As pointed out in post-commit review, this can legally be called
on instructions that are not inserted into basic blocks,
so don't blindly assume that there is basic block.
Apparently, we don't do this, neither in EarlyCSE, nor in InstSimplify,
nor in (old) GVN, but do in NewGVN and SimplifyCFG of all places..
While i could teach EarlyCSE how to hash PHI nodes,
we can't really do much (anything?) even if we find two identical
PHI nodes in different basic blocks, same-BB case is the interesting one,
and if we teach InstSimplify about it (which is what i wanted originally,
https://reviews.llvm.org/D86530), we get EarlyCSE support for free.
So i would think this is pretty uncontroversial.
On vanilla llvm test-suite + RawSpeed, this has the following effects:
```
| statistic name | baseline | proposed | Δ | % | \|%\| |
|----------------------------------------------------|-----------|-----------|-------:|---------:|---------:|
| instsimplify.NumPHICSE | 0 | 23779 | 23779 | 0.00% | 0.00% |
| asm-printer.EmittedInsts | 7942328 | 7942392 | 64 | 0.00% | 0.00% |
| assembler.ObjectBytes | 273069192 | 273084704 | 15512 | 0.01% | 0.01% |
| correlated-value-propagation.NumPhis | 18412 | 18539 | 127 | 0.69% | 0.69% |
| early-cse.NumCSE | 2183283 | 2183227 | -56 | 0.00% | 0.00% |
| early-cse.NumSimplify | 550105 | 542090 | -8015 | -1.46% | 1.46% |
| instcombine.NumAggregateReconstructionsSimplified | 73 | 4506 | 4433 | 6072.60% | 6072.60% |
| instcombine.NumCombined | 3640264 | 3664769 | 24505 | 0.67% | 0.67% |
| instcombine.NumDeadInst | 1778193 | 1783183 | 4990 | 0.28% | 0.28% |
| instcount.NumCallInst | 1758401 | 1758799 | 398 | 0.02% | 0.02% |
| instcount.NumInvokeInst | 59478 | 59502 | 24 | 0.04% | 0.04% |
| instcount.NumPHIInst | 330557 | 330533 | -24 | -0.01% | 0.01% |
| instcount.TotalInsts | 8831952 | 8832286 | 334 | 0.00% | 0.00% |
| simplifycfg.NumInvokes | 4300 | 4410 | 110 | 2.56% | 2.56% |
| simplifycfg.NumSimpl | 1019808 | 999607 | -20201 | -1.98% | 1.98% |
```
I.e. it fires ~24k times, causes +110 (+2.56%) more `invoke` -> `call`
transforms, and counter-intuitively results in *more* instructions total.
That being said, the PHI count doesn't decrease that much,
and looking at some examples, it seems at least some of them
were previously getting PHI CSE'd in SimplifyCFG of all places..
I'm adjusting `Instruction::isIdenticalToWhenDefined()` at the same time.
As a comment in `InstCombinerImpl::visitPHINode()` already stated,
there are no guarantees on the ordering of the operands of a PHI node,
so if we just naively compare them, we may false-negatively say that
the nodes are not equal when the only difference is operand order,
which is especially important since the fold is in InstSimplify,
so we can't rely on InstCombine sorting them beforehand.
Fixing this for the general case is costly (geomean +0.02%),
and does not appear to catch anything in test-suite, but for
the same-BB case, it's trivial, so let's fix at least that.
As per http://llvm-compile-time-tracker.com/compare.php?from=04879086b44348cad600a0a1ccbe1f7776cc3cf9&to=82bdedb888b945df1e9f130dd3ac4dd3c96e2925&stat=instructions
this appears to cause geomean +0.03% compile time increase (regression),
but geomean -0.01%..-0.04% code size decrease (improvement).
This is a reboot of D84655, now performing the inner icmp
simplification query without undef folds.
