This patch canonicalizes getelementptr instructions with constant
indices to use the `i8` source element type. This makes it easier for
optimizations to recognize that two GEPs are identical, because they
don't need to see past many different ways to express the same offset.
This is a first step towards
https://discourse.llvm.org/t/rfc-replacing-getelementptr-with-ptradd/68699.
This is limited to constant GEPs only for now, as they have a clear
canonical form, while we're not yet sure how exactly to deal with
variable indices.
The test llvm/test/Transforms/PhaseOrdering/switch_with_geps.ll gives
two representative examples of the kind of optimization improvement we
expect from this change. In the first test SimplifyCFG can now realize
that all switch branches are actually the same. In the second test it
can convert it into simple arithmetic. These are representative of
common optimization failures we see in Rust.
Fixes https://github.com/llvm/llvm-project/issues/69841.
This patch tries to flip the signedness of predicates when folding an
unsigned icmp with a signed min/max. It will enable more optimizations
as we canonicalizes a signed icmp into an unsigned icmp when both
operands are known to have the same sign.
Fixes#76672.
Compile-time impact:
http://llvm-compile-time-tracker.com/compare.php?from=949ec83eaf6fa6dbffb94c2ea9c0a4d5efdbd239&to=2deca1aea8a4e13609bab72c522a97d424f0fc2d&stat=instructions:u
|stage1-O3|stage1-ReleaseThinLTO|stage1-ReleaseLTO-g|stage1-O0-g|stage2-O3|stage2-O0-g|stage2-clang|
|--|--|--|--|--|--|--|
|-0.00%|+0.01%|+0.05%|-0.12%|-0.01%|-0.03%|-0.00%|
NOTE: We can flip the signedness of predicate if both operands are
negative. But I don't see the benefit of handling these cases.
This patch introduces a new ComputeReductionResult opcode to compute the
final reduction result in the middle block. The code from fixReduction
has been moved to ComputeReductionResult, after some earlier cleanup
changes to model parts of fixReduction explicitly elsewhere as needed.
The recipe may be broken down further in the future.
Note that the phi nodes to merge the reduction result from the trip
count check and the middle block, to be used as resume value for the
scalar remainder loop are also generated based on
ComputeReductionResult.
Once we have a VPValue for the reduction result, this can also be
modeled explicitly and moved out of the recipe.
These tests rely on SCEV looking recognizing an "or" with no common
bits as an "add". Add the disjoint flag to relevant or instructions
in preparation for switching SCEV to use the flag instead of the
ValueTracking query. The IR with disjoint flag matches what
InstCombine would produce.
The disjoint flag was recently added to IR in #72583
We already set it when we turn an add into an or. This patch sets it on Ors that weren't converted from an Add.
This patch generalizes the fold of `icmp pred min/max(X, Y), Z` to address the issue https://github.com/llvm/llvm-project/issues/62898.
For example, we can fold `smin(X, Y) < Z` into `X < Z` when `Y > Z` is implied by constant folds/invariants/dom conditions.
Alive2 (with `--disable-undef-input` due to the limitation of --smt-to=10000): https://alive2.llvm.org/ce/z/rB7qLc
You can run the standalone translation validation tool `alive-tv` locally to verify these transformations.
```
alive-tv transforms.ll --smt-to=600000 --exit-on-error
```
Reviewed By: goldstein.w.n
Differential Revision: https://reviews.llvm.org/D156238
Set phi inputs to poison whenever we find a dead edge (either
during initial worklist population or the main InstCombine run),
instead of only doing this for successors of dead blocks.
This means that the phi operand is set to poison even if for
critical edges without an intermediate block.
There are quite a few test changes, because the pattern is fairly
common in vectorizer output, for cases where we know the vectorized
loop will be entered.
Reorder VPlan transforms slightly so they are all grouped together,
after disabling Value -> VPValue lookup. In terms of codegen impact,
this should be NFC modulo a small number of instruction reorderings.
