With intrinsics representing debug-info, we just clone all the
intrinsics when inlining a function and don't think about it any
further. With non-instruction debug-info however we need to be a bit
more careful and manually move the debug-info from one place to another.
For the most part, this means keeping a "cursor" during block cloning of
where we last copied debug-info from, and performing debug-info copying
whenever we successfully clone another instruction.
There are several utilities in LLVM for doing this, all of which now
need to manually call cloneDebugInfo. The testing story for this is not
well covered as we could rely on normal instruction-cloning mechanisms
to do all the hard stuff. Thus, I've added a few tests to explicitly
test dbg.value behaviours, ahead of them becoming not-instructions.
This patch adds support for CloneBasicBlock duplicating the DPValues
attached to instructions, and adds facilities to remap them into their new
context. The plumbing to achieve this is fairly straightforwards and
mechanical.
I've also added illustrative uses to LoopUnrollRuntime, SimpleLoopUnswitch
and SimplifyCFG. The former only updates for the epilogue right now so I've
added CHECK lines just for the end of an unrolled loop (further updates
coming later). SimpleLoopUnswitch had no debug-info tests so I've added a
new one. The two modified parts of SimplifyCFG are covered by the two
modified SimplifyCFG tests.
These are scenarios where we have to do extra cloning for copying of
DPValues because they're no longer instructions, and remap them too.
This reverts commit 957efa4ce4f0391147cec62746e997226ee2b836.
Original commit message below -- in this follow up, I've shifted
un-necessary inclusions of DebugProgramInstruction.h into being forward
declarations (fixes clang-compile time I hope), and a memory leak in the
DebugInfoTest.cpp IR unittests.
I also tracked a compile-time regression in D154080, more explanation
there, but the result of which is hiding some of the changes behind the
EXPERIMENTAL_DEBUGINFO_ITERATORS compile-time flag. This is tested by the
"new-debug-iterators" buildbot.
[DebugInfo][RemoveDIs] Add prototype storage classes for "new" debug-info
This patch adds a variety of classes needed to record variable location
debug-info without using the existing intrinsic approach, see the rationale
at [0].
The two added files and corresponding unit tests are the majority of the
plumbing required for this, but at this point isn't accessible from the
rest of LLVM as we need to stage it into the repo gently. An overview is
that classes are added for recording variable information attached to Real
(TM) instructions, in the form of DPValues and DPMarker objects. The
metadata-uses of DPValues is plumbed into the metadata hierachy, and a
field added to class Instruction, which are all stimulated in the unit
tests. The next few patches in this series add utilities to convert to/from
this new debug-info format and add instruction/block utilities to have
debug-info automatically updated in the background when various operations
occur.
This patch was reviewed in Phab in D153990 and D154080, I've squashed them
together into this commit as there are dependencies between the two
patches, and there's little profit in landing them separately.
[0] https://discourse.llvm.org/t/rfc-instruction-api-changes-needed-to-eliminate-debug-intrinsics-from-ir/68939
And some intervening fixups. There are two remaining problems:
* A memory leak via https://lab.llvm.org/buildbot/#/builders/236/builds/7120/steps/10/logs/stdio
* A performance slowdown with -g where I'm not completely sure what the cause it
These might be fairly straightforwards to fix, but it's the end of the day
hear, so I figure I'll clear the buildbots til tomorrow.
This reverts commit 7d77bbef4ad9230f6f427649373fe46a668aa909.
This reverts commit 9026f35afe6ffdc5e55b6615efcbd36f25b11558.
This reverts commit d97b2b389a0e511c65af6845119eb08b8a2cb473.
This patch adds a variety of classes needed to record variable location
debug-info without using the existing intrinsic approach, see the rationale
at [0].