It should be possible to handle the current foldMinMaxSharedOp()
fold based on this, by moving the logic into icmp of min/max instead,
making it more general. We can't drop the folds for constant operands,
because those also allow undef, which we exclude here.
The tests use assumes for exhaustive coverage, and have a few
more examples of misc folds we get based on icmp simplification.
Differential Revision: https://reviews.llvm.org/D85929
InstSimplify should do all transformations that ConstProp does, but
one thing that ConstProp does that InstSimplify wouldn't is inline
vector instructions that are constants, e.g. into a ret.
Previously vector instructions wouldn't be inlined in InstSimplify
because llvm::Simplify*Instruction() would return nullptr for specific
instructions, such as vector instructions that were actually constants,
if it couldn't simplify them.
This changes SimplifyInsertElementInst, SimplifyExtractElementInst, and
SimplifyShuffleVectorInst to return a vector constant when possible.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D85946
This recommits the following patches now that D85684 has landed
1cf6f210a2e [IR] Disable select ? C : undef -> C fold in ConstantFoldSelectInstruction unless we know C isn't poison.
469da663f2d [InstSimplify] Re-enable select ?, undef, X -> X transform when X is provably not poison
122b0640fc9 [InstSimplify] Don't fold vectors of partial undef in SimplifySelectInst if the non-undef element value might produce poison
ac0af12ed2f [InstSimplify] Add test cases for opportunities to fold select ?, X, undef -> X when we can prove X isn't poison
9b1e95329af [InstSimplify] Remove select ?, undef, X -> X and select ?, X, undef -> X transforms
Similar to what we do in IIQ, add an isUndefValue() helper that
checks for undef values while respective CanUseUndef. This makes
it much easier to search for places that don't respect the flag
yet.
This is the replacement for D84250 based on D84792. As we recursively
fold with the same value twice, we need to disable undef folds,
to prevent an undef from being folded to two different values.
Reverting rG00f3579aea6e3d4a4b7464c3db47294f71cef9e4 and using the
test case from https://reviews.llvm.org/D83360#2145793, it no longer
performs the incorrect fold.
Differential Revision: https://reviews.llvm.org/D85684
I think this is the last remaining translation of an existing
instcombine transform for the corresponding cmp+sel idiom.
This interpretation is more general though - we can remove
mismatched signed/unsigned combinations in addition to the
more obvious cases.
min/max(X, Y) must produce X or Y as the result, so this is
just another clause in the existing transform that was already
matching a min/max of min/max.
Making use of undef is not safe if the simplification result is not used
to replace all uses of the result. This leads to problems in NewGVN,
which does not replace all uses in the IR directly. See PR33165 for more
details.
This patch adds an option to SimplifyQuery to disable the use of undef.
Note that I've only guarded uses if isa<UndefValue>/m_Undef where
SimplifyQuery is currently available. If we agree on the general
direction, I'll update the remaining uses.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D84792
https://rise4fun.com/Alive/pZEr
Name: mul nuw with icmp eq
Pre: (C2 %u C1) != 0
%a = mul nuw i8 %x, C1
%r = icmp eq i8 %a, C2
=>
%r = false
Name: mul nuw with icmp ne
Pre: (C2 %u C1) != 0
%a = mul nuw i8 %x, C1
%r = icmp ne i8 %a, C2
=>
%r = true
There are potentially several other transforms we need to add based on:
D51625
...but it doesn't look like there was follow-up to that patch.
This revision adds the following peephole optimization
and it's negation:
%a = urem i64 %x, %y
%b = icmp ule i64 %a, %x
====>
%b = true
With John Regehr's help this optimization was checked with Alive2
which suggests it should be valid.
