This patch does the bare minimum to start setting up the reduction
recipe support, including adding a type to the AST to store it. No real
additional work is done, and a bunch of static_asserts are left around
to allow us to do this properly.
This is a major change on how we represent nested name qualifications in
the AST.
* The nested name specifier itself and how it's stored is changed. The
prefixes for types are handled within the type hierarchy, which makes
canonicalization for them super cheap, no memory allocation required.
Also translating a type into nested name specifier form becomes a no-op.
An identifier is stored as a DependentNameType. The nested name
specifier gains a lightweight handle class, to be used instead of
passing around pointers, which is similar to what is implemented for
TemplateName. There is still one free bit available, and this handle can
be used within a PointerUnion and PointerIntPair, which should keep
bit-packing aficionados happy.
* The ElaboratedType node is removed, all type nodes in which it could
previously apply to can now store the elaborated keyword and name
qualifier, tail allocating when present.
* TagTypes can now point to the exact declaration found when producing
these, as opposed to the previous situation of there only existing one
TagType per entity. This increases the amount of type sugar retained,
and can have several applications, for example in tracking module
ownership, and other tools which care about source file origins, such as
IWYU. These TagTypes are lazily allocated, in order to limit the
increase in AST size.
This patch offers a great performance benefit.
It greatly improves compilation time for
[stdexec](https://github.com/NVIDIA/stdexec). For one datapoint, for
`test_on2.cpp` in that project, which is the slowest compiling test,
this patch improves `-c` compilation time by about 7.2%, with the
`-fsyntax-only` improvement being at ~12%.
This has great results on compile-time-tracker as well:

This patch also further enables other optimziations in the future, and
will reduce the performance impact of template specialization resugaring
when that lands.
It has some other miscelaneous drive-by fixes.
About the review: Yes the patch is huge, sorry about that. Part of the
reason is that I started by the nested name specifier part, before the
ElaboratedType part, but that had a huge performance downside, as
ElaboratedType is a big performance hog. I didn't have the steam to go
back and change the patch after the fact.
There is also a lot of internal API changes, and it made sense to remove
ElaboratedType in one go, versus removing it from one type at a time, as
that would present much more churn to the users. Also, the nested name
specifier having a different API avoids missing changes related to how
prefixes work now, which could make existing code compile but not work.
How to review: The important changes are all in
`clang/include/clang/AST` and `clang/lib/AST`, with also important
changes in `clang/lib/Sema/TreeTransform.h`.
The rest and bulk of the changes are mostly consequences of the changes
in API.
PS: TagType::getDecl is renamed to `getOriginalDecl` in this patch, just
for easier to rebasing. I plan to rename it back after this lands.
Fixes#136624
Fixes https://github.com/llvm/llvm-project/issues/43179
Fixes https://github.com/llvm/llvm-project/issues/68670
Fixes https://github.com/llvm/llvm-project/issues/92757
This patch adds the 'init recipes' to firstprivate like I did for
'private', so that we can properly init these types. At the moment,
the recipe init isn't generated (just the VarDecl), and this isn't
really used anywhere as it will be used exclusively in Codegen.
Previously, #151360 implemented 'private' clause lowering, but didn't
properly initialize the variables. This patch adds that behavior to make
sure we correctly get the constructor or other init called.
This fixes an ambiguous type type_info when you try and reference the
`type_info` type while using clang modulemaps with `-fms-compatibility`
enabled
Fixes#38400
Handles clang::DiagnosticsEngine and clang::DiagnosticIDs.
For DiagnosticIDs, this mostly migrates from `new DiagnosticIDs` to
convenience method `DiagnosticIDs::create()`.
Part of cleanup https://github.com/llvm/llvm-project/issues/151026
## Problem
This is a regression that was observed in Clang 20 on modules code that
uses import std.
The lazy-loading mechanism for template specializations introduced in
#119333 can currently load additional nodes when called multiple times,
which breaks assumptions made by code that iterates over
specializations. This leads to iterator invalidation crashes in some
scenarios.
The core issue occurs when:
1. Code calls `spec_begin()` to get an iterator over template
specializations. This invokes `LoadLazySpecializations()`.
