SubtargetFeature.h is currently part of MC while it doesn't depend on
anything in MC. Since some LLVM components might have the need to work
with target features without necessarily needing MC, it might be
worthwhile to move SubtargetFeature.h to a different location. This will
reduce the dependencies of said components.
Note that I choose TargetParser as the destination because that's where
Triple lives and SubtargetFeatures feels related to that.
This issues came up during a JITLink review (D149522). JITLink would
like to avoid a dependency on MC while still needing to store target
features.
Reviewed By: MaskRay, arsenm
Differential Revision: https://reviews.llvm.org/D150549
There was a memory leak that presented itself once the llvm-mca
tests were committed. This leak was not checked for by the pre-commit
tests. This change changes the shared_ptr to a unique_ptr to avoid
this problem.
We will know that this fix works once committed since I don't know
whether it is possible to force a lit test to use LSan. I spent the
day trying to build llvm with LSan enabled without much luck. If
anyone knows how to build llvm with LSan for the lit-tests, I am
happy to give it another try locally.
Differential Revision: https://reviews.llvm.org/D150816
This is a fairly large changeset, but it can be broken into a few
pieces:
- `llvm/Support/*TargetParser*` are all moved from the LLVM Support
component into a new LLVM Component called "TargetParser". This
potentially enables using tablegen to maintain this information, as
is shown in https://reviews.llvm.org/D137517. This cannot currently
be done, as llvm-tblgen relies on LLVM's Support component.
- This also moves two files from Support which use and depend on
information in the TargetParser:
- `llvm/Support/Host.{h,cpp}` which contains functions for inspecting
the current Host machine for info about it, primarily to support
getting the host triple, but also for `-mcpu=native` support in e.g.
Clang. This is fairly tightly intertwined with the information in
`X86TargetParser.h`, so keeping them in the same component makes
sense.
- `llvm/ADT/Triple.h` and `llvm/Support/Triple.cpp`, which contains
the target triple parser and representation. This is very intertwined
with the Arm target parser, because the arm architecture version
appears in canonical triples on arm platforms.
- I moved the relevant unittests to their own directory.
And so, we end up with a single component that has all the information
about the following, which to me seems like a unified component:
- Triples that LLVM Knows about
- Architecture names and CPUs that LLVM knows about
- CPU detection logic for LLVM
Given this, I have also moved `RISCVISAInfo.h` into this component, as
it seems to me to be part of that same set of functionality.
If you get link errors in your components after this patch, you likely
need to add TargetParser into LLVM_LINK_COMPONENTS in CMake.
Differential Revision: https://reviews.llvm.org/D137838
This patch mechanically replaces None with std::nullopt where the
compiler would warn if None were deprecated. The intent is to reduce
the amount of manual work required in migrating from Optional to
std::optional.
This is part of an effort to migrate from llvm::Optional to
std::optional:
https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716
On x86 and AArch, SIMD instructions encode all of the scheduling information in the instruction
itself. For example, VADD.I16 q0, q1, q2 is a neon instruction that operates on 16-bit integer
elements stored in 128-bit Q registers, which leads to eight 16-bit lanes in parallel. This kind
of information impacts how the instruction takes to execute and what dependencies this may cause.
On RISCV however, the data that impacts scheduling is encoded in CSR registers such as vtype or
vl, in addition with the instruction itself. But MCA does not track or use the data in these
registers. This patch fixes this problem by introducing Instruments into MCA.
* Replace `CodeRegions` with `AnalysisRegions`
* Add `Instrument` and `InstrumentManager`
* Add `InstrumentRegions`
* Add RISCV Instrument and `InstrumentManager`
* Parse `Instruments` in driver
* Use instruments to override schedule class
* RISCV use lmul instrument to override schedule class
* Fix unit tests to pass empty instruments
* Add -ignore-im clopt to disable this change
A prior version of this patch was commited in 5e82ee537321. 2323a4ee610f reverted
that change because the unit test files caused build errors. The change with fixes
were committed in b88b8307bf9e but reverted once again e8e92c8313a0 due to more
build errors.
This commit adds the prior changes and fixes the build error.