Preparation to split up tryToBuildVPlanWithVPRecipes in a follow-up.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D154640
We were failing to set the known bits for add/sub in the multi-use
case, resulting in odd behavioral differences depending on the
number of uses. Noticed while adding a consistency assertion.
The test changes are essentially a revert to the state before
d6498ab. These changes are not really desirable, but if we don't
want them, that needs to be handled as part of the heuristic for
demanded constant shrinking, not by artifically suppressing the
known bits in one specific case.
This patch reverts rGae739aefd7473517d3f08b5c8d08a66c7f469198 to address performance regressions reported by our [CI](https://github.com/dtcxzyw/llvm-ci/issues/137) after rG2ec1d0f427c7822540352c0c14d057e7bfe4f77b.
For example:
```
define ptr @const_gep_chain(ptr %p, i64 %a) {
%p1 = getelementptr inbounds i8, ptr %p, i64 %a
%p2 = getelementptr inbounds i8, ptr %p1, i64 1
%p3 = getelementptr inbounds i8, ptr %p2, i64 2
%p4 = getelementptr inbounds i8, ptr %p3, i64 3
ret ptr %p4
}
```
The last three GEPs will not be folded since rG2ec1d0f427c7822540352c0c14d057e7bfe4f77b.
I think it is appropriate to remove this code because there is no compile-time regression reported in our benchmarks.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D149240
With this patch an undefined mask in a shufflevector will be printed as poison.
This change is done to support the new shufflevector semantics
for undefined mask elements.
Differential Revision: https://reviews.llvm.org/D149210
Since D146813, LICM will reassociate GEPs to expose hoisting
opportunities itself. Don't perform this transform in InstCombine,
where it is fragile because it depends on an optional LoopInfo
analysis.
This is the follow-up to D144199 and suggestion from D144045.
We make use of loop info explicit via InstCombine pass parameter
rather than semi-arbitrary via caching.
The only InstCombine transform that uses LoopInfo currently is a
GEP fold in visitGEPOfGEP(), so that shows up as a failure in the
dedicated test for the fold as well as several LoopVectorizer tests
that run extra passes.
I don't see any pass manager regression tests that actually check
for pass options, but this is intended to be NFC for the pass
pipeline behavior - we only try to use loop info where it would
have been used before via caching .
Differential Revision: https://reviews.llvm.org/D144274
IR is now always parsed in opaque pointer mode, unless
-opaque-pointers=0 is explicitly given. There is no automatic
detection of typed pointers anymore.
The -opaque-pointers=0 option is added to any remaining IR tests
that haven't been migrated yet.
Differential Revision: https://reviews.llvm.org/D141912
This patch adds metadata to disable runtime unrolling to the vectorized
loop. If runtime unrolling/interleaving is considered profitable, LV
will interleave the loop directly. There should be no need to perform
runtime unrolling at a later stage.
Note that we already add metadata to disable runtime unrolling to the
scalar loop after vectorization.
The additional unrolling unnecessarily increases code size and compile
time. In addition to that we have several bug reports of unncessary
runtime unrolling for vectorized loops, e.g. PR40961
Compile-time improvements:
NewPM-O3: -1.04%
NewPM-ReleaseThinLTO: -0.59%
NewPM-ReleaseLTO-g: -0.97%
https://llvm-compile-time-tracker.com/compare.php?from=ce1be13a868d0f8afa367975558c1a6175cce33a&to=78bc2e67f22e9e10e61cdb6cdac4bb857d95eb1b&stat=instructions:uFixes#40306.
Reviewed By: lebedev.ri, nikic
Differential Revision: https://reviews.llvm.org/D115261
In D136659 I found a few tests that write through readonly parameters:
* Analysis/BasicAA/pr18573.ll: @foo1 writes through %arr.ptr, but declares it
readonly. I removed the readonly annotation.
