Currently LLVMContext::emitError emits any error as an "inline asm"
error which does not make any sense. InlineAsm appears to be special,
in that it uses a "LocCookie" from srcloc metadata, which looks like
a parallel mechanism to ordinary source line locations. This meant
that other types of failures had degraded source information reported
when available.
Introduce some new generic error types, and only use inline asm
in the appropriate contexts. The DiagnosticInfo types are still
a bit of a mess, and I'm not sure why DiagnosticInfoWithLocationBase
exists instead of just having an optional DiagnosticLocation in the
base class.
DK_Generic is for any error that derives from an IR level instruction,
and thus can pull debug locations directly from it. DK_GenericWithLoc
is functionally the generic codegen error, since it does not depend
on the IR and instead can construct a DiagnosticLocation from the
MI debug location.
AArch64 uses MCAsmInfo::AssemblerDialect to control the style of emitted
Neon assembly. E.g. Apple platforms use AsmWriterVariantTy::Apple by
default which collides with InlineAsm::AD_Intel (both value 1). Checking
for inlineasm dialects on non-X86 platforms can thus lead to problems.
Since `raw_string_ostream` doesn't own the string buffer, it is
desirable (in terms of memory safety) for users to directly reference
the string buffer rather than use `raw_string_ostream::str()`.
Work towards TODO comment to remove `raw_string_ostream::str()`.
Commit 6c0665e22174d474050e85ca367424f6e02476be
(https://reviews.llvm.org/D45164) enabled certain constant expression
evaluation for `MCObjectStreamer` at parse time (e.g. `.if` directives,
see llvm/test/MC/AsmParser/assembler-expressions.s).
`getUseAssemblerInfoForParsing` was added to make `clang -c` handling
inline assembly similar to `MCAsmStreamer` (e.g. `llvm-mc -filetype=asm`),
where such expression folding (related to
`AttemptToFoldSymbolOffsetDifference`) is unavailable.
I believe this is overly conservative. We can make some parse-time
expression folding work for `clang -c` even if `clang -S` would still
report an error, a MCAsmStreamer issue (we cannot print `.if`
directives) that should not restrict the functionality of
MCObjectStreamer.
```
% cat b.cc
asm(R"(
.pushsection .text,"ax"
.globl _start; _start: ret
.if . -_start == 1
ret
.endif
.popsection
)");
% gcc -S b.cc && gcc -c b.cc
% clang -S -fno-integrated-as b.cc # succeeded
% clang -c b.cc # succeeded with this patch
% clang -S b.cc # still failed
<inline asm>:4:5: error: expected absolute expression
4 | .if . -_start == 1
| ^
1 error generated.
```
However, removing `getUseAssemblerInfoForParsing` would make
MCDwarfFrameEmitter::Emit (for .eh_frame FDE) slow (~4% compile time
regression for sqlite3.c amalgamation) due to expensive
`AttemptToFoldSymbolOffsetDifference`. For now, make
`UseAssemblerInfoForParsing` false in MCDwarfFrameEmitter::Emit.
Close#62520
Link: https://discourse.llvm.org/t/rfc-clang-assembly-object-equivalence-for-files-with-inline-assembly/78841
Pull Request: https://github.com/llvm/llvm-project/pull/91082
This reverts commit 03c53c69a367008da689f0d2940e2197eb4a955c.
This causes very large compile-time regressions in some cases,
e.g. sqlite3 at O0 regresses by 5%.
Commit 6c0665e22174d474050e85ca367424f6e02476be
(https://reviews.llvm.org/D45164) enabled certain constant expression
evaluation for `MCObjectStreamer` at parse time (e.g. `.if` directives,
see llvm/test/MC/AsmParser/assembler-expressions.s).
`getUseAssemblerInfoForParsing` was added to make `clang -c` handling
inline assembly similar to `MCAsmStreamer` (e.g. `llvm-mc -filetype=asm`),
where such expression folding (related to
`AttemptToFoldSymbolOffsetDifference`) is unavailable.
I believe this is overly conservative. We can make some parse-time
expression folding work for `clang -c` even if `clang -S` would still
report an error, a MCAsmStreamer issue (we cannot print `.if`
directives) that should not restrict the functionality of
MCObjectStreamer.