The two added files and corresponding unit tests are the majority of the
plumbing required for this, but at this point isn't accessible from the
rest of LLVM as we need to stage it into the repo gently. An overview is
that classes are added for recording variable information attached to Real
(TM) instructions, in the form of DPValues and DPMarker objects. The
metadata-uses of DPValues is plumbed into the metadata hierachy, and a
field added to class Instruction, which are all stimulated in the unit
tests. The next few patches in this series add utilities to convert to/from
this new debug-info format and add instruction/block utilities to have
debug-info automatically updated in the background when various operations
occur.
This patch was reviewed in Phab in D153990 and D154080, I've squashed them
together into this commit as there are dependencies between the two
patches, and there's little profit in landing them separately.
[0] https://discourse.llvm.org/t/rfc-instruction-api-changes-needed-to-eliminate-debug-intrinsics-from-ir/68939
This caused asserts:
llvm/lib/CodeGen/AsmPrinter/DwarfDebug.cpp:2331:
virtual void llvm::DwarfDebug::endFunctionImpl(const llvm::MachineFunction *):
Assertion `LScopes.getAbstractScopesList().size() == NumAbstractSubprograms &&
"getOrCreateAbstractScope() inserted an abstract subprogram scope"' failed.
See comment on the code review for reproducer.
> RFC https://discourse.llvm.org/t/rfc-dwarfdebug-fix-and-improve-handling-imported-entities-types-and-static-local-in-subprogram-and-lexical-block-scopes/68544
>
> Similar to imported declarations, the patch tracks function-local types in
> DISubprogram's 'retainedNodes' field. DwarfDebug is adjusted in accordance with
> the aforementioned metadata change and provided a support of function-local
> types scoped within a lexical block.
>
> The patch assumes that DICompileUnit's 'enums field' no longer tracks local
> types and DwarfDebug would assert if any locally-scoped types get placed there.
>
> Reviewed By: jmmartinez
>
> Differential Revision: https://reviews.llvm.org/D144006
This reverts commit f8aab289b5549086062588fba627b0e4d3a5ab15.
This reverts commit 0c03f48480f69b854f86d31235425b5cb71ac921.
Going to fix forward size regression instead due to more dependent patches needing to be reverted otherwise.
Unlike every other analysis and transform, simplifyInstruction
permitted operating on instructions which are not inserted
into a function. This created an edge case no other code needs
to really worry about, and limited transforms in cases that
can make use of the context function. Only the inliner and a handful
of other utilities were making use of this, so just fix up these
edge cases. Results in some IR ordering differences since
cloned blocks are inserted eagerly now. Plus some additional
simplifications trigger (e.g. some add 0s now folded out that
previously didn't).
For some reason the inliner calls simplifyInstruction with disembodied
instructions. I consider this to be an API defect. Either the instruction
should always be inserted prior to simplification, or we at least
should pass in the new function for the context.
The Assignment Tracking debug-info feature is outlined in this RFC:
https://discourse.llvm.org/t/
rfc-assignment-tracking-a-better-way-of-specifying-variable-locations-in-ir
The inliner requires two additions:
fixupAssignments - Update inlined instructions' DIAssignID metadata so that
inlined DIAssignID attachments are unique to the inlined instance.
trackInlinedStores - Treat inlined stores to caller-local variables
(i.e. callee stores to argument pointers that point to the caller's allocas) as
assignments. Track them using trackAssignments, which is the same method as is
used by the AssignmentTrackingPass. This means that we're able to detect stale
memory locations due to DSE after inlining. Because the stores are only tracked
_after_ inlining, any DSE or movement of stores _before_ inlining will not be
accounted for. This is an accepted limitation mentioned in the RFC.
One change is also required:
Update CloneBlock to preserve debug use-before-defs. Otherwise the assignments
will be dropped due to having the intrinsic operands replaced with empty
metadata (see use-before-def.ll in this patch and this related discourse post.
Reviewed By: jmorse
Differential Revision: https://reviews.llvm.org/D133318
Update both memprof and callsite metadata to reflect inlined functions.
For callsite metadata this is simply a concatenation of each cloned
call's call stack with that of the inlined callsite's.