* CodeGen/ARM/ParallelDSP/aliasing.ll: @restrict writes through the readonly
%arg3, @store_alias_arg3_illegal_1 writes through the readonly %arg3, and
@store_alias_arg3_illegal_2 writes through the readonly %arg3. I removed
readonly from all three. Also, I added some CHECK-LABEL directives to make it
harder for FileCheck output to be mixed up.
* Transforms/LoopVectorize/AArch64/sve-gather-scatter.ll:
@gather_nxv4i32_ind64_stride2 writes through the readonly %a. I removed the
readonly attribute.
* Transforms/LoopVectorize/interleaved-accesses.ll: @load_gap_reverse writes
through the readonly %P1 and %P2. Also, the corresponding C code in the comment
didn't match the test. I removed the readonly attribute from both parameters
and corrected the C code.
Differential Revision: https://reviews.llvm.org/D136880
Canonicalize GEP of GEP by swapping GEP with some suffix constant indices to the back (and GEP with all constant indices to the back of that), this allows more constant index GEP merging to happen. Exceptions are: If swapping violates use-def relations, or anti-optimizes LICM
For constant indexed GEP of GEP, if they cannot be merged directly, they will be casted to i8* and merged.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D125845
This was originally part of D133788. There are no visible
regressions. All of the diffs show a large unsigned constant
becoming a small negative constant. This should be better
for analysis (and slightly less compile-time) and codegen.
When reassociating GEPs, we can only keep inbounds if both original
GEPs were inbounds, and their offsets have the same sign. For the
sake of simplicity, I only handle the case where both offsets are
non-negative here.
It would probably be fine to just not preserve inbounds at all here,
but as I don't see a compile-time impact for adding the
isKnownNonNegative() calls I went with this more conservative
approach.
Fixes https://github.com/llvm/llvm-project/issues/44206.
Differential Revision: https://reviews.llvm.org/D126687
This patch tries to sink instructions when they are only used in a successor block.
This is a further enhancement patch based on Anna's commit:
D109700, which allows sinking an instruction having multiple uses in a single user.
In this patch, sink instructions with multiple users in a single successor block will be supported.
It could fix a known issue from rust:
https://github.com/rust-lang/rust/issues/51346#issuecomment-394443610
Reviewed By: nikic, reames
Differential Revision: https://reviews.llvm.org/D121585
The basic idea to this is that a) having a single canonical type makes CSE easier, and b) many of our transforms are inconsistent about which types we end up with based on visit order.
I'm restricting this to constants as for non-constants, we'd have to decide whether the simplicity was worth extra instructions. For constants, there are no extra instructions.
We chose the canonical type as i64 arbitrarily. We might consider changing this to something else in the future if we have cause.
Differential Revision: https://reviews.llvm.org/D115387
Reverted (manually due to merge conflicts) while regressions reported on PR51540 are investigated
As noticed on D106352, after we've folded "(select C, (gep Ptr, Idx), Ptr) -> (gep Ptr, (select C, Idx, 0))" if the inner Ptr was also a (now one use) gep we could then merge the geps, using the sum of the indices instead.
I've limited this to basic 2-op geps - a more general case further down InstCombinerImpl.visitGetElementPtrInst doesn't have the one-use limitation but only creates the add if it can be created via SimplifyAddInst.
https://alive2.llvm.org/ce/z/f8pLfD (Thanks Roman!)
Differential Revision: https://reviews.llvm.org/D106450
This reverts the revert commit b1777b04dc4b1a9fee0e7effa7e177892ab32ef0.
The patch originally got reverted due to a crash:
https://bugs.chromium.org/p/chromium/issues/detail?id=1232798#c2
The underlying issue was that we were not using the stored values from
the modified memory recipes, but the out-of-date values directly from
the IR (accessed via the VPlan). This should be fixed in d995d6376. A
reduced version of the reproducer has been added in 93664503be6b.