This pattern occurs in the bound checks of Rust code, the program
const N: usize = 3;
const T = u8;
pub fn split_mutiple(slice: &[T]) -> (&[T], &[T]) {
let len = slice.len() / N;
slice.split_at(len * N)
}
the method call slice.split_at will check that len * N is within
the bounds of slice, this bounds check is after some transformations
turned into the urem seen above and then LLVM fails to optimize it
any further. Adding this optimization would cause this bounds check
to be fully optimized away.
ref: https://github.com/rust-lang/rust/issues/74938
Differential Revision: https://reviews.llvm.org/D85092
This is based on the existing code for the non-intrinsic idioms
in InstCombine.
The vector constant constraint is non-obvious: undefs should be
ok in the outer call, but they can't propagate safely from the
inner call in all cases. Example:
https://alive2.llvm.org/ce/z/-2bVbM
define <2 x i8> @src(<2 x i8> %x) {
%0:
%m = umin <2 x i8> %x, { 7, undef }
%m2 = umin <2 x i8> { 9, 9 }, %m
ret <2 x i8> %m2
}
=>
define <2 x i8> @tgt(<2 x i8> %x) {
%0:
%m = umin <2 x i8> %x, { 7, undef }
ret <2 x i8> %m
}
Transformation doesn't verify!
ERROR: Value mismatch
Example:
<2 x i8> %x = < undef, undef >
Source:
<2 x i8> %m = < #x00 (0) [based on undef value], #x00 (0) >
<2 x i8> %m2 = < #x00 (0), #x00 (0) >
Target:
<2 x i8> %m = < #x07 (7), #x10 (16) >
Source value: < #x00 (0), #x00 (0) >
Target value: < #x07 (7), #x10 (16) >
It's always safe to pick the earlier abs regardless of the nsw flag. We'll just lose it if it is on the outer abs but not the inner abs.
Differential Revision: https://reviews.llvm.org/D85053
abs() should be rare enough that using value tracking is not going
to be a compile-time cost burden, so use it to reduce a variety of
potential patterns. We do this in DAGCombiner too.
Differential Revision: https://reviews.llvm.org/D85043
This matches the behavior of simplify calls for regular opcodes -
rely on ConstantFolding before spending time on folds with variables.
I am not aware of any diffs from this re-ordering currently, but there was
potential for unintended behavior from the min/max intrinsics because that
code is implicitly assuming that only 1 of the input operands is constant.
This is the main icmp simplification shortcoming seen in D84655.
Alive2 agrees that the basic examples are correct at least:
define <2 x i1> @src(<2 x i8> %x) {
%0:
%r = icmp sle <2 x i8> { undef, 128 }, %x
ret <2 x i1> %r
}
=>
define <2 x i1> @tgt(<2 x i8> %x) {
%0:
ret <2 x i1> { 1, 1 }
}
Transformation seems to be correct!
define <2 x i1> @src(<2 x i32> %X) {
%0:
%A = or <2 x i32> %X, { 63, 63 }
%B = icmp ult <2 x i32> %A, { undef, 50 }
ret <2 x i1> %B
}
=>
define <2 x i1> @tgt(<2 x i32> %X) {
%0:
ret <2 x i1> { 0, 0 }
}
Transformation seems to be correct!
https://alive2.llvm.org/ce/z/omt2eehttps://alive2.llvm.org/ce/z/GW4nP_
Differential Revision: https://reviews.llvm.org/D84762
This is a step towards trying to remove unnecessary FP compares
with infinity when compiling with -ffinite-math-only or similar.
I'm intentionally not checking FMF on the fcmp itself because
I'm assuming that will go away eventually.
The analysis part of this was added with rGcd481136 for use with
isKnownNeverNaN. Similarly, that could be an enhancement here to
get predicates like 'one' and 'ueq'.
Differential Revision: https://reviews.llvm.org/D84035
This reverts most of the following patches due to reports of miscompiles.
I've left the added test cases with comments updated to be FIXMEs.
1cf6f210a2e [IR] Disable select ? C : undef -> C fold in ConstantFoldSelectInstruction unless we know C isn't poison.
