This is a reland of #138434 except that:
- the bits for llvm/lib/CodeGen/RenameIndependentSubregs.cpp
have been dropped because they caused a test failure under asan, and
- the bits for llvm/lib/CodeGen/SelectionDAG/ScheduleDAGFast.cpp have
been improved with structured bindings.
This reverts commit a9699a334bc9666570418a3bed9520bcdc21518b.
Breaks CodeGen/AMDGPU/collapse-endcf.ll in several configs
(sanitizer builds; macOS; possibly more), see comments on
https://github.com/llvm/llvm-project/pull/138434
DenseSet, SmallPtrSet, SmallSet, SetVector, and StringSet recently
gained C++23-style insert_range. This patch replaces:
Dest.insert(Src.begin(), Src.end());
with:
Dest.insert_range(Src);
This patch does not touch custom begin like succ_begin for now.
We use variable locations such as DBG_VALUE $xmm0 as shorthand to refer
to "the low lane of $xmm0", and this is reflected in how DWARF is
interpreted too. However InstrRefBasedLDV tries to be smart and
interprets such a DBG_VALUE as a 128-bit reference. We then issue a
DW_OP_deref_size of 128 bits to the stack, which isn't permitted by
DWARF (it's larger than a pointer).
Solve this for now by not using DW_OP_deref_size if it would be illegal.
Instead we'll use DW_OP_deref, and the consumer will load the variable
type from the stack, which should be correct.
There's still a risk of imprecision when LLVM decides to use smaller or
larger value types than the source-variable type, which manifests as
too-little or too-much memory being read from the stack. However we
can't solve that without putting more type information in debug-info.
fixes#64093
This relands commit #115111.
Use traditional way to update post dominator tree, i.e. break critical
edge splitting into insert, insert, delete sequence.
When splitting critical edges, the post dominator tree may change its
root node, and `setNewRoot` only works in normal dominator tree...
See
6c7e5827ed/llvm/include/llvm/Support/GenericDomTree.h (L684-L687)
Now revised to actually make the unit test compile, which I'd been
ignoring. No actual functional change, it's a type difference.
Original commit message follows.
[DebugInfo][InstrRef] Index DebugVariables and some DILocations (#99318)
A lot of time in LiveDebugValues is spent computing DenseMap keys for
DebugVariables, and they're made up of three pointers, so are large.
This patch installs an index for them: for the SSA and value-to-location
mapping parts of InstrRefBasedLDV we don't need to access things like
the variable declaration or the inlining site, so just use a uint32_t
identifier for each variable fragment that's tracked. The compile-time
performance improvements are substantial (almost 0.4% on the tracker).
About 80% of this patch is just replacing DebugVariable references with
DebugVariableIDs instead, however there are some larger consequences. We
spend lots of time fetching DILocations when emitting DBG_VALUE
instructions, so index those with the DebugVariables: this means all
DILocations on all new DBG_VALUE instructions will normalise to the
first-seen DILocation for the variable (which should be fine).
We also used to keep an ordering of when each variable was seen first in
a DBG_* instruction, in the AllVarsNumbering collection, so that we can
emit new DBG_* instructions in a stable order. We can hang this off the
DebugVariable index instead, so AllVarsNumbering is deleted.
Finally, rather than ordering by AllVarsNumbering just before DBG_*
instructions are linked into the output MIR, store instructions along
with their DebugVariableID, so that they can be sorted by that instead.
A lot of time in LiveDebugValues is spent computing DenseMap keys for
DebugVariables, and they're made up of three pointers, so are large.
This patch installs an index for them: for the SSA and value-to-location
mapping parts of InstrRefBasedLDV we don't need to access things like
the variable declaration or the inlining site, so just use a uint32_t
identifier for each variable fragment that's tracked. The compile-time
performance improvements are substantial (almost 0.4% on the tracker).
About 80% of this patch is just replacing DebugVariable references with
DebugVariableIDs instead, however there are some larger consequences. We
spend lots of time fetching DILocations when emitting DBG_VALUE
instructions, so index those with the DebugVariables: this means all
DILocations on all new DBG_VALUE instructions will normalise to the
first-seen DILocation for the variable (which should be fine).
We also used to keep an ordering of when each variable was seen first in
a DBG_* instruction, in the AllVarsNumbering collection, so that we can
emit new DBG_* instructions in a stable order. We can hang this off the
DebugVariable index instead, so AllVarsNumbering is deleted.