```
% cat b.cc
asm(R"(
.pushsection .text,"ax"
.globl _start; _start: ret
.if . -_start == 1
ret
.endif
.popsection
)");
% gcc -S b.cc && gcc -c b.cc
% clang -S -fno-integrated-as b.cc # succeeded
% clang -c b.cc # succeeded with this patch
% clang -S b.cc # still failed
<inline asm>:4:5: error: expected absolute expression
4 | .if . -_start == 1
| ^
1 error generated.
```
Close#62520
Link: https://discourse.llvm.org/t/rfc-clang-assembly-object-equivalence-for-files-with-inline-assembly/78841
Pull Request: https://github.com/llvm/llvm-project/pull/91082
I would like to steal one of these bits to denote whether a kind may be
spilled by the register allocator or not, but I'm afraid to touch of any
this code using bitwise operands.
Make flags a first class type using bitfields, rather than launder data
around via `unsigned`.
These 2 functions could be called by AsmPrinter::doInitialization in
AsmPrinter.cpp. doInitialization init MMI in the beginning`MMI = MMIWP ?
&MMIWP->getMMI() : nullptr;`, MMI has the possibility to be nullptr,
which could make the later deref crash. I think in most time MMI could
not be nullptr, but from the view of function implementation, it could
be, so I'd like to add assert to it, if this could be a problem, then we
could avoid crash.
Should add some minor type safety to the use of this information, since
there's quite a bit of metadata being laundered through an `unsigned`.
I'm looking to potentially add more bitfields to that `unsigned`, but I
find InlineAsm's big ol' bag of enum values and usage of `unsigned`
confusing, type-unsafe, and un-ergonomic. These can probably be better
abstracted.
I think the lack of static_cast outside of InlineAsm indicates the prior
code smell fixed here.
Reviewed By: qcolombet
Differential Revision: https://reviews.llvm.org/D159242
In preparation for removing the `#include "llvm/ADT/StringExtras.h"`
from the header to source file of `llvm/Support/Error.h`, first add in
all the missing includes that were previously included transitively
through this header.
This was scanning through def operands looking for the
symbol operand. This is pointless because the symbol is always
the first operand as enforced by the verifier, and all operands
are implicit.
Fixes#50098
LLVM uses X19 as the frame base pointer, if it needs to. Meaning you
can get warnings if you clobber that with inline asm.
However, it doesn't explain why. The frame base register is not part
of the ABI so it's pretty confusing why you get that warning out of the blue.
This adds a method to explain a reserved register with X19 as the first one.
The logic is the same as getReservedRegs.
I could have added a return parameter to isASMClobberable and friends
but found that there's a lot of things that call isReservedReg in various
ways.
So while one more method on the pile isn't great design, it is simpler
right now to do it this way and only pay the cost if you are actually using
a reserved register.
Reviewed By: lenary
Differential Revision: https://reviews.llvm.org/D133213
As usual with that header cleanup series, some implicit dependencies now need to
be explicit:
llvm/MC/MCParser/MCAsmParser.h no longer includes llvm/MC/MCParser/MCAsmLexer.h
Preprocessed lines to build llvm on my setup:
after: 1068185081
before: 1068324320
So no compile time benefit to expect, but we still get the looser coupling
between files which is great.
Discourse thread: https://discourse.llvm.org/t/include-what-you-use-include-cleanup
Differential Revision: https://reviews.llvm.org/D119359
This was using the ugly tablegenerated register enum names, which are
really hideous for register tuples on AMDGPU. Use the prettier names
which are recognized by the asm parser.
This basically reverts 1778831a3d1, which split them.
Since they were split 9 years ago, EmitGCCInlineAsmStr() grew a bunch of
features that usually weren't added to EmitMSInlineAsmStr(), and
that was usually a mistake. D71677, D113932, D114167 are all examples
of where things were backported to EmitMSInlineAsmStr().
The names were also not great. EmitMSInlineAsmStr() used to be called for `asm
inteldialect`, which clang produces for Microsoft-style __asm { ... } blocks as
well for GCC-style __asm__ / asm statements with -masm=intel. On the other hand,
EmitGCCInlineAsmStr() used to be called for `asm`, whic clang produces for
GCC-style __asm__ / asm statements with -masm=att (the default).
It's also less code (23 insertions, 188 deletions).
No behavior change.
