedily -> applyPatternsAndFoldGreedily. The
new name is a more accurate description of the method - it performs
both, application of the specified patterns and folding of all ops in
the op's region irrespective of whether any patterns have been supplied.

Differential Revision: https://reviews.llvm.org/D77478
2020-04-10 12:55:21 +05:30
River Riddle
80aca1eaf7 [mlir][Pass] Remove the use of CRTP from the Pass classes
This revision removes all of the CRTP from the pass hierarchy in preparation for using the tablegen backend instead. This creates a much cleaner interface in the C++ code, and naturally fits with the rest of the infrastructure. A new utility class, PassWrapper, is added to replicate the existing behavior for passes not suitable for using the tablegen backend.

Differential Revision: https://reviews.llvm.org/D77350
2020-04-07 14:08:52 -07:00
Nicolas Vasilache
2fae7878d5 [mlir][Vector] Mostly-NFC - Restructure options for lowering to LLVM Matrix Intrinsics
Summary:
This revision restructures the calling of vector transforms to make it more flexible to ask for lowering through LLVM matrix intrinsics.
This also makes sure we bail out in degenerate cases (i.e. 1) in which LLVM complains about not being able to scalarize.

Differential Revision: https://reviews.llvm.org/D76266
2020-03-17 22:58:02 -04:00
Rob Suderman
4d60f47b08 [mlir][NFC] Renamed VectorOps to Vector
Summary: Renamed VectorOps to Vector to avoid the redundant Ops suffix.

Differential Revision: https://reviews.llvm.org/D76317
2020-03-17 15:28:08 -07:00
Rob Suderman
69d757c0e8 Move StandardOps/Ops.h to StandardOps/IR/Ops.h
Summary:
NFC - Moved StandardOps/Ops.h to a StandardOps/IR dir to better match surrounding
directories. This is to match other dialects, and prepare for moving StandardOps
related transforms in out for Transforms and into StandardOps/Transforms.

Differential Revision: https://reviews.llvm.org/D74940
2020-02-21 11:58:47 -08:00
aartbik
b21c799952 [mlir] [VectorOps] Initial framework for progressively lowering vector.contract
Summary:
This sets the basic framework for lowering vector.contract progressively
into simpler vector.contract operations until a direct vector.reduction
operation is reached. More details will be filled out progressively as well.

Reviewers: nicolasvasilache

Reviewed By: nicolasvasilache

Subscribers: mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, liufengdb, Joonsoo, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D74520
2020-02-13 15:07:57 -08:00
Mehdi Amini
c64770506b Remove static registration for dialects, and the "alwayslink" hack for passes
In the previous state, we were relying on forcing the linker to include
all libraries in the final binary and the global initializer to self-register
every piece of the system. This change help moving away from this model, and
allow users to compose pieces more freely. The current change is only "fixing"
the dialect registration and avoiding relying on "whole link" for the passes.
The translation is still relying on the global registry, and some refactoring
is needed to make this all more convenient.

Differential Revision: https://reviews.llvm.org/D74461
2020-02-12 09:13:02 +00:00
Mehdi Amini
308571074c Mass update the MLIR license header to mention "Part of the LLVM project"
This is an artifact from merging MLIR into LLVM, the file headers are
now aligned with the rest of the project.
2020-01-26 03:58:30 +00:00
aartbik
303fddeeab [mlir] [VectorOps] Rewriting of vector.extract/insert_slices to other vector ops
Summary:
Rewrites the extract/insert_slices operation in terms of
strided_slice/insert_strided_slice ops with intermediate
tuple uses (that should get optimimized away with typical
usage). This is done in a separate "pass" to enable testing
this particular rewriting in isolation.

Reviewers: nicolasvasilache, andydavis1, ftynse

Reviewed By: nicolasvasilache

Subscribers: merge_guards_bot, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, liufengdb, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D73295
2020-01-24 16:24:45 -08:00
Mehdi Amini
56222a0694 Adjust License.txt file to use the LLVM license
PiperOrigin-RevId: 286906740
2019-12-23 15:33:37 -08:00
Andy Davis
4d8ba88610 Add VectorOp transform pattern which splits vector TransferReadOps to target vector unroll size.
PiperOrigin-RevId: 284880592
2019-12-10 17:02:51 -08:00
Nicolas Vasilache
ad38e49806 Uniformize Vector transforms as patterns on the model of Linalg - NFC
This reorganizes the vector transformations to be more easily testable as patterns and more easily composable into fused passes in the future.

PiperOrigin-RevId: 284817474
2019-12-10 11:54:33 -08:00