The goal of this patch is to refine how the `SVal` base and sub-kinds
are represented by forming one unified enum describing the possible
SVals. This means that the `unsigned SVal::Kind` and the attached
bit-packing semantics would be replaced by a single unified enum. This
is more conventional and leads to a better debugging experience by
default. This eases the need of using debug pretty-printers, or the use
of runtime functions doing the printing for us like we do today by
calling `Val.dump()` whenever we inspect the values.
Previously, the first 2 bits of the `unsigned SVal::Kind` discriminated
the following quartet: `UndefinedVal`, `UnknownVal`, `Loc`, or `NonLoc`.
The rest of the upper bits represented the sub-kind, where the value
represented the index among only the `Loc`s or `NonLoc`s, effectively
attaching 2 meanings of the upper bits depending on the base-kind. We
don't need to pack these bits, as we have plenty even if we would use
just a plan-old `unsigned char`.
Consequently, in this patch, I propose to lay out all the (non-abstract)
`SVal` kinds into a single enum, along with some metadata (`BEGIN_Loc`,
`END_Loc`, `BEGIN_NonLoc`, `END_NonLoc`) artificial enum values, similar
how we do with the `MemRegions`.
Note that in the unified `SVal::Kind` enum, to differentiate
`nonloc::ConcreteInt` from `loc::ConcreteInt`, I had to prefix them with
`Loc` and `NonLoc` to resolve this ambiguity.
This should not surface in general, because I'm replacing the
`nonloc::Kind` enum items with `inline constexpr` global constants to
mimic the original behavior - and offer nicer spelling to these enum
values.
Some `SVal` constructors were not marked explicit, which I now mark as
such to follow best practices, and marked others as `/*implicit*/` to
clarify the intent.
During refactoring, I also found at least one function not marked
`LLVM_ATTRIBUTE_RETURNS_NONNULL`, so I did that.
The `TypeRetrievingVisitor` visitor had some accidental dead code,
namely: `VisitNonLocConcreteInt` and `VisitLocConcreteInt`.
Previously, the `SValVisitor` expected visit handlers of
`VisitNonLocXXXXX(nonloc::XXXXX)` and `VisitLocXXXXX(loc::XXXXX)`, where
I felt that envoding `NonLoc` and `Loc` in the name is not necessary as
the type of the parameter would select the right overload anyways, so I
simplified the naming of those visit functions.
The rest of the diff is a lot of times just formatting, because
`getKind()` by nature, frequently appears in switches, which means that
the whole switch gets automatically reformatted. I could probably undo
the formatting, but I didn't want to deviate from the rule unless
explicitly requested.
I'm involved with the Static Analyzer for the most part.
I think we should embrace newer language standard features and gradually
move forward.
Differential Revision: https://reviews.llvm.org/D154325
This patch introduces a new `CXXLifetimeExtendedObjectRegion` as a representation
of the memory for the temporary object that is lifetime extended by the reference
to which they are bound.
This separation provides an ability to detect the use of dangling pointers
(either binding or dereference) in a robust manner.
For example, the `ref` is conditionally dangling in the following example:
```
template<typename T>
T const& select(bool cond, T const& t, T const& u) { return cond ? t : u; }
int const& le = Composite{}.x;
auto&& ref = select(cond, le, 10);
```
Before the change, regardless of the value of `cond`, the `select()` call would
have returned a `temp_object` region.
With the proposed change we would produce a (non-dangling) `lifetime_extended_object`
region with lifetime bound to `le` or a `temp_object` region for the dangling case.
We believe that such separation is desired, as such lifetime extended temporaries
are closer to the variables. For example, they may have a static storage duration
(this patch removes a static temporary region, which was an abomination).
We also think that alternative approaches are not viable.
While for some cases it may be possible to determine if the region is lifetime
extended by searching the parents of the initializer expr, this quickly becomes
complex in the presence of the conditions operators like this one:
```
Composite cc;
// Ternary produces prvalue 'int' which is extended, as branches differ in value category
auto&& x = cond ? Composite{}.x : cc.x;
// Ternary produces xvalue, and extends the Composite object
auto&& y = cond ? Composite{}.x : std::move(cc).x;
```
Finally, the lifetime of the `CXXLifetimeExtendedObjectRegion` is tied to the lifetime of
the corresponding variables, however, the "liveness" (or reachability) of the extending
variable does not imply the reachability of all symbols in the region.
In conclusion `CXXLifetimeExtendedObjectRegion`, in contrast to `VarRegions`, does not
need any special handling in `SymReaper`.