Differential Revision: https://reviews.llvm.org/D114330
This makes a line in llvm/test/CodeGen/X86/asm-block-labels.ll pass
with `asm inteldialect` too.
I don't know if this is something one can hit in practice with inline
asm. The test is from 2007 (4646aa3e337aa) but in 2009 blockaddr was
introduced and e.g. `__asm__ __volatile__("brl %0" :: "X"(&&foo) : "memory");`
compiles to
call void asm sideeffect "brl $0", "X,..."(i8* blockaddress(@func, %1))
nowadays (thanks to jrtc27 for that example!).
(6c4d255bf3d64 switched clang to blockaddress on an opt-in basis,
e4801f7844bb added docs for it, 31b132c0b781 added IR support.)
I half-heartedly tried to build clang 2.8 locally, but it didn't
just build. And 2.8 didn't have a prebuilt clang binary yet.
The motivation is to make EmitGCCInlineAsmStr() and EmitMSInlineAsmStr()
more alike, and maybe we should delete this code form EmitGCCInlineAsmStr()
instead. But since it's just 3 lines and it's reachable from LLVM IR,
let's do the safer thing for now.
Differential Revision: https://reviews.llvm.org/D114329
This makes the following program build with -masm=intel:
int foo(int count) {
asm goto ("dec %0; jb %l[stop]" : "+r" (count) : : : stop);
return count;
stop:
return 0;
}
It's also is another step towards merging EmitGCCInlineAsmStr() and
EmitMSInlineAsmStr().
Differential Revision: https://reviews.llvm.org/D114167
No intended behavior change.
EmitGCCInlineAsmStr() used to explicitly check for modifier 'l'
after handling block address and machine basic block operands.
This prevented passing a MachineOperand with 'l' modifier to
PrintAsmMemoryOperand(). Conceptually that seems kind of nice,
but in practice the overrides of PrintAsmMemoryOperand() in all (*)
AsmPrinter subclasses already reject modifiers they don't know about,
and none of them don't know about 'l'. So removing this doesn't have
a behavior difference, is less code, and it makes EmitGCCInlineAsmStr()
and EmitMSInlineAsmStr() more similar, to prepare for merging them later.
(Why not _add_ the branch to EmitMSInlineAsmStr() instead? Because that
always works with X86AsmPrinter I think, and
X86AsmPrinter::PrintAsmMemoryOperand() very decisively rejects the 'l'
modifier, so it's hard to motivate adding that branch.)
*: The one exception was AVRAsmPrinter, which had an llvm_unreachable instead
of returning true. So this commit changes that, so that the AVR target keeps
emitting an error instead of crashing when passing a mem operand with a :l
modifier to it. All the other targets already don't crash on this.
Differential Revision: https://reviews.llvm.org/D114216
This is preparation for D113707, where I want to make `-masm=intel`
emit `asm inteldialect` instructions.
`{movq %rbx, %rax|mov rax, rbx}` is supposed to evaluate to the bit
between { and | for att and to the bit between | and } for intel.
Since intel will become `asm inteldialect`, which alls EmitMSInlineAsmStr(),
EmitMSInlineAsmStr() has to support variants as well.
(clang translates `{...|...}` to `$(...$|...$)`. I'm not sure why
it doesn't just send along only the first `...` or the second `...`
to LLVM, but given the notes in PR23933 let's not do a big
reorganization in this codepath.)
Differential Revision: https://reviews.llvm.org/D113932
`asm` always has AT&T-style input (`asm inteldialect` has Intel-style asm
input), so EmitGCCInlineAsmStr() always has to pick the same variant since it
cares about the input asm string, not the output asm string.
For PowerPC, that default variant is 1. For other targets, it's 0.
Without this, the included test case errors out with
error: unknown use of instruction mnemonic without a size suffix
mov rax, rbx
since it picks the intel branch and then tries to interpret it as AT&T
when selecting intel-style output with `-x86-asm-syntax=intel`.
Differential Revision: https://reviews.llvm.org/D113894
https://reviews.llvm.org/D71677 copied a bunch of code from
EmitGCCInlineAsmStr() to EmitMSInlineAsmStr() but made a few small
(likely unintentional) changes. This makes these pieces look the same.
No behavior change.
(Why are these functions two copies? No great reason as far as I can tell.
https://reviews.llvm.org/rG1778831a3d1d24ab6545635f63da4d9c5f8f0ac7 did the
split; we might want to undo them at some point. But PR23933 suggests
that a bigger change is planned for this file in the future, so keeping
this incremental for now.)
