Fold shuffle(bop(shuffle(x,y),shuffle(z,w)),bop(shuffle(a,b),shuffle(c,d))) -> bop(shuffle(x,y),shuffle(z,w)),bop(shuffle(a,b),shuffle(c,d))
Attempt to fold from a shuffle of a pair of binops to a binop of shuffles, as long as one/both of the binop sources are also shuffles that can be merged with the outer shuffle. This should guarantee that we remove one binop without introducing any additional shuffles.
Technically there's potential for a merged shuffle's lowering to be poorer than the original shuffle, but it could also be better, and I'm not seeing any regressions as long as we keep the 'don't merge splats' rule already present in MergeInnerShuffle.
This expands and generalizes an existing X86 combine and attempts to merge either of each binop's sources (with an on-the-fly commutation of the shuffle mask) - we couldn't do that in the x86 version as it had to stay in a form that DAGCombine's MergeInnerShuffle would still recognise.
Fixes issue raised by @saugustine in rG5aa8f4c0843a where we were failing to replace null shuffle operands from MergeInnerShuffle to UNDEFs.
Differential Revision: https://reviews.llvm.org/D96345
This reverts commit 5dfba562dd247f731528448ee83785b099f93629.
That commit causes an assertion failure with the following repro:
typedef long b __attribute__((__vector_size__(16)));
b *d;
b e;
b __attribute__((__always_inline__)) c(b h, b i) {
return (__attribute__((__vector_size__(8 * sizeof(short)))) short)h + i;
}
j() {
b k, l, m, n, o[6], p, q;
m = d[5];
b r = m;
b s = f(r, 8);
q = s;
l = d[1];
p = l;
t(q);
n = c(m, l);
o[1] = c(s, f(p, 8));
k = __builtin_shufflevector(n, o[1], 0, 2);
e = __builtin_ia32_psrlwi128(k, j);
}
./bin/clang -cc1 -triple x86_64-grtev4-linux-gnu -emit-obj -O1 -std=c99 test.c
Fold shuffle(bop(shuffle(x,y),shuffle(z,w)),bop(shuffle(a,b),shuffle(c,d))) -> bop(shuffle(x,y),shuffle(z,w)),bop(shuffle(a,b),shuffle(c,d))
Attempt to fold from a shuffle of a pair of binops to a binop of shuffles, as long as one/both of the binop sources are also shuffles that can be merged with the outer shuffle. This should guarantee that we remove one binop without introducing any additional shuffles.
Technically there's potential for a merged shuffle's lowering to be poorer than the original shuffle, but it could also be better, and I'm not seeing any regressions as long as we keep the 'don't merge splats' rule already present in MergeInnerShuffle.
This expands and generalizes an existing X86 combine and attempts to merge either of each binop's sources (with an on-the-fly commutation of the shuffle mask) - we couldn't do that in the x86 version as it had to stay in a form that DAGCombine's MergeInnerShuffle would still recognise.
Differential Revision: https://reviews.llvm.org/D96345
Begin transitioning the X86 vector code to recognise sub(umax(a,b) ,b) or sub(a,umin(a,b)) USUBSAT patterns to make it more generic and available to all targets.
This initial patch just moves the basic umin/umax patterns to DAG, removing some vector-only checks on the way - these are some of the patterns that the legalizer will try to expand back to so we can be reasonably relaxed about matching these pre-legalization.
We can handle the trunc(sub(..))) variants as well, which helps with patterns where we were promoting to a wider type to detect overflow/saturation.
The remaining x86 code requires some cleanup first - some of it isn't actually tested etc. I also need to resurrect D25987.
Differential Revision: https://reviews.llvm.org/D96413
Avoid doing the following combine for vector types:
```
copysign(x, fp_extend(y)) -> copysign(x, y)
copysign(x, fp_round(y)) -> copysign(x, y)
```
That combine seemed to impede the selection of vector instruction and cause
a mess in some circumstances.
Differential Revision: https://reviews.llvm.org/D96037
As of commit 284f2bffc9bc5, the DAG Combiner gets rid of the masking of the
input to this node if the mask only keeps the bottom 16 bits. This is because
the underlying library function does not use the high order bits. However, on
PowerPC's ELFv2 ABI, it is the caller that is responsible for clearing the bits
from the register. Therefore, the library implementation of __gnu_h2f_ieee will
return an incorrect result if the bits aren't cleared.
