When LiveRangeEdit::eliminateDeadDef() converts an MI to a KILL instruction,
it should also call dropMemRefs() in order to erase any MachineMemOperand
present.
This was discovered in testing as the MachineVerifier does not accept an MMO
without the corresponding MI mayLoad/mayStore flag, which the KILL opcode
lacks.
I noticed this was possibly buggy with implicit operands with the same
dest register, and should maybe be using addRegisterDead. However, this
is never called in a situation where the operand wasn't already marked
dead. This is eliminateDeadDef, implying the def was already known to be
dead.
Add an assert to detect inconsistencies in dead flags. This was
apparently added in 9a16d655c71826bef98b7d6e9590e4494ac0e1a9.
It's allowed to rematerialize instructions with implicit-defs of the
same register as the single explicit def. If this happened, it was only
clearing the dead flags on the one main result.
This reverts commit a496c8be6e638ae58bb45f13113dbe3a4b7b23fd.
The workaround in c26dfc81e254c78dc23579cf3d1336f77249e1f6 should work
around the underlying problem with SUBREG_TO_REG.
And dependent commits.
Details in D150388.
This reverts commit 825b7f0ca5f2211ec3c93139f98d1e24048c225c.
This reverts commit 7a98f084c4d121244ef7286bc6503b6a181d446e.
This reverts commit b4a62b1fa546312d882fa12dfdcd015177d66826.
This reverts commit b7836d856206ec39509d42529f958c920368166b.
No conflicts in the code, few tests had conflicts in autogenerated CHECKs:
llvm/test/CodeGen/Thumb2/mve-float32regloops.ll
llvm/test/CodeGen/AMDGPU/fix-frame-reg-in-custom-csr-spills.ll
Reviewed By: alexfh
Differential Revision: https://reviews.llvm.org/D156381
Replacing D143754. Right now the LiveRangeSplitting during register allocation uses
TargetOpcode::COPY instruction for splitting. For AMDGPU target that creates a
problem as we have both vector and scalar copies. Vector copies perform a copy over
a vector register but only on the lanes(threads) that are active. This is mostly sufficient
however we do run into cases when we have to copy the entire vector register and
not just active lane data. One major place where we need that is live range splitting.
Allowing targets to use their own copy instructions(if defined) will provide a lot of
flexibility and ease to lower these pseudo instructions to correct MIR.
- Introduce getTargetCopyOpcode() virtual function and use if to generate copy in Live range
splitting.
- Replace necessary MI.isCopy() checks with TII.isCopyInstr() in register allocator pipeline.
Reviewed By: arsenm, cdevadas, kparzysz
Differential Revision: https://reviews.llvm.org/D150388
This was looking for full copies produced by SplitKit, but SplitKit
introduces copy bundles if not all lanes are live. The scan for uses
needs to look at bundles, not individual instructions.
This is a prerequisite to avoiding some redundant spills due to
subregisters which will help avoid an allocation failure in a future
patch.
It is needed to invoke the delegate methods effectively whenever a
virtual register is cloned from an existing register of the same class.
Reviewed By: qcolombet
Differential Revision: https://reviews.llvm.org/D138517
This patch uses the API provided by LiveRangeEdit to handle rematerialization.
It will make future maintenance and improvement more easier.
No functional change.
Differential Revision: https://reviews.llvm.org/D133610
This patch fixes an issue where an instruction reading a whole register would be moved during register allocation into a spot where one of the subregisters was dead.
The code to check whether an instruction can be rematerialized at a given point or not was already checking for subranges to ensure that subregisters are live, but only when the instruction being moved was using a subregister, this patch changes that so the subranges are checked even when the moved instruction uses the full register.
This patch also adds a case to the original test for the subrange checking that trigger the issue described above.
The original subrange checking code was introduced in this revision: https://reviews.llvm.org/D115278
And I've encountered this issue on AMDGPUs while working with DPC++: https://github.com/intel/llvm/issues/6209
Essentially the greedy register allocator attempts to move the following instruction:
```
%3961:vreg_64 = V_LSHLREV_B64_e64 3, %3078:vreg_64, implicit $exec
```
From `@3440` into the body of a loop `@16312`, but `%3078` has the following live ranges:
```
%3078 [2224r,2240r:0)[2240r,3488B:1)[16192B,38336B:1) 0@2224r 1@2240r L0000000000000003 [2224r,3440r:0) 0@2224r L000000000000000C [2240r,3488B:0)[16192B,38336B:0) 0@2240r
```
So `@16312e` `%3078.sub1` is alive but `%3078.sub0` is dead, so this instruction being moved there leads to invalid memory accesses as `3078.sub0` ends up being trashed and the result of this instruction is used as part of an address calculation for a load.