469da663f2d [InstSimplify] Re-enable select ?, undef, X -> X transform when X is provably not poison
122b0640fc9 [InstSimplify] Don't fold vectors of partial undef in SimplifySelectInst if the non-undef element value might produce poison
ac0af12ed2f [InstSimplify] Add test cases for opportunities to fold select ?, X, undef -> X when we can prove X isn't poison
9b1e95329af [InstSimplify] Remove select ?, undef, X -> X and select ?, X, undef -> X transforms
Follow up from the transform being removed in D83360. If X is probably not poison, then the transform is safe.
Still plan to remove or adjust the code from ConstantFolding after this.
Differential Revision: https://reviews.llvm.org/D83440
We can't fold to the non-undef value unless we know it isn't poison. So check each element with isGuaranteedNotToBeUndefOrPoison. This currently rules out all constant expressions.
Differential Revision: https://reviews.llvm.org/D83442
These represent the same thing but 64BIT only showed up from
getHostCPUFeatures providing a list of featuers to clang. While
EM64T showed up from getting the features for a named CPU.
EM64T didn't have a string specifically so it would not be passed
up to clang when getting features for a named CPU. While 64bit
needed a name since that's how it is index.
Merge them by filtering 64bit out before sending features to clang
for named CPUs.
This is picking up a loose thread from D69006: We can simplify
(zext x) ule (sext x) and (zext x) sge (sext x) to true, with
various permutations. Oddly, SCEV knows about this identity,
but nothing on the IR level does.
Differential Revision: https://reviews.llvm.org/D83081
If we assume(x > y), then we should be able to fold the basic
implications of that, like x >= y. This already happens if either
one of the operands is constant (LVI) or if the conditions are
exactly the same (GVN), but not if we have an implication with
non-constant operands. Support this by querying AssumptionCache.
Fixes https://bugs.llvm.org/show_bug.cgi?id=40149.
Differential Revision: https://reviews.llvm.org/D82717
Summary:
simplifyDivRem attempts to walk a VectorType elementwise. Ensure that it
only does so for FixedVectorType
Reviewers: efriedma, spatel, lebedev.ri, david-arm, kmclaughlin
Reviewed By: spatel, david-arm
Subscribers: tschuett, hiraditya, rkruppe, psnobl, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D81856
This intrinsic implements IEEE-754 operation roundToIntegralTiesToEven,
and performs rounding to the nearest integer value, rounding halfway
cases to even. The intrinsic represents the missed case of IEEE-754
rounding operations and now llvm provides full support of the rounding
operations defined by the standard.
Differential Revision: https://reviews.llvm.org/D75670
No changes relative to last time, but after a mitigation for
an AMDGPU regression landed.
---
If SimplifyInstruction() does not succeed in simplifying the
instruction, it will compute the known bits of the instruction
in the hope that all bits are known and the instruction can be
folded to a constant. I have removed a similar optimization
from InstCombine in D75801, and would like to drop this one as well.
On average, we spend ~1% of total compile-time performing this
known bits calculation. However, if we introduce some additional
statistics for known bits computations and how many of them succeed
in simplifying the instruction we get (on test-suite):
instsimplify.NumKnownBits: 216
instsimplify.NumKnownBitsComputed: 13828375
valuetracking.NumKnownBitsComputed: 45860806
Out of ~14M known bits calculations (accounting for approximately
one third of all known bits calculations), only 0.0015% succeed in
producing a constant. Those cases where we do succeed to compute
all known bits will get folded by other passes like InstCombine
later. On test-suite, only lencod.test and GCC-C-execute-pr44858.test
show a hash difference after this change. On lencod we see an
improvement (a loop phi is optimized away), on the GCC torture
test a regression (a function return value is determined only
after IPSCCP, preventing propagation from a noinline function.)
There are various regressions in InstSimplify tests. However, all
of these cases are already handled by InstCombine, and corresponding
tests have already been added there.
Differential Revision: https://reviews.llvm.org/D79294