This combine is desired for ARM (and possibly other targets) so this patch adds
a query to Target Lowering to check if this zeroing needs to be kept.
Fixes: https://bugs.llvm.org/show_bug.cgi?id=49092
Differential revision: https://reviews.llvm.org/D96283
Make sure scalable property is preserved by using getVectorElementCount().
Reviewed By: paulwalker-arm
Differential Revision: https://reviews.llvm.org/D95967
If sext_inreg is supported, we will turn this into sext_inreg. That
will then remove it if there are enough sign bits. But if sext_inreg
isn't supported, we can still remove the shift pair based on sign
bits.
Split from D95890.
This patch adds support for scalable-vector splats in DAGCombiner's
`isConstantOrConstantVector` and `ISD::matchUnaryPredicate` functions,
which enable the SelectionDAG div/rem-by-constant optimizations for
scalable vector types.
It also fixes up one case where the UDIV optimization was generating a
SETCC without first consulting the target for its preferred SETCC result
type.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D94501
For now, we correct the result for sqrt if iteration > 0. This doesn't make
sense as they are not strict relative.
Reviewed By: dmgreen, spatel, RKSimon
Differential Revision: https://reviews.llvm.org/D94480
Add DemandedElts support inside the TRUNCATE analysis.
REAPPLIED - this was reverted by @hans at rGa51226057fc3 due to an issue with vector shift amount types, which was fixed in rG935bacd3a724 and an additional test case added at rG0ca81b90d19d
Differential Revision: https://reviews.llvm.org/D56387
It caused "Vector shift amounts must be in the same as their first arg"
asserts in Chromium builds. See the code review for repro instructions.
> Add DemandedElts support inside the TRUNCATE analysis.
>
> Differential Revision: https://reviews.llvm.org/D56387
This reverts commit cad4275d697c601761e0819863f487def73c67f8.
Use the KnownBits icmp comparisons to determine when a ISD::UMIN/UMAX op is unnecessary should either op be known to be ULT/ULE or UGT/UGE than the other.
Differential Revision: https://reviews.llvm.org/D94532
MergeInnerShuffle currently attempts to merge shuffle(shuffle(x,y),z) patterns into a single shuffle, using 1 or 2 of the x,y,z ops.
However if we already match 2 ops we might be able to handle the third op if its also a shuffle that references one of the previous ops, allowing us to handle some cases like:
shuffle(shuffle(x,y),shuffle(x,y))
shuffle(shuffle(shuffle(x,z),y),z)
shuffle(shuffle(x,shuffle(x,y)),z)
etc.
This isn't an exhaustive match and is dependent on the order the candidate ops are encountered - if one of the matched ops was a shuffle that was peek-able we don't go back and try to split that, I haven't found much need for that amount of analysis yet.
This is a preliminary patch that will allow us to later improve x86 HADD/HSUB matching - but needs to be reviewed separately as its in generic code and affects existing Thumb2 tests.
Differential Revision: https://reviews.llvm.org/D94671
I'm hoping to reuse MergeInnerShuffle in some other folds - so ensure the candidate ops/mask are reset at the start of each run.
Also, move the second op matching before bailing to make it simpler to try to match other things afterward.
This patch resolves the suboptimal codegen described in http://llvm.org/pr47873 .
When CodeGenPrepare lowers select into a conditional branch, a freeze instruction is inserted.
It is then translated to `BRCOND(FREEZE(SETCC))` in SelDag.
The `FREEZE` in the middle of `SETCC` and `BRCOND` was causing a suboptimal code generation however.
This patch adds `BRCOND(FREEZE(cond))` -> `BRCOND(cond)` fold to DAGCombiner to remove the `FREEZE`.
To make this optimization sound, `BRCOND(UNDEF)` simply should nondeterministically jump to the branch or not, rather than raising UB.
It wasn't clear what happens when the condition was undef according to the comments in ISDOpcodes.h, however.