Makes clang crash: https://reviews.llvm.org/D105008#2903350
This reverts commit d2a73fb44ea0b8c981e4b923f811f18793fc4770.
Also revert a minor formatting follow-up:
This reverts commit 82834a673246f27a541ffcc57e0eb65b008102ef.
As noticed on D106352, after we've folded "(select C, (gep Ptr, Idx), Ptr) -> (gep Ptr, (select C, Idx, 0))" if the inner Ptr was also a (now one use) gep we could then merge the geps, using the sum of the indices instead.
I've limited this to basic 2-op geps - a more general case further down InstCombinerImpl.visitGetElementPtrInst doesn't have the one-use limitation but only creates the add if it can be created via SimplifyAddInst.
https://alive2.llvm.org/ce/z/f8pLfD (Thanks Roman!)
Differential Revision: https://reviews.llvm.org/D106450
This patch adds a VPFirstOrderRecurrencePHIRecipe, to further untangle
VPWidenPHIRecipe into distinct recipes for distinct use cases/lowering.
See D104989 for a new recipe for reduction phis.
This patch also introduces a new `FirstOrderRecurrenceSplice`
VPInstruction opcode, which is used to make the forming of the vector
recurrence value explicit in VPlan. This more accurately models def-uses
in VPlan and also simplifies code-generation. Now, the vector recurrence
values are created at the right place during VPlan-codegeneration,
rather than during post-VPlan fixups.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D105008
Resubmit after the following changes:
* Fix a latent bug related to unrolling with required epilogue (see e49d65f). I believe this is the cause of the prior PPC buildbot failure.
* Disable non-latch exits for epilogue vectorization to be safe (9ffa90d)
* Split out assert movement (600624a) to reduce churn if this gets reverted again.
Previous commit message (try 3)
Resubmit after fixing test/Transforms/LoopVectorize/ARM/mve-gather-scatter-tailpred.ll
Previous commit message...
This is a resubmit of 3e5ce4 (which was reverted by 7fe41ac). The original commit caused a PPC build bot failure we never really got to the bottom of. I can't reproduce the issue, and the bot owner was non-responsive. In the meantime, we stumbled across an issue which seems possibly related, and worked around a latent bug in 80e8025. My best guess is that the original patch exposed that latent issue at higher frequency, but it really is just a guess.
Original commit message follows...
If we know that the scalar epilogue is required to run, modify the CFG to end the middle block with an unconditional branch to scalar preheader. This is instead of a conditional branch to either the preheader or the exit block.
The motivation to do this is to support multiple exit blocks. Specifically, the current structure forces us to identify immediate dominators and *which* exit block to branch from in the middle terminator. For the multiple exit case - where we know require scalar will hold - these questions are ill formed.
This is the last change needed to support multiple exit loops, but since the diffs are already large enough, I'm going to land this, and then enable separately. You can think of this as being NFCIish prep work, but the changes are a bit too involved for me to feel comfortable tagging the review that way.
Differential Revision: https://reviews.llvm.org/D94892
This patch marks the induction increment of the main induction variable
of the vector loop as NUW when not folding the tail.
If the tail is not folded, we know that End - Start >= Step (either
statically or through the minimum iteration checks). We also know that both
Start % Step == 0 and End % Step == 0. We exit the vector loop if %IV +
%Step == %End. Hence we must exit the loop before %IV + %Step unsigned
overflows and we can mark the induction increment as NUW.
This should make SCEV return more precise bounds for the created vector
loops, used by later optimizations, like late unrolling.
At the moment quite a few tests still need to be updated, but before
doing so I'd like to get initial feedback to make sure I am not missing
anything.
Note that this could probably be further improved by using information
from the original IV.
Attempt of modeling of the assumption in Alive2:
https://alive2.llvm.org/ce/z/H_DL_g
Part of a set of fixes required for PR50412.
