This patch implements the changes to LLVM IR discussed in
https://discourse.llvm.org/t/rfc-update-branch-weights-metadata-to-allow-tracking-branch-weight-origins/75032
In this patch, we add an optional field to MD_prof metadata nodes for
branch weights, which can be used to distinguish weights added from
`llvm.expect*` intrinsics from those added via other methods, e.g.
from profiles or inserted by the compiler.
One of the major motivations, is for use with MisExpect diagnostics,
which need to know if branch_weight metadata originates from an
llvm.expect intrinsic. Without that information, we end up checking
branch weights multiple times in the case if ThinLTO + SampleProfiling,
leading to some inaccuracy in how we report MisExpect related
diagnostics to users.
Since we change the format of MD_prof metadata in a fundamental way, we
need to update code handling branch weights in a number of places.
We also update the lang ref for branch weights to reflect the change.
- There is no restriction on a loop with controlled convergent
operations when
the relevant tokens are defined and used within the loop.
- When a token defined outside a loop is used inside (also called a loop
convergence heart), unrolling is allowed only in the absence of
remainder or
runtime checks.
- When a token defined inside a loop is used outside, such a loop is
said to be
"extended". This loop can only be unrolled by also duplicating the
extended part
lying outside the loop. Such unrolling is disabled for now.
- Clean up loop hearts: When unrolling a loop with a heart, duplicating
the
heart will introduce multiple static uses of a convergence control token
in a
cycle that does not contain its definition. This violates the static
rules for
tokens, and needs to be cleaned up into a single occurrence of the
intrinsic.
- Spell out the initializer for UnrollLoopOptions to improve
readability.
Original implementation [D85605] by Nicolai Haehnle
<nicolai.haehnle@amd.com>.
Since some places, like SimplifyCFG, work with 64-bit weights, we supply
an API in ProfDataUtils to extract the weights accordingly.
We change the API slightly to disambiguate the 64-bit version from the
32-bit version.
Branch weight from sample-based PGO may be not inaccurate due to
sampling. If the loop body must be executed, then origin loop back
edge weight must be not less than exit weight.
Another trivial rename patch, the last big one for now, which renamed
DPMarkers to DbgMarkers. This required the field `DbgMarker` in
`Instruction` to be renamed to `DebugMarker` to avoid a clash, but
otherwise was a simple string substitution of `s/DPMarker/DbgMarker` and
a manual renaming of `DPM` to `DM` in the few places where that acronym
was used for debug markers.
This is the major rename patch that prior patches have built towards.
The DPValue class is being renamed to DbgVariableRecord, which reflects
the updated terminology for the "final" implementation of the RemoveDI
feature. This is a pure string substitution + clang-format patch. The
only manual component of this patch was determining where to perform
these string substitutions: `DPValue` and `DPV` are almost exclusively
used for DbgRecords, *except* for:
- llvm/lib/target, where 'DP' is used to mean double-precision, and so
appears as part of .td files and in variable names. NB: There is a
single existing use of `DPValue` here that refers to debug info, which
I've manually updated.
- llvm/tools/gold, where 'LDPV' is used as a prefix for symbol
visibility enums.
Outside of these places, I've applied several basic string
substitutions, with the intent that they only affect DbgRecord-related
identifiers; I've checked them as I went through to verify this, with
reasonable confidence that there are no unintended changes that slipped
through the cracks. The substitutions applied are all case-sensitive,
and are applied in the order shown:
```
DPValue -> DbgVariableRecord
DPVal -> DbgVarRec
DPV -> DVR
```
Following the previous rename patches, it should be the case that there
are no instances of any of these strings that are meant to refer to the
general case of DbgRecords, or anything other than the DPValue class.
The idea behind this patch is therefore that pure string substitution is
correct in all cases as long as these assumptions hold.