2. Code then calls `spec_end()` to get the end iterator.
3. During the `spec_end()` call, `LoadExternalSpecializations()` is
invoked again.
4. This can load additional specializations for certain cases,
invalidating the begin iterator returned in 1.
I was able to trigger the problem when constructing a ParentMapContext.
The regression test demonstrates two ways to trigger the construction of
the ParentMapContext on problematic code:
- The ArrayBoundV2 checker
- Unsigned overflow detection in sanitized builds
Unfortunately, simply dumping the ast (e.g. using `-ast-dump-all`)
doesn't trigger the crash because dumping requires completing the redecl
chain before iterating over the specializations.
## Solution
The fix ensures that the redeclaration chain is always completed
**before** loading external specializations by calling
`CompleteRedeclChain(D)` at the start of
`LoadExternalSpecializations()`. The idea is to ensure that all
`SpecLookups` are fully known and loaded before the call to
`LoadExternalSpecializationsImpl()`.
The checks for the 'z' and 't' format specifiers added in the original
PR #143653 had some issues and were overly strict, causing some build
failures and were consequently reverted at
4c85bf2fe8.
In the latest commit
27c58629ec,
I relaxed the checks for the 'z' and 't' format specifiers, so warnings
are now only issued when they are used with mismatched types.
The original intent of these checks was to diagnose code that assumes
the underlying type of `size_t` is `unsigned` or `unsigned long`, for
example:
```c
printf("%zu", 1ul); // Not portable, but not an error when size_t is unsigned long
```
However, it produced a significant number of false positives. This was
partly because Clang does not treat the `typedef` `size_t` and
`__size_t` as having a common "sugar" type, and partly because a large
amount of existing code either assumes `unsigned` (or `unsigned long`)
is `size_t`, or they define the equivalent of size_t in their own way
(such as
sanitizer_internal_defs.h).2e67dcfdcd/compiler-rt/lib/sanitizer_common/sanitizer_internal_defs.h (L203)
Including the results of `sizeof`, `sizeof...`, `__datasizeof`,
`__alignof`, `_Alignof`, `alignof`, `_Countof`, `size_t` literals, and
signed `size_t` literals, the results of pointer-pointer subtraction and
checks for standard library functions (and their calls).
The goal is to enable clang and downstream tools such as clangd and
clang-tidy to provide more portable hints and diagnostics.
The previous discussion can be found at #136542.
This PR implements this feature by introducing a new subtype of `Type`
called `PredefinedSugarType`, which was considered appropriate in
discussions. I tried to keep `PredefinedSugarType` simple enough yet not
limited to `size_t` and `ptrdiff_t` so that it can be used for other
purposes. `PredefinedSugarType` wraps a canonical `Type` and provides a
name, conceptually similar to a compiler internal `TypedefType` but
without depending on a `TypedefDecl` or a source file.
Additionally, checks for the `z` and `t` format specifiers in format
strings for `scanf` and `printf` were added. It will precisely match
expressions using `typedef`s or built-in expressions.
The affected tests indicates that it works very well.
Several code require that `SizeType` is canonical, so I kept `SizeType`
to its canonical form.
The failed tests in CI are allowed to fail. See the
[comment](https://github.com/llvm/llvm-project/pull/135386#issuecomment-3049426611)
in another PR #135386.
Add `NamespaceBaseDecl` as common base class of `NamespaceDecl` and
`NamespaceAliasDecl`. This simplifies `NestedNameSpecifier` a bit.
Co-authored-by: Matheus Izvekov <mizvekov@gmail.com>
Some `LangOptions` duplicate their `CodeGenOptions` counterparts. My
understanding is that this was done solely because some infrastructure
(like preprocessor initialization, serialization, module compatibility
checks, etc.) were only possible/convenient for `LangOptions`. This PR
implements the missing support for `CodeGenOptions`, which makes it
possible to remove some duplicate `LangOptions` fields and simplify the
logic. Motivated by https://github.com/llvm/llvm-project/pull/146342.