For memprof metadata, each profiled memory info block (MIB) is either
moved to the cloned allocation call or left on the original allocation
call depending on whether its context matches the newly refined call
stack context on the cloned call. We also reapply context trimming
optimizations based on the refined set of contexts on each of the calls
(cloned and original).
Depends on D128142.
Reviewed By: snehasish
Differential Revision: https://reviews.llvm.org/D128143
This reverts commit 0d7f3464ce0ba3a97df73e08ee0acd4e33adbe9b and
commit f9403ca41e5f3dab60cd6e5de26eea65dcab01a4. The latter was
"Profile matching and IR annotation for memprof profiles." and was left
from a bad rebase from a commit already pushed upstream.
Update both memprof and callsite metadata to reflect inlined functions.
For callsite metadata this is simply a concatenation of each cloned
call's call stack with that of the inlined callsite's.
For memprof metadata, each profiled memory info block (MIB) is either
moved to the cloned allocation call or left on the original allocation
call depending on whether its context matches the newly refined call
stack context on the cloned call. We also reapply context trimming
optimizations based on the refined set of contexts on each of the calls
(cloned and original), via utilities in MemoryProfileInfo.
Depends on D128142.
Differential Revision: https://reviews.llvm.org/D128143
If DISubpogram was not cloned (e.g. we are cloning a function that has other
functions inlined into it, and subprograms of the inlined functions are
not supposed to be cloned), it doesn't make sense to clone its DILexicalBlocks
as well. Otherwise we'll get duplicated DILexicalBlocks that may confuse
debug info emission in AsmPrinter.
I believe it also makes no sense cloning any DILocalVariables or maybe
other local entities, if their parent subprogram was not cloned, cause
they will be dangling and will not participate in futher emission.
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D127102
Clang-format InstructionSimplify and convert all "FunctionName"s to
"functionName". This patch does touch a lot of files but gets done with
the cleanup of InstructionSimplify in one commit.
This is the alternative to the less invasive clang-format only patch: D126783
Reviewed By: spatel, rengolin
Differential Revision: https://reviews.llvm.org/D126889
According to the current design, if a floating point operation is
represented by a constrained intrinsic somewhere in a function, all
floating point operations in the function must be represented by
constrained intrinsics. It imposes additional requirements to inlining
mechanism. If non-strictfp function is inlined into strictfp function,
all ordinary FP operations must be replaced with their constrained
counterparts.
Inlining strictfp function into non-strictfp is not implemented as it
would require replacement of all FP operations in the host function,
which now is undesirable due to expected performance loss.
Differential Revision: https://reviews.llvm.org/D69798
The pruning cloner already tries to remove unreachable blocks. The
original cloning process will simplify instructions and constant
terminators, and only clone blocks that are reachable at that point.
However, phi nodes can only be simplified after everything has been
cloned. For that reason, additional blocks may become unreachable
after phi simplification.
The code does try to handle this as well, but only removes blocks
that don't have predecessors. It misses unreachable cycles. This
can cause issues if SEH exception handling code is part of an
unreachable cycle, as the inliner is not prepared to deal with that.
This patch instead performs an explicit scan for reachable blocks,
and drops everything else.
Fixes https://github.com/llvm/llvm-project/issues/53206.
Differential Revision: https://reviews.llvm.org/D118449
This patch continues unblocking optimizations that are blocked by pseudo probe instrumentation.
Not exactly like DbgIntrinsics, PseudoProbe intrinsic has other attributes (such as mayread, maywrite, mayhaveSideEffect) that can block optimizations. The issues fixed are:
- Flipped default param of getFirstNonPHIOrDbg API to skip pseudo probes
- Unblocked CSE by avoiding pseudo probe from clobbering memory SSA
- Unblocked induction variable simpliciation
- Allow empty loop deletion by treating probe intrinsic isDroppable
- Some refactoring.