This patch changes DPValue::filter to be a non-member method
filterDbgVars. There are two reasons for this: firstly, the name of
DPValue is about to change to DbgVariableRecord, which will result in
every `for` loop that uses DPValue::filter to require a line break. This
is a small thing, but it makes the rename patch more difficult to
review, and is just generally more awkward for what is a fairly common
loop. Secondly, the intent is to later break up the DPValue class into
subclasses, at which point it would be better to have a non-member
function that allows template arguments for the cases we want to filter
with greater specificity.
This patch continues the ongoing rename work, replacing DPValue with
DbgRecord in comments and the names of variables, both members and
fn-local. This is the most labour-intensive part of the rename, as it is
where the most decisions have to be made about whether a given comment
or variable is referring to DPValues (equivalent to debug variable
intrinsics) or DbgRecords (a catch-all for all debug intrinsics); these
decisions are not individually difficult, but comprise a fairly large
amount of text to review.
This patch still largely performs basic string substitutions followed by
clang-format; there are almost* no places where, for example, a comment
has been expanded or modified to reflect the semantic difference between
DPValues and DbgRecords. I don't believe such a change is generally
necessary in LLVM, but it may be useful in the docs, and so I'll be
submitting docs changes as a separate patch.
*In a few places, `dbg.values` was replaced with `debug intrinsics`.
As part of the effort to rename the DbgRecord classes, this patch
renames the widely-used functions that operate on DbgRecords but refer
to DbgValues or DPValues in their names to refer to DbgRecords instead;
all such functions are defined in one of `BasicBlock.h`,
`Instruction.h`, and `DebugProgramInstruction.h`.
This patch explicitly does not change the names of any comments or
variables, except for where they use the exact name of one of the
renamed functions. The reason for this is reviewability; this patch can
be trivially examined to determine that the only changes are direct
string substitutions and any results from clang-format responding to the
changed line lengths. Future patches will cover renaming variables and
comments, and then renaming the classes themselves.
I'd reverted this in 6c7805d5d1 after a bad stage. Original commit
messsage follows:
[NFC][RemoveDIs] Bulk update utilities to insert with iterators
As part of the RemoveDIs project we need LLVM to insert instructions using
iterators wherever possible, so that the iterators can carry a bit of
debug-info. This commit implements some of that by updating the contents of
llvm/lib/Transforms/Utils to always use iterator-versions of instruction
constructors.
There are two general flavours of update:
* Almost all call-sites just call getIterator on an instruction
* Several make use of an existing iterator (scenarios where the code is
actually significant for debug-info)
The underlying logic is that any call to getFirstInsertionPt or similar
APIs that identify the start of a block need to have that iterator passed
directly to the insertion function, without being converted to a bare
Instruction pointer along the way.
I've also switched DemotePHIToStack to take an optional iterator: it needs
to take an iterator, and having a no-insert-location behaviour appears to
be important. The constructors for ICmpInst and FCmpInst have been updated
too. They're the only instructions that take block _references_ rather than
pointers for certain calls, and a future patch is going to make use of
default-null block insertion locations.
All of this should be NFC.
As part of the RemoveDIs project we need LLVM to insert instructions using
iterators wherever possible, so that the iterators can carry a bit of
debug-info. This commit implements some of that by updating the contents of
llvm/lib/Transforms/Utils to always use iterator-versions of instruction
constructors.
There are two general flavours of update:
* Almost all call-sites just call getIterator on an instruction
* Several make use of an existing iterator (scenarios where the code is
actually significant for debug-info)
The underlying logic is that any call to getFirstInsertionPt or similar
APIs that identify the start of a block need to have that iterator passed
directly to the insertion function, without being converted to a bare
Instruction pointer along the way.
I've also switched DemotePHIToStack to take an optional iterator: it needs
to take an iterator, and having a no-insert-location behaviour appears to
be important. The constructors for ICmpInst and FCmpInst have been updated
too. They're the only instructions that take block _references_ rather than
pointers for certain calls, and a future patch is going to make use of
default-null block insertion locations.
All of this should be NFC.
Because loops in coroutines may have a co_await statement that
reschedules the coroutine to another thread, we cannot cache addresses
of thread-local variables obtained inside a loop by moving the
computation of thoes addresses outside a loop.
