When MergeFuncs creates a thunk, it does not modify the function in
place, but creates a new one altogether. If type metadata is not
properly forwarded to this new function, LowerTypeTests will be unable
to put this thunk into the dispatch table.
The fix here is to just forward the type metadata to the newly created
functions.
I noticed that when we determine the size of the function to figure out
if its profitable, we include debug instructions which can end up making
larger functions than necessary.
This diff fixes an issue in the MergeFunctions pass where two different
Control Flow Integrity (CFI) metadata checks were incorrectly considered
identical. These merges would lead to runtime violations down the line
as two separate objects contained a single destructor which itself
contained checks for only one of the objects.
Here I update the comparison logic to take into account the metadata at
llvm.type.test checks. Now, only truly identical checks will be
considered for merging, thus preserving the integrity of each check.
Previous discussion: https://reviews.llvm.org/D154119
This is a reland of 28134a29fdedd8972acdfb39223571ddcc15dc59 which was
reverted due to behavioral differences between 32 and 64 bit builds that
have since been fixed.
Differential Revision: https://reviews.llvm.org/D158217
This reverts commit 28134a29fdedd8972acdfb39223571ddcc15dc59.
This patch was causing build failures on multiple buildbots on 32-bit
architectures. Reverting now so I can deboug out-of-trunk and resubmit
later.
A couple years ago, StructuralHash was created, copying the exact
hashing implementation from FunctionComparator (minus a couple small
details/refactorings). Since then, the hashing implementation has not
diverged, but several other areas, like unit testing, have diverged
significantly, with StructuralHash getting more attention in these
areas. This patch aims to consolidate the two hashing functions into
StructuralHash given they do the exact same thing and having less
divergence in areas like unit testing would be beneficial.
The original aim at creating a separate StructuralHash was to make the
implementation divergent and capture additional details like instruction
operands (which neither hashing implementation does currently). The
MergeFunctions pass doesn't need these detaisl, but verification of pass
return values would benefit from this additional data. Setting an option
to calculate these values would allow for divergent behavior where
appropriate while reducing code duplication with little runtime
overhead.
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D158217
string_view has a slightly weaker contract, which only specifies whether
the value is bigger or smaller than 0. Adapt users accordingly and just
forward to the standard function (that also compiles down to memcmp)
Use deduction guides instead of helper functions.
The only non-automatic changes have been:
1. ArrayRef(some_uint8_pointer, 0) needs to be changed into ArrayRef(some_uint8_pointer, (size_t)0) to avoid an ambiguous call with ArrayRef((uint8_t*), (uint8_t*))
2. CVSymbol sym(makeArrayRef(symStorage)); needed to be rewritten as CVSymbol sym{ArrayRef(symStorage)}; otherwise the compiler is confused and thinks we have a (bad) function prototype. There was a few similar situation across the codebase.
3. ADL doesn't seem to work the same for deduction-guides and functions, so at some point the llvm namespace must be explicitly stated.
4. The "reference mode" of makeArrayRef(ArrayRef<T> &) that acts as no-op is not supported (a constructor cannot achieve that).
Per reviewers' comment, some useless makeArrayRef have been removed in the process.
This is a follow-up to https://reviews.llvm.org/D140896 that introduced
the deduction guides.
Differential Revision: https://reviews.llvm.org/D140955
llvm.used and llvm.compiler.used are often used with inline assembly
that refers to a specific symbol so that the symbol is kept through to
the linker even though there are no references to it from LLVM IR.
This fixes the MergeFunctions pass to preserve references to these
symbols in llvm.used/llvm.compiler.used so they are not deleted from the
IR. This doesn't prevent these functions from being merged, but
guarantees that an alias or thunk with the expected symbol name is kept
in the IR.
Differential Revision: https://reviews.llvm.org/D127751
This patch renames the mergefunc-sanity to mergefunc-verify and renames the related functions to use more
inclusive language
Reviewed By: cebowleratibm
Differential Revision: https://reviews.llvm.org/D114374
This change is intended as initial setup. The plan is to add
more semantic checks later. I plan to update the documentation
as more semantic checks are added (instead of documenting the
details up front). Most of the code closely mirrors that for
the Swift calling convention. Three places are marked as
[FIXME: swiftasynccc]; those will be addressed once the
corresponding convention is introduced in LLVM.