Reviewed By: wenlei
Differential Revision: https://reviews.llvm.org/D110847
When adding noalias/alias.scope metadata, we analyze the instructions
of the original callee, and then place metadata on the corresponding
inlined instructions in the caller as provided by VMap. However, this
assumes that this actually a clone of the instruction, rather than
the result of simplification. If simplification occurred, the
instruction that VMap points to may not have any relationship as far
as ModRef behavior is concerned.
Fix this by tracking simplified instructions during cloning and then
only processing instructions that have not been simplified. This is
done with an additional map form original to cloned instruction,
into which we only insert if no simplification is performed. The
mapping in VMap can then be compared to this map. If they're the
same, the instruction hasn't been simplified. (I originally wanted
to only track a set of simplified instructions, but that wouldn't
work if the instruction only gets simplified afterwards, e.g. based
on rewritten phis.)
Fixes https://bugs.llvm.org/show_bug.cgi?id=50589.
Differential Revision: https://reviews.llvm.org/D106242
- Give unwieldy repeated expression a name
- Use a ranged `for` basic block iterator
Reviewed by: nikic, dexonsmith
Differential Revisision: https://reviews.llvm.org/D98957
Hoist early return for decl-only clones to before DIFinder
calculation.
Also fix an out of date assert message after invariants changed in
22a52dfddce.
Reviewed by: nikic, dexonsmith
Differential Revisision: https://reviews.llvm.org/D98957
This is a follow up to 22a52dfddcefad4f275eb8ad1cc0e200074c2d8a and a
revert of df763188c9a1ecb1e7e5c4d4ea53a99fbb755903.
With this change, we only skip cloning distinct nodes in
MDNodeMapper::mapDistinct if RF_ReuseAndMutateDistinctMDs, dropping the
no-longer-needed local helper `cloneOrBuildODR()`. Skipping cloning in
other cases is unsound and breaks CloneModule, which is why the textual
IR for PR48841 didn't pass previously. This commit adds the test as:
Transforms/ThinLTOBitcodeWriter/cfi-debug-info-cloned-type-references-global-value.ll
Cloning less often exposed a hole in subprogram cloning in
CloneFunctionInto thanks to df763188c9a1ecb1e7e5c4d4ea53a99fbb755903's
test ThinLTO/X86/Inputs/dicompositetype-unique-alias.ll. If a function
has a subprogram attachment whose scope is a DICompositeType that
shouldn't be cloned, but it has no internal debug info pointing at that
type, that composite type was being cloned. This commit plugs that hole,
calling DebugInfoFinder::processSubprogram from CloneFunctionInto.
As hinted at in 22a52dfddcefad4f275eb8ad1cc0e200074c2d8a's commit
message, I think we need to formalize ownership of metadata a bit more
so that ValueMapper/CloneFunctionInto (and similar functions) can deal
with cloning (or not) metadata in a more generic, less fragile way.
This fixes PR48841.
Differential Revision: https://reviews.llvm.org/D96734
When cloning instructions during jump threading, also clone and
adapt any declared scopes. This is primarily important when
threading loop exits, because we'll end up with two dominating
scope declarations in that case (at least after additional loop
rotation). This addresses a loose thread from
https://reviews.llvm.org/rG2556b413a7b8#975012.
Differential Revision: https://reviews.llvm.org/D97154
This commit fixes how metadata is handled in CloneModule to be sound,
and improves how it's handled in CloneFunctionInto (although the latter
is still awkward when called within a module).
Ruiling Song pointed out in PR48841 that CloneModule was changed to
unsoundly use the RF_ReuseAndMutateDistinctMDs flag (renamed in
fa35c1f80f0ea080a7cbc581416929b0a654f25c for clarity). This flag papered
over a crash caused by other various changes made to CloneFunctionInto
over the past few years that made it unsound to use cloning between
different modules.
(This commit partially addresses PR48841, fixing the repro from
preprocessed source but not textual IR. MDNodeMapper::mapDistinctNode
became unsound in df763188c9a1ecb1e7e5c4d4ea53a99fbb755903 and this
commit does not address that regression.)