Since LLVM doesn't have a model for coroutine memory accesses, this
patch fixes this bug by disabling this optimization for coroutines in
the same way as https://reviews.llvm.org/D135550 and
https://reviews.llvm.org/D151774.
Patch 1 of 3 to add llvm.dbg.label support to the RemoveDIs project. The
patch stack adds a new base class
-> 1. Add DbgRecord base class for DPValue and the not-yet-added
DPLabel class.
2. Add the DPLabel class.
3. Enable dbg.label conversion and add support to passes.
Patches 1 and 2 are NFC.
In the near future we also will rename DPValue to DbgVariableRecord and
DPLabel to DbgLabelRecord, at which point we'll overhaul the function
names too. The name DPLabel keeps things consistent for now.
This is an optimisation patch that shouldn't have any functional effect.
There's no need for all instructions to have a DPMarker attached to them,
because not all instructions have adjacent DPValues (aka dbg.values).
This patch inserts the appropriate conditionals into functions like
BasicBlock::spliceDebugInfo to ensure we don't step on a null pointer when
there isn't a DPMarker allocated. Mostly, this is a case of calling
createMarker occasionally, which will create a marker on an instruction
if there isn't one there already.
Also folded into this is the use of adoptDbgValues, which is a natural
extension: if we have a sequence of instructions and debug records:
%foo = add i32 %0,...
# dbg_value { %foo, ...
# dbg_value { %bar, ...
%baz = add i32 %...
%qux = add i32 %...
and delete, for example, the %baz instruction, then the dbg_value records
would naturally be transferred onto the %qux instruction (they "fall down"
onto it). There's no point in creating and splicing DPMarkers in the case
shown when %qux doesn't have a DPMarker already, we can instead just change
the owner of %baz's DPMarker from %baz to %qux. This also avoids calling
setParent on every DPValue.
Update LoopRotationUtils: it was relying on each instruction having it's
own distinct end(), so that we could express ranges and lack-of-ranges.
That's no longer true though: so switch to storing the range of DPValues on
the next instruction when we want to consider it's range next time around
the loop (see the nearby comment).
As part of RemoveDIs, we need instruction insertion to be done with
iterators rather than instruction pointers, so that we can communicate
some debug-info facts about the position. This patch is an entirely
mechanical replacement of Instruction * with BasicBlock::iterator, plus
using insertBefore to insert some instructions because we don't have
iterator-taking constructors yet.
Sadly it's not NFC because it causes dbg.value intrinsics / their
DPValue equivalents to shift location.
Avoid editing a range of DPValues and then remapping them. This occurs
when we try to de-duplicate dbg.values, but then re-use the same
iterator range. We can instead remap them, and then erase any
duplicates.
At the same time refactor the computation of seen-intrinsic hashes, and
account for a peculiarity of loop-rotates existing behaviour: it will
only deduplicate dbg.values that are immediately before the preheaders
branch instruction, not just any dbg.value in the preheader.
Loop-rotate manually maintains dbg.value intrinsics -- it also needs to
manually maintain the replacement for dbg.value intrinsics, DPValue
objects. For the most part this patch adds parallel implementations
using the new type Some extra juggling is needed when loop-rotate hoists
loop-invariant instructions out of the loop: the DPValues attached to
such an instruction need to get rotated but not hoisted. Exercised by
the new test function invariant_hoist in dbgvalue.ll.
There's also a "don't insert duplicate debug intrinsics" facility in
LoopRotate. The value and correctness of this isn't clear, but to
continue preserving behaviour that's now tested in the "tak_dup"
function in dbgvalue.ll.
Other things in this patch include a helper DebugVariable constructor
for DPValues, a insertDebugValuesForPHIs handler for RemoveDIs
(exercised by the new tests), and beefing up the dbg.value checking in
dbgvalue.ll to ensure that each record is tested (and that there's an
implicit check-not).
The formula I added to LoopRotationUtils does not produce reasonable
results if some of the branch weights are zero. Add special case
handling for this.