This removes the `{BENIGN,COMPATIBLE}{,_ENUM,_VALUE}_LANGOPT` X macros
controlling `LangOptions`. These are permutations of the base `LANGOPT`,
`ENUM_LANGOPT` and `VALUE_LANGOPT` X macros that also carry the
information of their effect on AST (and therefore module compatibility).
Their functionality is now implemented by passing `Benign`, `Compatible`
or `NotCompatible` argument to the base X macros and using C++17 `if
constexpr` in the clients to achieve the same codegen.
This PR solves this FIXME:
```
// FIXME: Clients should be able to more easily select whether they want
// different levels of compatibility versus how to handle different kinds
// of option.
```
The base X macros are preserved, since they are used in `LangOptions.h`
to generate different kinds of field and function declarations for
flags, values and enums, which can't be achieved with `if constexpr`.
The new syntax also forces developers to think about compatibility when
adding new language option, hopefully reducing the number of new options
that are affecting by default even though they are benign or compatible.
Note that the `BENIGN_` macros used to forward to their `COMPATIBLE_`
counterparts. I don't think this ever kicked in, since there are no
clients of the `.def` file that define `COMPATIBLE_` without also
defining `BENIGN_`. However, this might be something downstream forks
need to take care of by doing `if constexpr (CK::Compatibility ==
CK::Benign || CK::Compatibility == CK::Compatible)` in place of `#define
COMPATIBLE_`.
All deserialized VarDecl initializers are EvaluatedStmt, but not all
EvaluatedStmt initializers are from a PCH. Calling
`VarDecl::hasInitWithSideEffects` can trigger constant evaluation, but
it's hard to know ahead of time whether that will trigger
deserialization - even if the initializer is fully deserialized, it may
contain a call to a constructor whose body is not deserialized. By
caching the result of `VarDecl::hasInitWithSideEffects` and populating
that cache during deserialization we can guarantee that calling it won't
trigger deserialization regardless of the state of the initializer.
This also reduces memory usage by removing the `InitSideEffectVars` set
in `ASTReader`.
rdar://154717930
See the attached test for the motiviation.
Previously we dependent on the module ownership of the decl context to
perform module local lookup. But if the lookup is unqualified, we may
perform the lookup with canonical decl, which belongs to the incorrect
named module
Introduce a type alias for the commonly used `std::pair<FileID,
unsigned>` to improve code readability, and make it easier for future
updates (64-bit source locations).
See the discussion in https://github.com/llvm/llvm-project/pull/145529.
This will slightly increase the PCM size (~5%), some data (in-memory
preamble size in clangd):
- SemaExpr.cpp: 77MB -> 80MB
- FindTarget.cpp: 71MB -> 75MB
Implement parsing and semantic analysis support for the optional
'strict' modifier of the num_threads clause. This modifier has been
introduced in OpenMP 6.0, section 12.1.2.
Note: this is basically 1:1 https://reviews.llvm.org/D138328.
Reverts llvm/llvm-project#143739 because it triggers an assert:
```
Assertion failed: (!isNull() && "Cannot retrieve a NULL type pointer"), function getCommonPtr, file Type.h, line 952.
```
Calling `DeclMustBeEmitted` should not lead to more deserialization, as
it may occur before previous deserialization has finished.
When passed a `VarDecl` with an initializer however, `DeclMustBeEmitted`
needs to know whether that initializer contains side effects. When the
`VarDecl` is deserialized but the initializer is not, this triggers
deserialization of the initializer. To avoid this we add a bit to the
serialization format for `VarDecl`s, indicating whether its initializer
contains side effects or not, so that the `ASTReader` can query this
information directly without deserializing the initializer.
rdar://153085264
These are identified by misc-include-cleaner. I've filtered out those
that break builds. Also, I'm staying away from llvm-config.h,
config.h, and Compiler.h, which likely cause platform- or
compiler-specific build failures.
This reverts commit e2a885537f11f8d9ced1c80c2c90069ab5adeb1d. Build failures were fixed right away and reverting the original commit without the fixes breaks the build again.