RF_ReuseAndMutateDistinctMDs is designed for the IRMover to use,
avoiding unnecessary clones of all referenced metadata when linking
between modules (with IRMover, the source module is discarded after
linking). It never makes sense to use when you're not discarding the
source. This commit drops its incorrect use in CloneModule.
Sadly, the right thing to do with metadata when cloning a function is
complicated, and this patch doesn't totally fix it.
The first problem is that there are two different types of referenceable
metadata and it's not obvious what to with one of them when remapping.
- `!0 = !{!1}` is metadata's version of a constant. Programatically it's
called "uniqued" (probably a better term would be "constant") because,
like `ConstantArray`, it's stored in uniquing tables. Once it's
constructed, it's illegal to change its arguments.
- `!0 = distinct !{!1}` is a bit closer to a global variable. It's legal
to change the operands after construction.
What should be done with distinct metadata when cloning functions within
the same module?
- Should new, cloned nodes be created?
- Should all references point to the same, old nodes?
The answer depends on whether that metadata is effectively owned by a
function.
And that's the second problem. Referenceable metadata's ownership model
is not clear or explicit. Technically, it's all stored on an
LLVMContext. However, any metadata that is `distinct`, that transitively
references a `distinct` node, or that transitively references a
GlobalValue is specific to a Module and is effectively owned by it. More
specifically, some metadata is effectively owned by a specific Function
within a module.
Effectively function-local metadata was introduced somewhere around
c10d0e5ccd12f049bddb24dcf8bbb7fbbc6c68f2, which made it illegal for two
functions to share a DISubprogram attachment.
When cloning a function within a module, you need to clone the
function-local debug info and suppress cloning of global debug info (the
status quo suppresses cloning some global debug info but not all). When
cloning a function to a new/different module, you need to clone all of
the debug info.
Here's what I think we should do (eventually? soon? not this patch
though):
- Distinguish explicitly (somehow) between pure constant metadata owned
by the LLVMContext, global metadata owned by the Module, and local
metadata owned by a GlobalValue (such as a function).
- Update CloneFunctionInto to trigger cloning of all "local" metadata
(only), perhaps by adding a bit to RemapFlag. Alternatively, split
out a separate function CloneFunctionMetadataInto to prime the
metadata map that callers are updated to call ahead of time as
appropriate.
Here's the somewhat more isolated fix in this patch:
- Converted the `ModuleLevelChanges` parameter to `CloneFunctionInto` to
an enum called `CloneFunctionChangeType` that is one of
LocalChangesOnly, GlobalChanges, DifferentModule, and ClonedModule.
- The code maintaining the "functions uniquely own subprograms"
invariant is now only active in the first two cases, where a function
is being cloned within a single module. That's necessary because this
code inhibits cloning of (some) "global" metadata that's effectively
owned by the module.
- The code maintaining the "all compile units must be explicitly
referenced by !llvm.dbg.cu" invariant is now only active in the
DifferentModule case, where a function is being cloned into a new
module in isolation.
- CoroSplit.cpp's call to CloneFunctionInto in CoroCloner::create
uses LocalChangeOnly, since fa635d730f74f3285b77cc1537f1692184b8bf5b
only set `ModuleLevelChanges` to trigger cloning of local metadata.
- CloneModule drops its unsound use of RF_ReuseAndMutateDistinctMDs
and special handling of !llvm.dbg.cu.
- Fixed some outdated header docs and left a couple of FIXMEs.
Differential Revision: https://reviews.llvm.org/D96531
In the cloning infrastructure, only track an MDNode mapping,
without explicitly storing the Metadata mapping, same as is done
during inlining. This makes things slightly simpler.
Similar to D92887, LoopRotation also needs duplicate the noalias scopes when rotating a `@llvm.experimental.noalias.scope.decl` across a block boundary.
This is based on the version from the Full Restrict paches (D68511).
The problem it fixes also showed up in Transforms/Coroutines/ex5.ll after D93040 (when enabling strict checking with -verify-noalias-scope-decl-dom).
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D94306