Differential Revision: https://reviews.llvm.org/D113924
There's really no reason why anyone should use these special names in a variant.
I noticed this while reading the code: all other writes to OS are guarded by
this conditional, and the behavior with the check seems more correct, so
let's add the check.
Differential Revision: https://reviews.llvm.org/D113909
This moves the registry higher in the LLVM library dependency stack.
Every client of the target registry needs to link against MC anyway to
actually use the target, so we might as well move this out of Support.
This allows us to ensure that Support doesn't have includes from MC/*.
Differential Revision: https://reviews.llvm.org/D111454
As described on D111049, we're trying to remove the <string> dependency from error handling and replace uses of report_fatal_error(const std::string&) with the Twine() variant which can be forward declared.
We can use the raw_string_ostream::str() method to perform the implicit flush() and return a reference to the std::string container that we can then wrap inside Twine().
This is part of a patch series working towards the ability to make
SourceLocation into a 64-bit type to handle larger translation units.
!srcloc is generated in clang codegen, and pulled back out by llvm
functions like AsmPrinter::emitInlineAsm that need to report errors in
the inline asm. From there it goes to LLVMContext::emitError, is
stored in DiagnosticInfoInlineAsm, and ends up back in clang, at
BackendConsumer::InlineAsmDiagHandler(), which reconstitutes a true
clang::SourceLocation from the integer cookie.
Throughout this code path, it's now 64-bit rather than 32, which means
that if SourceLocation is expanded to a 64-bit type, this error report
won't lose half of the data.
The compiler will tolerate both of i32 and i64 !srcloc metadata in
input IR without faulting. Test added in llvm/MC. (The semantic
accuracy of the metadata is another matter, but I don't know of any
situation where that matters: if you're reading an IR file written by
a previous run of clang, you don't have the SourceManager that can
relate those source locations back to the original source files.)
Original version of the patch by Mikhail Maltsev.
Reviewed By: dexonsmith
Differential Revision: https://reviews.llvm.org/D105491
Add a flag so that target can choose to use AsmParser for parsing inline asm.
And set the flag by default for AIX.
-no-intergrated-as will override this default if specified explicitly.
Reviewed By: #powerpc, shchenz
Differential Revision: https://reviews.llvm.org/D105314
- This patch (is one in a series of patches) which introduces HLASM Parser support (for the first parameter of inline asm statements) to LLVM ([[ https://lists.llvm.org/pipermail/llvm-dev/2021-January/147686.html | main RFC here ]])
- This patch in particular introduces HLASM Parser support for Z machine instructions.
- The approach taken here was to subclass `AsmParser`, and make various functions and variables as "protected" wherever appropriate.
- The `HLASMAsmParser` class overrides the `parseStatement` function. Two new private functions `parseAsHLASMLabel` and `parseAsMachineInstruction` are introduced as well.
The general syntax is laid out as follows (more information available in [[ https://www.ibm.com/support/knowledgecenter/SSENW6_1.6.0/com.ibm.hlasm.v1r6.asm/asmr1023.pdf | HLASM V1R6 Language Reference Manual ]] - Chapter 2 - Instruction Statement Format):
```
<TokA><spaces.*><TokB><spaces.*><TokC><spaces.*><TokD>
```
1. TokA is referred to as the Name Entry. This token is optional
2. TokB is referred to as the Operation Entry. This token is mandatory.
3. TokC is referred to as the Operand Entry. This token is mandatory
4. TokD is referred to as the Remarks Entry. This token is optional
- If TokA is provided, then we either parse TokA as a possible comment or as a label (Name Entry), Tok B as the Operation Entry and so on.
- If TokA is not provided (i.e. we have one or more spaces and then the first token), then we will parse the first token (i.e TokB) as a possible Z machine instruction, TokC as the operands to the Z machine instruction and TokD as a possible Remark field
- TokC (Operand Entry), no spaces are allowed between OperandEntries. If a space occurs it is classified as an error.
- TokD if provided is taken as is, and emitted as a comment.
The following additional approach was examined, but not taken:
- Adding custom private only functions to base AsmParser class, and only invoking them for z/OS. While this would eliminate the need for another child class, these private functions would be of non-use to every other target. Similarly, adding any pure virtual functions to the base MCAsmParser class and overriding them in AsmParser would also have the same disadvantage.