Differential Revision: https://reviews.llvm.org/D137440
On x86 and AArch, SIMD instructions encode all of the scheduling information in the instruction
itself. For example, VADD.I16 q0, q1, q2 is a neon instruction that operates on 16-bit integer
elements stored in 128-bit Q registers, which leads to eight 16-bit lanes in parallel. This kind
of information impacts how the instruction takes to execute and what dependencies this may cause.
On RISCV however, the data that impacts scheduling is encoded in CSR registers such as vtype or
vl, in addition with the instruction itself. But MCA does not track or use the data in these
registers. This patch fixes this problem by introducing Instruments into MCA.
* Replace `CodeRegions` with `AnalysisRegions`
* Add `Instrument` and `InstrumentManager`
* Add `InstrumentRegions`
* Add RISCV Instrument and `InstrumentManager`
* Parse `Instruments` in driver
* Use instruments to override schedule class
* RISCV use lmul instrument to override schedule class
* Fix unit tests to pass empty instruments
* Add -ignore-im clopt to disable this change
A prior version of this patch was commited in. It was reverted in
5e82ee5373211db8522181054800ccd49461d9d8. 2323a4ee610f5e1db74d362af4c6fb8c704be8f6 reverted
that change because the unit test files caused build errors. This commit adds the original changes
and the fixed test files.
Differential Revision: https://reviews.llvm.org/D137440
On x86 and AArch, SIMD instructions encode all of the scheduling information in the instruction
itself. For example, VADD.I16 q0, q1, q2 is a neon instruction that operates on 16-bit integer
elements stored in 128-bit Q registers, which leads to eight 16-bit lanes in parallel. This kind
of information impacts how the instruction takes to execute and what dependencies this may cause.
On RISCV however, the data that impacts scheduling is encoded in CSR registers such as vtype or
vl, in addition with the instruction itself. But MCA does not track or use the data in these
registers. This patch fixes this problem by introducing Instruments into MCA.
* Replace `CodeRegions` with `AnalysisRegions`
* Add `Instrument` and `InstrumentManager`
* Add `InstrumentRegions`
* Add RISCV Instrument and `InstrumentManager`
* Parse `Instruments` in driver
* Use instruments to override schedule class
* RISCV use lmul instrument to override schedule class
* Fix unit tests to pass empty instruments
* Add -ignore-im clopt to disable this change
Differential Revision: https://reviews.llvm.org/D137440
A simple sed doing these substitutions:
- `${LLVM_BINARY_DIR}/(\$\{CMAKE_CFG_INTDIR}/)?lib(${LLVM_LIBDIR_SUFFIX})?\>` -> `${LLVM_LIBRARY_DIR}`
- `${LLVM_BINARY_DIR}/(\$\{CMAKE_CFG_INTDIR}/)?bin\>` -> `${LLVM_TOOLS_BINARY_DIR}`
where `\>` means "word boundary".
The only manual modifications were reverting changes in
- `compiler-rt/cmake/Modules/CompilerRTUtils.cmake
- `runtimes/CMakeLists.txt`
because these were "entry points" where we wanted to tread carefully not not introduce a "loop" which would end with an undefined variable being expanded to nothing.
This hopefully increases readability overall, and also decreases the usages of `LLVM_LIBDIR_SUFFIX`, preparing us for D130586.
Reviewed By: sebastian-ne
Differential Revision: https://reviews.llvm.org/D132316
This patch introduces a new feature that allows InstrBuilder to reuse
mca::Instruction recycled from IncrementalSourceMgr. This significantly
reduces the memory footprint.
Note that we're only recycling instructions that have static InstrDesc
and no variadic operands.
Differential Revision: https://reviews.llvm.org/D127084
The new resumable mca::Pipeline capability introduced in this patch
allows users to save the current state of pipeline and resume from the
very checkpoint.
It is better (but not require) to use with the new IncrementalSourceMgr,
where users can add mca::Instruction incrementally rather than having a
fixed number of instructions ahead-of-time.
Note that we're using unit tests to test these new features. Because
integrating them into the `llvm-mca` tool will make too many churns.
Differential Revision: https://reviews.llvm.org/D127083