RFC: https://discourse.llvm.org/t/rfc-detecting-uses-of-dangling-references/70731
Reviewed By: xazax.hun
Differential Revision: https://reviews.llvm.org/D151325
This patch mechanically replaces None with std::nullopt where the
compiler would warn if None were deprecated. The intent is to reduce
the amount of manual work required in migrating from Optional to
std::optional.
This is part of an effort to migrate from llvm::Optional to
std::optional:
https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716
Summary: Refactor return value of `StoreManager::attemptDownCast` function by removing the last parameter `bool &Failed` and replace the return value `SVal` with `Optional<SVal>`. Make the function consistent with the family of `evalDerivedToBase` by renaming it to `evalBaseToDerived`. Aligned the code on the call side with these changes.
Differential Revision: https://reviews.llvm.org/
Summary: Specifically, this fixes the case when we get an access to array element through the pointer to element. This covers several FIXME's. in https://reviews.llvm.org/D111654.
Example:
const int arr[4][2];
const int *ptr = arr[1]; // Fixes this.
The issue is that `arr[1]` is `int*` (&Element{Element{glob_arr5,1 S64b,int[2]},0 S64b,int}), and `ptr` is `const int*`. We don't take qualifiers into account. Consequently, we doesn't match the types as the same ones.
Differential Revision: https://reviews.llvm.org/D113480
It turns out llvm::isa<> is variadic, and we could have used this at a
lot of places.
The following patterns:
x && isa<T1>(x) || isa<T2>(x) ...
Will be replaced by:
isa_and_non_null<T1, T2, ...>(x)
Sometimes it caused further simplifications, when it would cause even
more code smell.
Aside from this, keep in mind that within `assert()` or any macro
functions, we need to wrap the isa<> expression within a parenthesis,
due to the parsing of the comma.
Reviewed By: martong
Differential Revision: https://reviews.llvm.org/D111982
This simple change addresses a special case of structure/pointer
aliasing that produced different symbolvals, leading to false positives
during analysis.
The reproducer is as simple as this.
```lang=C++
struct s {
int v;
};
void foo(struct s *ps) {
struct s ss = *ps;
clang_analyzer_dump(ss.v); // reg_$1<int Element{SymRegion{reg_$0<struct s *ps>},0 S64b,struct s}.v>
clang_analyzer_dump(ps->v); //reg_$3<int SymRegion{reg_$0<struct s *ps>}.v>
clang_analyzer_eval(ss.v == ps->v); // UNKNOWN
}
```
Acks: Many thanks to @steakhal and @martong for the group debug session.
Reviewed By: steakhal, martong
Differential Revision: https://reviews.llvm.org/D110625
Summary: Make StoreManager::castRegion function usage safier. Replace `const MemRegion *` with `Optional<const MemRegion *>`. Simplified one of related test cases due to suggestions in D101635.
Differential Revision: https://reviews.llvm.org/D103319
Summary: Move logic from CastRetrievedVal to evalCast and replace CastRetrievedVal with evalCast. Also move guts from SimpleSValBuilder::dispatchCast inside evalCast.
evalCast intends to substitute dispatchCast, evalCastFromNonLoc and evalCastFromLoc in the future. OriginalTy provides additional information for casting, which is useful for some cases and useless for others. If `OriginalTy.isNull()` is true, then cast performs based on CastTy only. Now evalCast operates in two ways. It retains all previous behavior and take over dispatchCast behavior. dispatchCast, evalCastFromNonLoc and evalCastFromLoc is considered as buggy since it doesn't take into account OriginalTy of the SVal and should be improved.
From this patch use evalCast instead of dispatchCast, evalCastFromNonLoc and evalCastFromLoc functions. dispatchCast redirects to evalCast.
This patch shall not change any behavior.
Differential Revision: https://reviews.llvm.org/D96090
Currently, parameters of functions without their definition present cannot
be represented as regions because it would be difficult to ensure that the
same declaration is used in every case. To overcome this, we split
`VarRegion` to two subclasses: `NonParamVarRegion` and `ParamVarRegion`.
The latter does not store the `Decl` of the parameter variable. Instead it
stores the index of the parameter which enables retrieving the actual
`Decl` every time using the function declaration of the stack frame. To
achieve this we also removed storing of `Decl` from `DeclRegion` and made
`getDecl()` pure virtual. The individual `Decl`s are stored in the
appropriate subclasses, such as `FieldRegion`, `ObjCIvarRegion` and the
newly introduced `NonParamVarRegion`.