On the original ticket this issue showed up on gfx906 and gfx90a but not on gfx908, this turned out to be because on gfx908 instead of moving the shift instruction into the loop, its value is spilled into an ACC register, gfx906 doesn't have ACC registers and for gfx90a ACC registers are used like regular vector registers and so aren't used for spilling.
With this patch the original application from the DPC++ ticket works properly on gfx906, and the result of the shift instruction is correctly spilled instead of moving the instruction in the loop.
Original Author: npmiller
Reviewed by: rampitec
Submitted by: rampitec
Differential Revision: https://reviews.llvm.org/D131884
This would create a new interval missing the subrange and hit this
verifier error:
*** Bad machine code: Live interval for subreg operand has no subranges ***
- function: test_remat_subreg_def
- basic block: %bb.0 (0xa568758) [0B;128B)
- instruction: 32B dead undef %4.sub0:vreg_64 = V_MOV_B32_e32 2, implicit $exec
This was stored in LiveIntervals, but not actually used for anything
related to LiveIntervals. It was only used in one check for if a load
instruction is rematerializable. I also don't think this was entirely
correct, since it was implicitly assuming constant loads are also
dereferenceable.
Remove this and rely only on the invariant+dereferenceable flags in
the memory operand. Set the flag based on the AA query upfront. This
should have the same net benefit, but has the possible disadvantage of
making this AA query nonlazy.
Preserve the behavior of assuming pointsToConstantMemory implying
dereferenceable for now, but maybe this should be changed.
LiveRangeEdit::allUsesAvailableAt checks that VNI at use is the same
as at the original use slot. However, the VNI can be the same while
a specific subrange needed for use can be dead at the new index.
This patch adds subrange liveness check if there is a subreg use.
Fixes: SWDEV-312810
Differential Revision: https://reviews.llvm.org/D115278
When RA eliminated a dead def it can either immediately delete
the instruction itself or replace it with KILL to defer the
actual removal. If this instruction has a virtual register use
killing the register it will shrink the LI of the use. However,
if the LI covers the instruction and extends beyond it the
shrink will not happen. In fact that is impossible to shrink
such use because of the KILL still using it.
If later the LI of the use will be split at the KILL and the
KILL itself is eliminated after that point the new live segment
ends up at an invalid slot index.
This extremely rare condition was hit after D106408 which has
enabled rematerialization of such instructions. The replacement
with KILL is only done for rematerialized defs which became dead
and such rematerialization did not generally happen before.
The patch deletes an instruction immediately if it is a result
of rematerialization and has such use. An alternative would be
to prohibit a split at a KILL instruction, but it looks like it
is better to split a live range rather then keeping a killed
instruction just in case it can be rematerialized further.
Fixes PR51655.
Differential Revision: https://reviews.llvm.org/D108951
D106408 enables rematerialization of instructions with virtual
register uses. That has uncovered the bug in the allUsesAvailableAt
implementation: https://bugs.llvm.org/show_bug.cgi?id=51516.
In the majority of cases canRematerializeAt() called to check if
an instruction can be rematerialized before the given UseIdx.
However, SplitEditor::enterIntvAtEnd() calls it to rematerialize
an instruction at the end of a block passing LIS.getMBBEndIdx()
into the check. In the testcase from the bug it has attempted to
rematerialize ADDXri after STRXui in bb.17. The use operand %55
of the ADD is killed by the STRX but that is undetected by the check
because it adjusts passed UseIdx to the reg slot, before the kill.
The value is dead at the index passed to the check however.
This change uses a later of passed UseIdx and its reg slot. This
shall be correct because if are checking an availability of operands
before an instruction that instruction cannot be the one defining
these operands. If we are checking for late rematerialization we
are really interested if operands live past the instruction.
The bug is not exploitable without D106408 but needed to reland
reverted D106408.
Differential Revision: https://reviews.llvm.org/D108475
Any def of EXEC prevents rematerialization of any VOP instruction
because of the physreg use. Create a callback to check if the
physreg use can be ingored to allow rematerialization.
Differential Revision: https://reviews.llvm.org/D105836
VirtRegAuxInfo is an extensibility point, so the register allocator's
decision on which implementation to use should be communicated to the
other users - namely, LiveRangeEdit.
Differential Revision: https://reviews.llvm.org/D96898
1. Removed #include "...AliasAnalysis.h" in other headers and modules.
2. Cleaned up includes in AliasAnalysis.h.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D92489
It's never null - the reason it's modeled as a pointer is because the
pass can't init it in its ctor. Passing by ref simplifies the code, too,
as the null checks were unnecessary complexity.
Differential Revision: https://reviews.llvm.org/D89171
Also renamed the fields to follow style guidelines.