I updated the comments of `BRCOND` to make it explicit (as well as `BR_CC`, which is also a conditional branch instruction).
Note that it diverges from the semantics of `br` instruction in IR, which is explicitly UB.
Since the UB semantics was necessary to explain optimizations that use branching conditions, and SelDag doesn't seem to have such optimization, I think this divergence is okay.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D92015
We are checking the unsafe-fp-math for sqrt but not for fpow, which behaves inconsistent.
As the direction is to remove this global option, we need to remove the unsafe-fp-math
check for sqrt and update the test with afn fast-math flags.
Reviewed By: Spatel
Differential Revision: https://reviews.llvm.org/D93891
This looks to have been done to save some duplicated code under
two different if statements, but it ends up being harmful to D94073.
This speculative constant can be called on a scalable vector type
with i64 element size when i64 scalars aren't legal. The code tries
and fails to find a vector type with i32 elements that it can use.
So only create the node when we know it will be used.
This patch disables the FSUB(-0,X)->FNEG(X) DAG combine when we're flushing subnormals. It requires updating the existing AMDGPU tests to use the fneg IR instruction, in place of the old fsub(-0,X) canonical form, since AMDGPU is the only backend currently checking the DenormalMode flags.
Note that this will require follow-up optimizations to make sure the FSUB(-0,X) form is handled appropriately
Differential Revision: https://reviews.llvm.org/D93243
Fixes a bug introduced by D91589.
When folding `(sext (not i1 x)) -> (add (zext i1 x), -1)`, we try to replace the not first when possible. If we replace the not in-visit, then the now invalidated node will be returned, and subsequently we will return an invalid sext. In cases where the not is replaced in-visit we can simply return SDValue, as the not in the current sext should have already been replaced.
Thanks @jgorbe, for finding the below reproducer.
The following reduced test case crashes clang when built with `clang -O1 -frounding-math`:
```
template <class> class a {
int b() { return c == 0.0 ? 0 : -1; }
int c;
};
template class a<long>;
```
A debug build of clang produces this "assertion failed" error:
```
clang: /home/jgorbe/code/llvm/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp:264: void {anonymous}::DAGCombiner::AddToWorklist(llvm::
SDNode*): Assertion `N->getOpcode() != ISD::DELETED_NODE && "Deleted Node added to Worklist"' failed.
```
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D93274
Clean up a TODO, to support folding a shift of a constant by a
select of constants, on targets with different shift operand sizes.
Reviewed By: RKSimon, lebedev.ri
Differential Revision: https://reviews.llvm.org/D90349
This patch adds the following DAGCombines, which apply if isVectorLoadExtDesirable() returns true:
- fold (and (masked_gather x)) -> (zext_masked_gather x)
- fold (sext_inreg (masked_gather x)) -> (sext_masked_gather x)
LowerMGATHER has also been updated to fetch the LoadExtType associated with the
gather and also use this value to determine the correct masked gather opcode to use.
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D92230
Adds the ExtensionType flag, which reflects the LoadExtType of a MaskedGatherSDNode.
Also updated SelectionDAGDumper::print_details so that details of the gather
load (is signed, is scaled & extension type) are printed.
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D91084
LLVM intrinsic llvm.maxnum|minnum is overloaded intrinsic, can be used on any
floating-point or vector of floating-point type.
This patch extends current infrastructure to support scalable vector type.
This patch also fix a warning message of incorrect use of EVT::getVectorNumElements()
for scalable type, when DAGCombiner trying to split scalable vector.
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D92607
The refineIndexType & refineUniformBase functions added by D90942 can also be used to
improve CodeGen of masked gathers.
These changes were split out from D91092
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D92319
In previous code, when refineIndexType(...) is called and Index is undef, Index.getOperand(0) will raise a assertion fail.
Reviewed By: pengfei
Differential Revision: https://reviews.llvm.org/D92548
Move fold of (sext (not i1 x)) -> (add (zext i1 x), -1) from X86 to DAGCombiner to improve codegen on other targets.
Differential Revision: https://reviews.llvm.org/D91589
1. Removed #include "...AliasAnalysis.h" in other headers and modules.
2. Cleaned up includes in AliasAnalysis.h.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D92489