Differential Revision: https://reviews.llvm.org/D80522
This canonicalizes the representation of unknown pointer symbols,
which reduces the overall confusion in pointer cast representation.
Patch by Vince Bridgers!
Differential Revision: https://reviews.llvm.org/D70836
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
This patch is a different approach to landing the reverted r349701.
It is expected to have the same object (memory region) treated as if it has
different types in different program points. The correct behavior for
RegionStore when an object is stored as an object of type T1 but loaded as
an object of type T2 is to store the object as if it has type T1 but cast it
to T2 during load.
Note that the cast here is some sort of a "reinterpret_cast" (even in C). For
instance, if you store an integer and load a float, you won't get your integer
represented as a float; instead, you will get garbage.
Admit that we cannot perform the cast and return an unknown value.
Differential Revision: https://reviews.llvm.org/D55875
rdar://problem/45062567
llvm-svn: 349984
This reverts commit r349701.
The patch was incorrect. The whole point of CastRetrievedVal()
is to handle the case in which the type from which the cast is made
(i.e., the "type" of value `V`) has nothing to do with the type of
the region it was loaded from (i.e., `R->getValueType()`).
Differential Revision: https://reviews.llvm.org/D55875
rdar://problem/45062567
llvm-svn: 349798
It is expected to have the same object (memory region) treated as if it has
different types in different program points. The correct behavior for
RegionStore when an object is stored as an object of type T1 but loaded as
an object of type T2 is to store the object as if it has type T1 but cast it
to T2 during load.
Note that the cast here is some sort of a "reinterpret_cast" (even in C). For
instance, if you store a float and load an integer, you won't have your float
rounded to an integer; instead, you will have garbage.
Admit that we cannot perform the cast as long as types we're dealing with are
non-trivial (neither integers, nor pointers).
Of course, if the cast is not necessary (eg, T1 == T2), we can still load the
value just fine.
Differential Revision: https://reviews.llvm.org/D55875
rdar://problem/45062567
llvm-svn: 349701
Commit r340984 causes a crash when a pointer to a completely unrelated type
UnrelatedT (eg., opaque struct pattern) is being casted from base class BaseT to
derived class DerivedT, which results in an ill-formed region
Derived{SymRegion{$<UnrelatedT x>}, DerivedT}.
Differential Revision: https://reviews.llvm.org/D52189
llvm-svn: 343051
Introduce a new MemRegion sub-class, CXXDerivedObjectRegion, which is
the opposite of CXXBaseObjectRegion, to represent such casts. Such region is
a bit weird because it is by design bigger than its super-region.
But it's not harmful when it is put on top of a SymbolicRegion
that has unknown extent anyway.
Offset computation for CXXDerivedObjectRegion and proper modeling of casts
still remains to be implemented.
Differential Revision: https://reviews.llvm.org/D51191
llvm-svn: 340984
C allows us to write any bytes into any memory region. When loading weird bytes
from memory regions of known types, the analyzer is required to make sure that
the loaded value makes sense by casting it to an appropriate type.
Fix such cast for loading values that represent void pointers from non-void
pointer type places.
Differential Revision: https://reviews.llvm.org/D46415
llvm-svn: 331562
The bindDefault() API of the ProgramState allows setting a default value
for reads from memory regions that were not preceded by writes.
It was used for implementing C++ zeroing constructors (i.e. default constructors
that boil down to setting all fields of the object to 0).
Because differences between zeroing consturctors and other forms of default
initialization have been piling up (in particular, zeroing constructors can be
called multiple times over the same object, probably even at the same offset,
requiring a careful and potentially slow cleanup of previous bindings in the
RegionStore), we split the API in two: bindDefaultInitial() for modeling
initial values and bindDefaultZero() for modeling zeroing constructors.
This fixes a few assertion failures from which the investigation originated.
The imperfect protection from both inability of the RegionStore to support
binding extents and lack of information in ASTRecordLayout has been loosened
because it's, well, imperfect, and it is unclear if it fixing more than it
was breaking.
Differential Revision: https://reviews.llvm.org/D46368
llvm-svn: 331561
Found via codespell -q 3 -I ../clang-whitelist.txt
Where whitelist consists of:
archtype
cas
classs
checkk
compres
definit
frome
iff
inteval
ith
lod
methode
nd
optin
ot
pres
statics
te
thru
Patch by luzpaz! (This is a subset of D44188 that applies cleanly with a few
files that have dubious fixes reverted.)
Differential revision: https://reviews.llvm.org/D44188
llvm-svn: 329399
In getLValueElement Base may represent the address of a label
(as in the newly-added test case), in this case it's not a loc::MemRegionVal
and Base.castAs<loc::MemRegionVal>() triggers an assert, this diff makes
getLValueElement return UnknownVal instead.