The `DiagnosticOptions` class is currently intrusively
reference-counted, which makes reasoning about its lifetime very
difficult in some cases. For example, `CompilerInvocation` owns the
`DiagnosticOptions` instance (wrapped in `llvm::IntrusiveRefCntPtr`) and
only exposes an accessor returning `DiagnosticOptions &`. One would
think this gives `CompilerInvocation` exclusive ownership of the object,
but that's not the case:
```c++
void shareOwnership(CompilerInvocation &CI) {
llvm::IntrusiveRefCntPtr<DiagnosticOptions> CoOwner = &CI.getDiagnosticOptions();
// ...
}
```
This is a perfectly valid pattern that is being actually used in the
codebase.
I would like to ensure the ownership of `DiagnosticOptions` by
`CompilerInvocation` is guaranteed to be exclusive. This can be
leveraged for a copy-on-write optimization later on. This PR changes
usages of `DiagnosticOptions` across `clang`, `clang-tools-extra` and
`lldb` to not be intrusively reference-counted.
This reverts commit 7a242387c950c7060143da6da0e6fb91f36bb458. Even after 175f8a44, the Modules/fmodules-validate-once-per-build-session.c test is not fixed on the clang-armv8-quick build bot. (Failure occurs on line 114.)
This reverts commit 18b885f66babff3a10451bc811ffc077d61ed8ee, effectively reapplying #139987. This commit fixes unit tests (for example ASTUnitTest.SaveLoadPreservesLangOptionsInPrintingPolicy) where the `ASTUnit::ModCache` pointer dereferenced within `ASTUnit::serialize()` was null. This commit makes sure each factory function does initialize `ASTUnit::ModCache`.
Timestamps are an implementation detail of the cross-process module
cache implementation. This PR hides it from the `ModuleCache` API, which
simplifies the in-process implementation.
Force-validation of user headers was implemented in acb803e8 to deal
with files changing during build. The dependency scanner guarantees an
immutable file system during single build session, so the validation is
unnecessary. (We don't hit the disk too often due to the caching VFS,
but even avoiding going to the cache and deserializing the input files
makes sense.)
In the past, timestamps used for
`-fmodules-validate-once-per-build-session` were found to be a source of
contention in the dependency scanner
([D149802](https://reviews.llvm.org/D149802),
https://github.com/llvm/llvm-project/pull/112452). This PR is yet
another attempt to optimize these. We now make use of the new
`ModuleCache` interface to implement the in-process version in terms of
atomic `std::time_t` variables rather the mtime attribute on
`.timestamp` files.
This changes the type compatibility rules so that it is permitted to
redefine tag types within the same TU so long as they are equivalent
definitions.
It is intentionally not being exposed as an extension in older C
language modes. GCC does not do so and the feature doesn't seem
compelling enough to warrant it.
In an explicit build, the dependency scanner generates invocations with
dependencies to module files to use during compilation. The pcm's passed
in the invocations should match the ones that were imported by other
modules that share the same dependencies.
We have seen bugs caused from incorrect invocations that mismatch which
module file to load. When this happens report it as a warning, to help
with investigations, as that should never occur in a well behaved build
scheduled from the dependency scanner.
The warning flag is off by default.
…uses
The Flang implemenation of OpenACC uses a .td file in the llvm/Frontend
directory to determine appertainment in 4 categories:
-Required: If this list has items in it, the directive requires at least
1 of these be present.
-AllowedExclusive: Items on this list are all allowed, but only 1 from
the list may be here (That is, they are exclusive of eachother).
-AllowedOnce: Items on this list are all allowed, but may not be
duplicated.
Allowed: Items on this list are allowed. Note th at the actual list of
'allowed' is all 4 of these lists together.
This is a draft patch to swtich Clang over to use those tables. Surgery
to get this to happen in Clang Sema was somewhat reasonable. However,
some gaps in the implementations are obvious, the existing clang
implementation disagrees with the Flang interpretation of it. SO, we're
keeping a task list here based on what gets discovered.
Changes to Clang:
- [x] Switch 'directive-kind' enum conversions to use tablegen See
ff1a7bddd9435b6ae2890c07eae60bb07898bbf5
- [x] Switch 'clause-kind' enum conversions to use tablegen See
ff1a7bddd9435b6ae2890c07eae60bb07898bbf5
- [x] Investigate 'parse' test differences to see if any new
disagreements arise.