Reviewed By: rjmccall
Differential Revision: https://reviews.llvm.org/D95561
This migrates all LLVM (except Kaleidoscope and
CodeGen/StackProtector.cpp) DebugLoc::get to DILocation::get.
The CodeGen/StackProtector.cpp usage may have a nullptr Scope
and can trigger an assertion failure, so I don't migrate it.
Reviewed By: #debug-info, dblaikie
Differential Revision: https://reviews.llvm.org/D93087
This ports the MergeFunctions pass to the NewPM. This was rather
straightforward, as no analyses are used.
Additionally MergeFunctions needs to be conditionally enabled in
the PassBuilder, but I left that part out of this patch.
Differential Revision: https://reviews.llvm.org/D72537
Fix for https://bugs.llvm.org/show_bug.cgi?id=44236. This code was
originally introduced in rG36512330041201e10f5429361bbd79b1afac1ea1.
However, the attribute copying was done in the wrong place (in general
call replacement, not thunk generation) and a proper fix was
implemented in D12581.
Previously this code was just unnecessary but harmless (because
FunctionComparator ensured that the attributes of the two functions
are exactly the same), but since byval was changed to accept a type
this copying is actively wrong and may result in malformed IR.
Differential Revision: https://reviews.llvm.org/D71173
This file lists every pass in LLVM, and is included by Pass.h, which is
very popular. Every time we add, remove, or rename a pass in LLVM, it
caused lots of recompilation.
I found this fact by looking at this table, which is sorted by the
number of times a file was changed over the last 100,000 git commits
multiplied by the number of object files that depend on it in the
current checkout:
recompiles touches affected_files header
342380 95 3604 llvm/include/llvm/ADT/STLExtras.h
314730 234 1345 llvm/include/llvm/InitializePasses.h
307036 118 2602 llvm/include/llvm/ADT/APInt.h
213049 59 3611 llvm/include/llvm/Support/MathExtras.h
170422 47 3626 llvm/include/llvm/Support/Compiler.h
162225 45 3605 llvm/include/llvm/ADT/Optional.h
158319 63 2513 llvm/include/llvm/ADT/Triple.h
140322 39 3598 llvm/include/llvm/ADT/StringRef.h
137647 59 2333 llvm/include/llvm/Support/Error.h
131619 73 1803 llvm/include/llvm/Support/FileSystem.h
Before this change, touching InitializePasses.h would cause 1345 files
to recompile. After this change, touching it only causes 550 compiles in
an incremental rebuild.
Reviewers: bkramer, asbirlea, bollu, jdoerfert
Differential Revision: https://reviews.llvm.org/D70211
removeUsers uses a work list to collect indirect users and call remove()
on those functions. However it has a bug (`if (!Visited.insert(UU).second)`).
Actually, we don't have to collect indirect users.
After the merge of F and G, G's callers will be considered (added to
Deferred). If G's callers can be merged, G's callers' callers will be
considered.
Update the test unnamed-addr-reprocessing.ll to make it clear we can
still merge indirect callers.
llvm-svn: 358741
We would previously drop the COMDAT on the thunk we generated when replacing a
function body with the forwarding thunk. This would result in a function that
may have been multiply emitted and multiply merged to be emitted with the same
name without the COMDAT. This is a hard error with PE/COFF where the COMDAT is
used for the deduplication of Value Witness functions for Swift.
llvm-svn: 358728
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Thanks to Nikita Popov for pointing out this missed case.
This is a follow-up to r351411, which disabled function merging for
vararg functions outright due to a miscompile (see llvm.org/PR40345).
Differential Revision: https://reviews.llvm.org/D56865
llvm-svn: 351624
The function merging pass miscompiles identical vararg functions. The
forwarding thunk it emits doesn't forward the full variable-length list
of arguments. Disable merging for vararg functions for now.
I've filed llvm.org/PR40345 to track the issue.
rdar://47326238
llvm-svn: 351411
MergeFunc only deletes unused duplicate functions if they have local
linkage, but it should be safe to relax this to any "discardable if
unused" linkage type.