This fixes https://github.com/llvm/llvm-project/issues/66675
This adds code to the loop rotation transformation to ensure that the
computed block execution counts for the loop bodies are the same before
and after the transformation. This isn't always true in practice, but I
believe this is because of numeric inaccuracies in the BlockFrequency
computation.
The invariants this is modeled on and heuristic choice of 0-trip loop
amount is explained in a lenghty comment in the new
`updateBranchWeights()` function.
Differential Revision: https://reviews.llvm.org/D157462
This reverts commit 0c03f48480f69b854f86d31235425b5cb71ac921.
Going to fix forward size regression instead due to more dependent patches needing to be reverted otherwise.
Unlike every other analysis and transform, simplifyInstruction
permitted operating on instructions which are not inserted
into a function. This created an edge case no other code needs
to really worry about, and limited transforms in cases that
can make use of the context function. Only the inliner and a handful
of other utilities were making use of this, so just fix up these
edge cases. Results in some IR ordering differences since
cloned blocks are inserted eagerly now. Plus some additional
simplifications trigger (e.g. some add 0s now folded out that
previously didn't).
This is required because if there is a pure loop-invariant instruction, Loop Rotation
may decide to not clone it and just hoist it instead. If SCEV has previously cached
that it was loop-variant (not being smart enough to prove invariance), we may end
up with inconsistent cache state (which may later trigger false-negative assertion
failures checking that something was invariant).
This is a conservative fix that unconditionally drops the dispositions. We could
only drop it if the hoisting has actually happened, but it should take some time
understanding whether it's safe with all other things this function does.
Differential Revision: https://reviews.llvm.org/D134167
Reviewed By: fhahn
Callbr is no longer an indirect terminator in the sense that is
relevant here (that it's successors cannot be updated). The primary
effect of this change is that callbr no longer prevents formation
of loop simplify form.
I decided to drop the isIndirectTerminator() method entirely and
replace it with isa<IndirectBrInst>() checks. I assume this method
was added to abstract over indirectbr and callbr, but it never
really caught on, and there is nothing left to abstract anymore
at this point.
Differential Revision: https://reviews.llvm.org/D129849
Per the documentation in Support/InstructionCost.h, the purpose of an invalid cost is so that clients can change behavior on impossible to cost inputs. CodeMetrics was instead asserting that invalid costs never occurred.
On a target with an incomplete cost model - e.g. RISCV - this means that transformations would crash on (falsely) invalid constructs - e.g. scalable vectors. While we certainly should improve the cost model - and I plan to do so in the near future - we also shouldn't be crashing. This violates the explicitly stated purpose of an invalid InstructionCost.
I updated all of the "easy" consumers where bailouts were locally obvious. I plan to follow up with loop unroll in a following change.
Differential Revision: https://reviews.llvm.org/D127131
Clang-format InstructionSimplify and convert all "FunctionName"s to
"functionName". This patch does touch a lot of files but gets done with
the cleanup of InstructionSimplify in one commit.
This is the alternative to the less invasive clang-format only patch: D126783
Reviewed By: spatel, rengolin
Differential Revision: https://reviews.llvm.org/D126889
This patch fixes problems reported in PR51981.
When rotating a loop it isn't enough to just forget SCEV for that
loop nest. When rotating we might clone some instructions from the
old header into the preheader, and insert new PHI nodes to merge
values together. There could be users of the original value that are
updated to use the PHI result. And those users were not necessarily
depending on a PHI node earlier, so they weren't cleaned up when just
forgetting all SCEV:s for the loop nest. So we need to explicitly
forget those values to avoid invalid cached SCEV expressions.
Reviewed By: fhahn, mkazantsev
Differential Revision: https://reviews.llvm.org/D110813
Move the findDbg* functions into lib/IR/DebugInfo.cpp from
lib/Transforms/Utils/Local.cpp.