Testing:
- This patch doesn't have tests added with it, for the sole reason that MCStreamer Support and Object File support hasn't been added for the z/OS target (yet). Hence, it's not possible generate code outright for the z/OS target. They are in the process of being committed / process of being worked on.
- Any comments / feedback on how to combat this "lack of testing" due to other missing required features is appreciated.
Reviewed By: Kai, uweigand
Differential Revision: https://reviews.llvm.org/D98276
Since 5de2d189e6ad466a1f0616195e8c524a4eb3cbc0 this particular warning
hasn't had the location of the source file containing the inline
assembly.
Fix this by reporting via LLVMContext. Which means that we no longer
have the "instantiated into assembly here" lines but they were going to
point to the start of the inline asm string anyway.
This message is already tested via IR in llvm. However we won't have
the required location info there so I've added a C file test in clang
to cover it.
(though strictly, this is testing llvm code)
Reviewed By: ychen
Differential Revision: https://reviews.llvm.org/D102244
Similar to X86 D73230 & 46788a21f9152be3950e57dc526454655682bdd4
With this change, we can set dso_local in clang's -fpic -fno-semantic-interposition mode,
for default visibility external linkage non-ifunc-non-COMDAT definitions.
For such dso_local definitions, variable access/taking the address of a
function/calling a function will go through a local alias to avoid GOT/PLT.
Note: the 'S' inline assembly constraint refers to an absolute symbolic address
or a label reference (D46745).
Differential Revision: https://reviews.llvm.org/D101872
The situation with inline asm/MC error reporting is kind of messy at the
moment. The errors from MC layout are not reliably propagated and users
have to specify an inlineasm handler separately to get inlineasm
diagnose. The latter issue is not a correctness issue but could be improved.
* Kill LLVMContext inlineasm diagnose handler and migrate it to use
DiagnoseInfo/DiagnoseHandler.
* Introduce `DiagnoseInfoSrcMgr` to diagnose SourceMgr backed errors. This
covers use cases like inlineasm, MC, and any clients using SourceMgr.
* Move AsmPrinter::SrcMgrDiagInfo and its instance to MCContext. The next step
is to combine MCContext::SrcMgr and MCContext::InlineSrcMgr because in all
use cases, only one of them is used.
* If LLVMContext is available, let MCContext uses LLVMContext's diagnose
handler; if LLVMContext is not available, MCContext uses its own default
diagnose handler which just prints SMDiagnostic.
* Change a few clients(Clang, llc, lldb) to use the new way of reporting.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D97449
All these potential null pointer dereferences are reported by my static analyzer for null smart pointer dereferences, which has a different implementation from `alpha.cplusplus.SmartPtr`.
The checked pointers in this patch are initialized by Target::createXXX functions. When the creator function pointer is not correctly set, a null pointer will be returned, or the creator function may originally return a null pointer.
Some of them may not make sense as they may be checked before entering the function, but I fixed them all in this patch. I submit this fix because 1) similar checks are found in some other places in the LLVM codebase for the same return value of the function; and, 2) some of the pointers are dereferenced before they are checked, which may definitely trigger a null pointer dereference if the return value is nullptr.
Reviewed By: tejohnson, MaskRay, jpienaar
Differential Revision: https://reviews.llvm.org/D91410
a warning about clobbering reserved registers (NFC).
Also address some minor inefficiencies and style issues.
Differential Revision: https://reviews.llvm.org/D86088
Summary:
It's not necessary to use an 'l'(ell) modifier when referencing a label.
Treat block addresses and MBB references as if the modifier is used
anyway. This prevents us from generating references to ficticious
labels.
Reviewers: jyknight, nickdesaulniers, hfinkel
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71849
Summary:
This is documented as the appropriate template modifier for call operands.
Fixes PR44272, and adds a regression test.
Also adds support for operand modifiers in Intel-style inline assembly.
Reviewers: rnk
Reviewed By: rnk
Subscribers: merge_guards_bot, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D71677
Now that we've moved to C++14, we no longer need the llvm::make_unique
implementation from STLExtras.h. This patch is a mechanical replacement
of (hopefully) all the llvm::make_unique instances across the monorepo.
llvm-svn: 369013