Differential Revision: https://reviews.llvm.org/D56574
llvm-svn: 350939
This modifies the IPO pass so that it respects any explicit function
address space specified in the data layout.
In targets with nonzero program address spaces, all functions should, by
default, be placed into the default program address space.
This is required for Harvard architectures like AVR. Without this, the
functions will be marked as residing in data space, and thus not be
callable.
This has no effect to any in-tree official backends, as none use an
explicit program address space in their data layouts.
Patch by Tim Neumann.
llvm-svn: 349469
The MergeFunctions pass was originally intended to emit aliases
instead of thunks where possible (unnamed_addr). However, for a
long time this functionality was behind a flag hardcoded to false,
bitrotted and was eventually removed in r309313.
Originally the functionality was first disabled in r108417 due to
lack of support for aliases in Mach-O. I believe that this is no
longer the case nowadays, but not really familiar with this area.
In the interest of being conservative, this patch reintroduces the
aliasing functionality behind a default disabled -mergefunc-use-aliases
flag.
Differential Revision: https://reviews.llvm.org/D53285
llvm-svn: 347407
Summary:
MergeFunctions currently tries to process strong functions before
weak functions, because weak functions can simply call strong
functions, while a strong/weak function cannot call a weak function
(a backing strong function is needed).
This patch additionally tries to process external functions before
local functions, because we definitely have to keep the external
function, but may be able to drop the local one (and definitely
can if it is also unnamed_addr).
Unfortunately, this exposes an existing bug in the implementation:
The FnTree and FNodesInTree structures can currently go out of
sync in the case where two weak functions are merged, because the
function in FnTree/FNodesInTree is RAUWed. This leaves it behind in
FnTree (this is intended, as it is the strong backing function which
should be used for further merges), while it is replaced in
FNodesInTree (this is not intended).
This is fixed by switching FNodesInTree from using a ValueMap to
using a DenseMap of AssertingVH.
This exposes another minor issue: Currently FNodesInTree is not
cleared after MergeFunctions finishes running. Currently, this is
potentially dangerous (e.g. if something else wants to RAUW a function
with a non-function), but at the very least it is unnecessary/inefficient.
After the change to use AssertingVH it becomes more problematic,
because there are certainly passes that remove functions.
This issue is fixed by clearing FNodesInTree at the end of the pass.
Reviewers: jfb, whitequark
Reviewed By: whitequark
Subscribers: rkruppe, llvm-commits
Differential Revision: https://reviews.llvm.org/D53271
llvm-svn: 346386
Summary:
For unnamed_addr functions we RAUW instead of only replacing direct callers. However, functions in which replacements were performed currently are not added back to the worklist, resulting in missed merging opportunities.
Fix this by calling removeUsers() prior to RAUW.
Reviewers: jfb, whitequark
Reviewed By: whitequark
Subscribers: rkruppe, llvm-commits
Differential Revision: https://reviews.llvm.org/D53262
llvm-svn: 346385
Currently SmallSet<PointerTy> inherits from SmallPtrSet<PointerTy>. This
patch replaces such types with SmallPtrSet, because IMO it is slightly
clearer and allows us to get rid of unnecessarily including SmallSet.h
Reviewers: dblaikie, craig.topper
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D47836
llvm-svn: 334492
Now that the LLVM_DEBUG() macro landed on the various sub-projects
the DEBUG macro can be removed.
Also change the new uses of DEBUG to LLVM_DEBUG.
Differential Revision: https://reviews.llvm.org/D46952
llvm-svn: 333091
When two interposable functions are merged, we cannot replace
uses and have to emit calls to a common internal function. However,
writeThunk() will not actually emit a thunk if the function is too
small. This leaves us in a broken state where mergeTwoFunctions
already rewired the functions, but writeThunk doesn't do anything.
This patch changes the implementation so that:
* writeThunk() does just that.
* The direct replacement of calls is moved into mergeTwoFunctions()
into the non-interposable case only.
* isThunkProfitable() is extracted and will be called for
the non-iterposable case always, and in the interposable case
only if uses are still left after replacement.
This issue has been introduced in https://reviews.llvm.org/D34806,
where the code for checking thunk profitability has been moved.
Differential Revision: https://reviews.llvm.org/D46804
Reviewed By: whitequark
llvm-svn: 332342