D99169 adds a call to a function (findDbgUsers) that lives in
lib/Transforms/Utils/Local.cpp (LLVMTransformUtils) from lib/IR/Value.cpp
(LLVMCore). The Core lib doesn't include TransformUtils. The builtbots caught
this here: https://lab.llvm.org/buildbot/#/builders/109/builds/12664. This patch
moves the function, and the 3 similar ones for consistency, into DebugInfo.cpp
which is part of LLVMCore.
Reviewed By: dblaikie, rnk
Differential Revision: https://reviews.llvm.org/D100632
Add the subclass, update a few places which check for the intrinsic to use idiomatic dyn_cast, and update the public interface of AssumptionCache to use the new class. A follow up change will do the same for the newer assumption query/bundle mechanisms.
Fixed section of code that iterated through a SmallDenseMap and added
instructions in each iteration, causing non-deterministic code; replaced
SmallDenseMap with MapVector to prevent non-determinism.
This reverts commit 01ac6d1587e8613ba4278786e8341f8b492ac941.
This caused non-deterministic compiler output; see comment on the
code review.
> This patch updates the various IR passes to correctly handle dbg.values with a
> DIArgList location. This patch does not actually allow DIArgLists to be produced
> by salvageDebugInfo, and it does not affect any pass after codegen-prepare.
> Other than that, it should cover every IR pass.
>
> Most of the changes simply extend code that operated on a single debug value to
> operate on the list of debug values in the style of any_of, all_of, for_each,
> etc. Instances of setOperand(0, ...) have been replaced with with
> replaceVariableLocationOp, which takes the value that is being replaced as an
> additional argument. In places where this value isn't readily available, we have
> to track the old value through to the point where it gets replaced.
>
> Differential Revision: https://reviews.llvm.org/D88232
This reverts commit df69c69427dea7f5b3b3a4d4564bc77b0926ec88.
This patch updates the various IR passes to correctly handle dbg.values with a
DIArgList location. This patch does not actually allow DIArgLists to be produced
by salvageDebugInfo, and it does not affect any pass after codegen-prepare.
Other than that, it should cover every IR pass.
Most of the changes simply extend code that operated on a single debug value to
operate on the list of debug values in the style of any_of, all_of, for_each,
etc. Instances of setOperand(0, ...) have been replaced with with
replaceVariableLocationOp, which takes the value that is being replaced as an
additional argument. In places where this value isn't readily available, we have
to track the old value through to the point where it gets replaced.
Differential Revision: https://reviews.llvm.org/D88232
This patch updates DbgVariableIntrinsics to support use of a DIArgList for the
location operand, resulting in a significant change to its interface. This patch
does not update all IR passes to support multiple location operands in a
dbg.value; the only change is to update the DbgVariableIntrinsic interface and
its uses. All code outside of the intrinsic classes assumes that an intrinsic
will always have exactly one location operand; they will still support
DIArgLists, but only if they contain exactly one Value.
Among other changes, the setOperand and setArgOperand functions in
DbgVariableIntrinsic have been made private. This is to prevent code from
setting the operands of these intrinsics directly, which could easily result in
incorrect/invalid operands being set. This does not prevent these functions from
being called on a debug intrinsic at all, as they can still be called on any
CallInst pointer; it is assumed that any code directly setting the operands on a
generic call instruction is doing so safely. The intention for making these
functions private is to prevent DIArgLists from being overwritten by code that's
naively trying to replace one of the Values it points to, and also to fail fast
if a DbgVariableIntrinsic is updated to use a DIArgList without a valid
corresponding DIExpression.
In the cloning infrastructure, only track an MDNode mapping,
without explicitly storing the Metadata mapping, same as is done
during inlining. This makes things slightly simpler.
Similar to D92887, LoopRotation also needs duplicate the noalias scopes when rotating a `@llvm.experimental.noalias.scope.decl` across a block boundary.
This is based on the version from the Full Restrict paches (D68511).
The problem it fixes also showed up in Transforms/Coroutines/ex5.ll after D93040 (when enabling strict checking with -verify-noalias-scope-decl-dom).
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D94306