- [x] Clang/Flang disagree as to whether 'collapse' can be multiple
times on a loop. Further research showed no prose to limit this, and the
comment on the clang implementation said "no good reason to allow", so
no standards justification.
- [x] Clang/Flang disagree whether 'num_gangs' can appear >1 on a
compute/combined construct. This ended up being an unjustified
restriction.
- [x] Clang/Flang disagree as to the list of required clauses on a 'set'
construct. My research shows that Clang mistakenly included 'if' in the
list, and that it should be just 'default_async', 'device_num', and
'device_type'.
- [x] Order of 'at least one of' diagnostic has changed. Tests were
updated.
- [x] Ensure we are properly 'de-aliasing' clause names in appertainment
checks?
- [x] What is 'shortloop'? 'shortloop' seems to be an old non-standard
extension that isn't supported by flang, but is parsed for backward
compat reasons. Clang won't parse, but we at least have a spot for it in
the clause list.
- [x] Implemented proposed change for 'routine' gang/worker/vector/seq.
(see issue 539)
- [x] Implement init/shutdown can only have 1 'if' (see issue 540)
- [x] Clang/Flang disagree as to whether 'tile' is permitted more than
once on a 'loop' or combined constructs (Flang prohibits >1). I see no
justification for this in the standard. EDIT: I found a comment in clang
that I did this to make SOMETHING around duplicate checks easier.
Discussion showed we should actually have a better behavior around
'device_type' and duplicates, so I've since implemented that.
- [x] Clang/Flang disagree whether 'gang', 'worker', or 'vector' may
appear on the same construct as a 'seq' on a 'loop' or 'combined'. There
is prose for this in 2022: (a gang, worker, or vector clause may not
appear if a 'seq' clause appears). EDIT: These don't actually disagree,
but aren't in the .td file, so I restored the existing code to do this.
- [x] Clang/Flang disagree on whether 'bind' can appear >1 on a
'routine'. I believe line 3096 (A bind clause may not bind to a routine
name that has a visible bind clause) makes this limitation (Flang
permits >1 bind). we discussed and decided this should have the same
rules as worker/vector/etc, except without the 'exactly 1 of' rule (so
no dupes in individual sections).
- [x] Clang/Flang disagree on whether 'init'/'shutdown' can have
multiple 'device_num' clauses. I believe there is no supporting prose
for this limitation., We decided that `device_num` should only happen
1x.
- [x] Clang/Flang disagree whether 'num_gangs' can appear >1 on a
'kernels' construct. Line 1173 (On a kernels construct, the num_gangs
clause must have a single argument) justifies limiting on a
per-arguement basis, but doesn't do so for multiple num_gangs clauses.
WE decided to do this with the '1-per-device-type' region for num_gangs,
num_workers, and vector_length, see openacc bug here:
https://github.com/OpenACC/openacc-spec/issues/541
Changes to Flang:
- [x] Clang/Flang disgree on whether 'atomic' can take an 'if' clause.
This was added in OpenACC3.3_Next See #135451
- [x] Clang/Flang disagree on whether 'finalize' can be allowed >1 times
on a 'exit_data' construct. see #135415.
- [x] Clang/Flang disagree whether 'if_present' should be allowed >1
times on a 'host_data'/'update' construct. see #135422
- [x] Clang/Flang disagree on whether 'init'/'shutdown' can have
multiple 'device_type' clauses. I believe there is no supporting prose
for this limitation.
- [ ] SEE change for num_gangs/etc above.
Changes that need discussion/research:
This PR reland https://github.com/llvm/llvm-project/pull/135808, fixed
some missed changes in LLDB.
I found this issue when I working on
https://github.com/llvm/llvm-project/pull/107168.
Currently we have many similiar data structures like:
- std::pair<IdentifierInfo *, SourceLocation>.
- Element type of ModuleIdPath.
- IdentifierLocPair.
- IdentifierLoc.
This PR unify these data structures to IdentifierLoc, moved
IdentifierLoc definition to SourceLocation.h, and deleted other similer
data structures.
---------
Signed-off-by: yronglin <yronglin777@gmail.com>