Reviewed By: mkazantsev
Differential Revision: https://reviews.llvm.org/D103255
Since d6de1e1a71406c75a4ea4d5a2fe84289f07ea3a1, no attributes is quivalent to
setting attribute to false.
This is a preliminary commit for https://reviews.llvm.org/D99080
This reverts commit 6d3e3ae8a9ca10e063d541a959f4fe4cdb003dba.
Still seeing PPC build bot failures, and one arm self host bot failing. I'm officially stumped, and need help from a bot owner to reduce.
Resubmit after fixing test/Transforms/LoopVectorize/ARM/mve-gather-scatter-tailpred.ll
Previous commit message...
This is a resubmit of 3e5ce4 (which was reverted by 7fe41ac). The original commit caused a PPC build bot failure we never really got to the bottom of. I can't reproduce the issue, and the bot owner was non-responsive. In the meantime, we stumbled across an issue which seems possibly related, and worked around a latent bug in 80e8025. My best guess is that the original patch exposed that latent issue at higher frequency, but it really is just a guess.
Original commit message follows...
If we know that the scalar epilogue is required to run, modify the CFG to end the middle block with an unconditional branch to scalar preheader. This is instead of a conditional branch to either the preheader or the exit block.
The motivation to do this is to support multiple exit blocks. Specifically, the current structure forces us to identify immediate dominators and *which* exit block to branch from in the middle terminator. For the multiple exit case - where we know require scalar will hold - these questions are ill formed.
This is the last change needed to support multiple exit loops, but since the diffs are already large enough, I'm going to land this, and then enable separately. You can think of this as being NFCIish prep work, but the changes are a bit too involved for me to feel comfortable tagging the review that way.
Differential Revision: https://reviews.llvm.org/D94892
This is a resubmit of 3e5ce4 (which was reverted by 7fe41ac). The original commit caused a PPC build bot failure we never really got to the bottom of. I can't reproduce the issue, and the bot owner was non-responsive. In the meantime, we stumbled across an issue which seems possibly related, and worked around a latent bug in 80e8025. My best guess is that the original patch exposed that latent issue at higher frequency, but it really is just a guess.
Original commit message follows...
If we know that the scalar epilogue is required to run, modify the CFG to end the middle block with an unconditional branch to scalar preheader. This is instead of a conditional branch to either the preheader or the exit block.
The motivation to do this is to support multiple exit blocks. Specifically, the current structure forces us to identify immediate dominators and *which* exit block to branch from in the middle terminator. For the multiple exit case - where we know require scalar will hold - these questions are ill formed.
This is the last change needed to support multiple exit loops, but since the diffs are already large enough, I'm going to land this, and then enable separately. You can think of this as being NFCIish prep work, but the changes are a bit too involved for me to feel comfortable tagging the review that way.
Differential Revision: https://reviews.llvm.org/D94892
These intrinsics, not the icmp+select are the canonical form nowadays,
so we might as well directly emit them.
This should not cause any regressions, but if it does,
then then they would needed to be fixed regardless.
Note that this doesn't deal with `SCEVExpander::isHighCostExpansion()`,
but that is a pessimization, not a correctness issue.
Additionally, the non-intrinsic form has issues with undef,
see https://reviews.llvm.org/D88287#2587863
The vector reduction intrinsics started life as experimental ops, so backend support
was lacking. As part of promoting them to 1st-class intrinsics, however, codegen
support was added/improved:
D58015
D90247
So I think it is safe to now remove this complication from IR.
Note that we still have an IR-level codegen expansion pass for these as discussed
in D95690. Removing that is another step in simplifying the logic. Also note that
x86 was already unconditionally forming reductions in IR, so there should be no
difference for x86.
I spot checked a couple of the tests here by running them through opt+llc and did
not see any asm diffs.
If we do find functional differences for other targets, it should be possible
to (at least temporarily) restore the shuffle IR with the ExpandReductions IR
pass.
Differential Revision: https://reviews.llvm.org/D96552