Accessors help with readability - weight mutation, in particular,
is easier to follow this way.
Differential Revision: https://reviews.llvm.org/D87725
This will address the issue: P8198 and P8199 (from D73534).
The methods was not handle bundles properly.
Differential Revision: https://reviews.llvm.org/D74904
Use the isCandidateForCallSiteEntry().
This should mostly be an NFC, but there are some parts ensuring
the moveCallSiteInfo() and copyCallSiteInfo() operate with call site
entry candidates (both Src and Dest should be the call site entry
candidates).
Differential Revision: https://reviews.llvm.org/D74122
During the If-Converter optimization pay attention when copying or
deleting call instructions in order to keep call site information in
valid state.
Reviewers: aprantl, vsk, efriedma
Reviewed By: vsk, efriedma
Differential Revision: https://reviews.llvm.org/D66955
llvm-svn: 374068
Summary:
This clang-tidy check is looking for unsigned integer variables whose initializer
starts with an implicit cast from llvm::Register and changes the type of the
variable to llvm::Register (dropping the llvm:: where possible).
Partial reverts in:
X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister
X86FixupLEAs.cpp - Some functions return unsigned and arguably should be MCRegister
X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister
HexagonBitSimplify.cpp - Function takes BitTracker::RegisterRef which appears to be unsigned&
MachineVerifier.cpp - Ambiguous operator==() given MCRegister and const Register
PPCFastISel.cpp - No Register::operator-=()
PeepholeOptimizer.cpp - TargetInstrInfo::optimizeLoadInstr() takes an unsigned&
MachineTraceMetrics.cpp - MachineTraceMetrics lacks a suitable constructor
Manual fixups in:
ARMFastISel.cpp - ARMEmitLoad() now takes a Register& instead of unsigned&
HexagonSplitDouble.cpp - Ternary operator was ambiguous between unsigned/Register
HexagonConstExtenders.cpp - Has a local class named Register, used llvm::Register instead of Register.
PPCFastISel.cpp - PPCEmitLoad() now takes a Register& instead of unsigned&
Depends on D65919
Reviewers: arsenm, bogner, craig.topper, RKSimon
Reviewed By: arsenm
Subscribers: RKSimon, craig.topper, lenary, aemerson, wuzish, jholewinski, MatzeB, qcolombet, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, wdng, nhaehnle, sbc100, jgravelle-google, kristof.beyls, hiraditya, aheejin, kbarton, fedor.sergeev, javed.absar, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, tpr, PkmX, jocewei, jsji, Petar.Avramovic, asbirlea, Jim, s.egerton, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65962
llvm-svn: 369041
Handle call instruction replacements and deletions in order to preserve
valid state of the call site info of the MachineFunction.
NOTE: If the call site info is enabled for a new target, the assertion from
the MachineFunction::DeleteMachineInstr() should help to locate places
where the updateCallSiteInfo() should be called in order to preserve valid
state of the call site info.
([10/13] Introduce the debug entry values.)
Co-authored-by: Ananth Sowda <asowda@cisco.com>
Co-authored-by: Nikola Prica <nikola.prica@rt-rk.com>
Co-authored-by: Ivan Baev <ibaev@cisco.com>
Differential Revision: https://reviews.llvm.org/D61062
llvm-svn: 364536
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
The DEBUG() macro is very generic so it might clash with other projects.
The renaming was done as follows:
- git grep -l 'DEBUG' | xargs sed -i 's/\bDEBUG\s\?(/LLVM_DEBUG(/g'
- git diff -U0 master | ../clang/tools/clang-format/clang-format-diff.py -i -p1 -style LLVM
- Manual change to APInt
- Manually chage DOCS as regex doesn't match it.
In the transition period the DEBUG() macro is still present and aliased
to the LLVM_DEBUG() one.
Differential Revision: https://reviews.llvm.org/D43624
llvm-svn: 332240
Simplify the code slightly: Instead of creating empty subranges in one
case and immediately removing them, do not create them in the first
place.
llvm-svn: 322226
Headers/Implementation files should be named after the class they
declare/define.
Also eliminated an `#include "llvm/CodeGen/LiveIntervalAnalysis.h"` in
favor of `class LiveIntarvals;`
llvm-svn: 320546
LLVM Coding Standards:
Function names should be verb phrases (as they represent actions), and
command-like function should be imperative. The name should be camel
case, and start with a lower case letter (e.g. openFile() or isFoo()).
Differential Revision: https://reviews.llvm.org/D40416
llvm-svn: 319168
This header includes CodeGen headers, and is not, itself, included by
any Target headers, so move it into CodeGen to match the layering of its
implementation.
llvm-svn: 317647