Differential revision: https://reviews.llvm.org/D39174
llvm-svn: 316399
Null dereferences are suppressed if the lvalue was constrained to 0 for the
first time inside a sub-function that was inlined during analysis, because
such constraint is a valid defensive check that does not, by itself,
indicate that null pointer case is anyhow special for the caller.
If further operations on the lvalue are performed, the symbolic lvalue is
collapsed to concrete null pointer, and we need to track where does the null
pointer come from.
Improve such tracking for lvalue operations involving operator &.
rdar://problem/27876009
Differential Revision: https://reviews.llvm.org/D31982
llvm-svn: 301224
We now check the type of the super-region pointer for most SubRegion classes
in compile time; some checks are run-time though.
This is an API-breaking change (we now require explicit casts to specific region
sub-classes), but in practice very few checkers are affected.
Differential Revision: https://reviews.llvm.org/D26838
llvm-svn: 300189
Dynamic casts are handled relatively well by the static analyzer.
BaseToDerived casts however are treated conservatively. This can cause some
false positives with the NewDeleteLeaks checker.
This patch alters the behavior of BaseToDerived casts. In case a dynamic cast
would succeed use the same semantics. Otherwise fall back to the conservative
approach.
Differential Revision: https://reviews.llvm.org/D23014
llvm-svn: 277989
The purpose of these changes is to simplify introduction of definition files
for the three hierarchies.
1. For every sub-class C of these classes, its kind in the relevant enumeration
is changed to "CKind" (or C##Kind in preprocessor-ish terms), eg:
MemRegionKind -> MemRegionValKind
RegionValueKind -> SymbolRegionValueKind
CastSymbolKind -> SymbolCastKind
SymIntKind -> SymIntExprKind
2. MemSpaceRegion used to be inconsistently used as both an abstract base and
a particular region. This region class is now an abstract base and no longer
occupies GenericMemSpaceRegionKind. Instead, a new class, CodeSpaceRegion,
is introduced for handling the unique use case for MemSpaceRegion as
"the generic memory space" (when it represents a memory space that holds all
executable code).
3. BEG_ prefixes in memory region kind ranges are renamed to BEGIN_ for
consisitency with symbol kind ranges.
4. FunctionTextRegion and BlockTextRegion are renamed to FunctionCodeRegion and
BlockCodeRegion, respectively. The term 'code' is less jargony than 'text' and
we already refer to BlockTextRegion as a 'code region' in BlockDataRegion.
Differential Revision: http://reviews.llvm.org/D16062
llvm-svn: 257598
Summary: It breaks the build for the ASTMatchers
Subscribers: klimek, cfe-commits
Differential Revision: http://reviews.llvm.org/D13893
llvm-svn: 250827
There are three copies of IsCompleteType(...) functions in CSA and all
of them are incomplete (I experienced crashes in some CSA's test cases).
I have replaced these function calls with Type::isIncompleteType() calls.
A patch by Aleksei Sidorin!
llvm-svn: 219026
Summary:
When doing a reinterpret+dynamic cast from an incomplete type, the analyzer
would crash (bug #16308). This fix makes the dynamic cast evaluator ignore
incomplete types, as they can never be used in a dynamic_cast. Also adding a
regression test.
CC: cfe-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D1006
llvm-svn: 184403
The analyzer represents all pointer-to-pointer bitcasts the same way, but
this can be problematic if an implicit base cast gets layered on top of a
manual base cast (performed with reinterpret_cast instead of static_cast).
Fix this (and avoid a valid assertion) by looking through cast regions.
Using reinterpret_cast this way is only valid if the base class is at the
same offset as the derived class; this is checked by -Wreinterpret-base-class.
In the interest of performance, the analyzer doesn't repeat this check
anywhere; it will just silently do the wrong thing (use the wrong offsets
for fields of the base class) if the user code is wrong.
PR15394
llvm-svn: 180052
This allows MemRegion and MemRegionManager to avoid asking over and over
again whether an class is a virtual base or a non-virtual base.
Minor optimization/cleanup; no functionality change.
llvm-svn: 175716
This just adds a very simple check that if a DerivedToBase CastExpr is
operating on a value with known C++ object type, and that type is not the
base type specified in the AST, then the cast is invalid and we should
return UnknownVal.
In the future, perhaps we can have a checker that specifies that this is
illegal, but we still shouldn't assert even if the user turns that checker
off.
PR14872
llvm-svn: 175239