Finally, rather than ordering by AllVarsNumbering just before DBG_*
instructions are linked into the output MIR, store instructions along
with their DebugVariableID, so that they can be sorted by that instead.
When resolving value-numbers to specific machine locations in the final
stages of LiveDebugValues, we've been producing a DenseMap containing
all the value-numbers we're interested in. However we never modify the
map keys as they're all pre-known. Thus, this is a suitable collection
to switch to a sorted vector that gets searched, rather than a DenseMap
that gets probed. The overall operation of LiveDebugValues isn't
affected at all.
This patch adjusts how some data is stored to avoid a number of
un-necessary DenseMap queries. There's no change to the compiler
behaviour, and it's measurably faster on the compile time tracker.
The BlockOrders vector in buildVLocValueMap collects the blocks over
which a variables value have to be determined: however the Cmp ordering
function makes two DenseMap queries to determine the RPO-order of blocks
being compared. And given that sorting is O(N log(N)) comparisons this
isn't fast. So instead, fetch the RPO-numbers of the block collection,
order those, and then map back to the blocks themselves.
The OrderToBB collection mapped an RPO-number to an MBB: it's completely
un-necessary to have DenseMap here, we can just use the RPO number as an
array index. Switch it to a SmallVector and deal with a few consequences
when iterating.
(And for good measure I've jammed in a couple of reserve calls).
Summary:
- Remove wrappers in `MachineDominatorTree`.
- Remove `MachineDominatorTree` update code in
`MachineBasicBlock::SplitCriticalEdge`.
- Use `MachineDomTreeUpdater` in passes which call
`MachineBasicBlock::SplitCriticalEdge` and preserve
`MachineDominatorTreeWrapperPass` or CFG analyses.
Commit abea99f65a97248974c02a5544eaf25fc4240056 introduced related
methods in 2014. Now we have SemiNCA based dominator tree in 2017 and
dominator tree updater, the solution adopted here seems a bit outdated.
This is part of #70452 that changes the type used for the external
interface of MMO to LocationSize as opposed to uint64_t. This means the
constructors take LocationSize, and convert ~UINT64_C(0) to
LocationSize::beforeOrAfter(). The getSize methods return a
LocationSize.
This allows us to be more precise with unknown sizes, not accidentally
treating them as unsigned values, and in the future should allow us to
add proper scalable vector support but none of that is included in this
patch. It should mostly be an NFC.
Global ISel is still expected to use the underlying LLT as it needs, and
are not expected to see unknown sizes for generic operations. Most of
the changes are hopefully fairly mechanical, adding a lot of getValue()
calls and protecting them with hasValue() where needed.
Commit 1b531d54f623 (#74203) removed the usage of unique_ptrs of arrays
in favour of using vectors, but inadvertently increased peak memory
usage by removing the ability to deallocate vector memory that was no
longer needed mid-LDV.
In that same review, it was pointed out that `FuncValueTable` typedef
could be removed, since it was "just a vector".
This commit addresses both issues by making `FuncValueTable` a real data
structure, capable of mapping BBs to ValueTables and able to free
ValueTables as needed.
This reduces peak memory usage in the compiler by 10% in the benchmarks
flagged by the original review.
As a consequence, we had to remove a handful of instances of the
"declare-then-initialize" antipattern in unittests, as the
FuncValueTable class is no longer default-constructible.
These are usually difficult to reason about, and they were being used to
pass raw pointers around with array semantic (i.e., we were using
operator [] on raw pointers). To put it in InstrRef terminology: we were
passing a pointer to a ValueTable but using it as if it were a
FuncValueTable.
These could have easily been SmallVectors, which now allow us to have
reference semantics in some places, as well as simpler initialization.
In the future, we can use even more pass-by-reference with some extra
changes in the code.
This is a conservative workaround for broken liveness tracking of
SUBREG_TO_REG to speculatively fix all targets. The current reported
failures are on X86 only, but this issue should appear for all targets
that use SUBREG_TO_REG. The next minimally correct refinement would be
to disallow only implicit defs.
The coalescer now introduces implicit-defs of the super register to
track the dependency on other subregisters. If we see such an implicit
operand, we cannot simply treat the subregister def as the result
operand in case downstream users depend on the implicitly defined
parts. Really target implementations should be considering the
implicit defs and trying to interpret them appropriately (maybe with
some generic helpers). The full implicit def could possibly be
reported as the move result, rather than the subregister def but that
requires additional work.
Hopefully fixes#64060 as well.
This needs to be applied to the release branch.
https://reviews.llvm.org/D156346
Fixes: https://github.com/llvm/llvm-project/issues/62725
This patch fixes an error in which a DBG_INSTR_REF referring to a DBG_PHI in a
block that is not directly reachable from the entry block results in a crash
during LiveDebugValues. Note that this fix prevents a crash from occurring, but
will give undef locations to users of these PHIs even if a valid location exists.
Reviewed By: jmorse
Differential Revision: https://reviews.llvm.org/D150707
With D68945, more DBG_VALUEs were created without the indirect operand,
instead relying on OP_deref to accomplish the same effect.
At the time, however, we were not able to handle arbitrary expressions
in combination with OP_LLVM_entry_value, so D71416 prevented the use of
such operation in the presence of expressions.
As per the comment in DIExpression::isValid, "we support only entry
values of a simple register location." As such, a simple deref operation
should be supported. In fact, D80345 added support for indirect
DBG_VALUEs.
Taken the patches above into consideration, this commit relaxes the
restrictions on which expressions are allowed for entry value
candidates: the expression must be either empty or a single dereference
operator.
This patch is useful for D141381, which adds support for storing the
address of ABI-indirect parameters on the stack.
Depends on D142160
Differential Revision: https://reviews.llvm.org/D142654
Following support from the previous patches in this stack being added for
variadic DBG_INSTR_REFs to exist, this patch modifies LiveDebugValues to
handle those instructions. Support already exists for DBG_VALUE_LISTs, which
covers most of the work needed to handle these instructions; this patch only
modifies the transferDebugInstrRef function to correctly track them.
Reviewed By: jmorse
Differential Revision: https://reviews.llvm.org/D133927
Prior to this patch, variadic DIExpressions (i.e. ones that contain
DW_OP_LLVM_arg) could only be created by salvaging debug values to create
stack value expressions, resulting in a DBG_VALUE_LIST being created. As of
the previous patch in this patch stack, DBG_INSTR_REF's syntax has been
changed to match DBG_VALUE_LIST in preparation for supporting variadic
expressions. This patch adds some minor changes needed to allow variadic
expressions that aren't stack values to exist, and allows variadic expressions
that are trivially reduceable to non-variadic expressions to be handled
similarly to non-variadic expressions.
Reviewed by: jmorse
Differential Revision: https://reviews.llvm.org/D133926
This patch makes two notable changes to the MIR debug info representation,
which result in different MIR output but identical final DWARF output (NFC
w.r.t. the full compilation). The two changes are:
* The introduction of a new MachineOperand type, MO_DbgInstrRef, which
consists of two unsigned numbers that are used to index an instruction
and an output operand within that instruction, having a meaning
identical to first two operands of the current DBG_INSTR_REF
instruction. This operand is only used in DBG_INSTR_REF (see below).
* A change in syntax for the DBG_INSTR_REF instruction, shuffling the
operands to make it resemble DBG_VALUE_LIST instead of DBG_VALUE,
and replacing the first two operands with a single MO_DbgInstrRef-type
operand.
This patch is the first of a set that will allow DBG_INSTR_REF
instructions to refer to multiple machine locations in the same manner
as DBG_VALUE_LIST.
Reviewed By: jmorse
Differential Revision: https://reviews.llvm.org/D129372
Currently the instruction referencing live debug values has 3 separate
places where we iterate over all known locations to find the best machine
location for a set of values at a given point in the program. Each of these
places has an implementation of this check, and one of them has slightly
different logic to the others. This patch moves the check for the "quality"
of a machine location into a separate function, which also avoids repeatedly
calling expensive functions, giving a slight performance improvement.
Differential Revision: https://reviews.llvm.org/D140412
This patch adds a new function that can be used to check all the
properties, other than the machine values, of a pair of debug values for
equivalence. This is done by folding the "directness" into the
expression, converting the expression to variadic form if it is not
already in that form, and then comparing directly. In a few places which
check whether two debug values are identical to see if their ranges can
be merged, this function will correctly identify cases where two debug
values are expressed differently but have the same meaning, allowing
those ranges to be correctly merged.
Differential Revision: https://reviews.llvm.org/D136173