This was approximating the entry point logic for flat_scratch_init,
which is not really the point. We need to account for whether we need
to reserve the SGPR pair used for flat_scratch, not whether we needed
the initialization kernel argument. If this was an arbitrary function,
we would end up over-reporting the number of potentially free
SGPRs. The logic for architected flat scratch also only applies to the
initialization in the kernel, not the reserved registers at the end.
Avoids compile failures in a future patch from allocating more SGPRs
than the subtarget supports.
1. Splitted out some parts of R600 target to separate modules/headers.
2. Reduced some include lists in headers.
3. Minor forward declarations, redundant includes and flags in GCNSubtarget
cleanup.
Reviewed By: foad
Differential Revision: https://reviews.llvm.org/D109351
Nonfunctional commit fixing several minor spelling errors in llvm/lib/Target/AMDGPU header files.
Testing workflow as a new contributor.
Differential Revision: https://reviews.llvm.org/D109733
Use GCNHazardRecognizer in postra sched.
Updated tests for the new schedules.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D109536
Change-Id: Ia86ba2ae168f12fb34b4d8efdab491f84d936cde
1. Splitted out some parts of R600 target to separate modules/headers.
2. Reduced some include lists in headers.
3. Found and fixed issue with override `GCNTargetMachine::getSubtargetImpl()`
and `R600TargetMachine::getSubtargetImpl()` had different return value type
than base class.
4. Minor forward declarations cleanup.
Reviewed By: foad
Differential Revision: https://reviews.llvm.org/D108596
Add maximum NSA size limit as an ISA feature.
Use this to reduce NSA usage on GFX10.1 to avoid stability issues
with 4 and 5 dwords NSA instructions.
Maintain use of longer NSA instructions on GFX10.3.
Note: this also contains some minor fixes for GlobalISel which
did not work correctly with non-NSA form instructions on GFX10.
Reviewed By: foad
Differential Revision: https://reviews.llvm.org/D103348
These used to consistently be zeroed pre-gfx9, but gfx9 made the
situation complicated since now some still do and some don't. This
also manages to pick up a few cases that the pattern fails to optimize
away.
We handle some cases with instruction patterns, but some get
through. In particular this improves the integer cases.
This patch computes max SGPRs and VGPRs used by module
in presence of indirect calls and makes that
as register requirement for functions/kernels
which makes indirect calls.
This patch also refactors code AMDGPUSubTarget.cpp
which add a "base" variants of getMaxNumSGPRs which
is used by MachineFunction and new Function version.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D103636
gfx9 does not work with negative offsets, gfx10 works only with
aligned negative offsets, but not with unaligned negative offsets.
This is slightly more conservative than needed, gfx9 does support
negative offsets when a VGPR address is used and gfx10 supports
negative, unaligned offsets when an SGPR address is used, but we
do not make use of that with this patch.
Differential Revision: https://reviews.llvm.org/D101292
If the result of an atomic operation is not used then it can be more
efficient to build a reduction across all lanes instead of a scan. Do
this for GFX10, where the permlanex16 instruction makes it viable. For
wave64 this saves a couple of dpp operations. For wave32 it saves one
readlane (which are generally bad for performance) and one dpp
operation.
Differential Revision: https://reviews.llvm.org/D98953
Split out some of the instructions predicated on the dot2-insts target
feature into a new dot7-insts, in preparation for subtargets that have
some but not all of these instructions. NFCI.
Differential Revision: https://reviews.llvm.org/D98717
This reverts commit e58d68fcd06ddc7743e0419c0b364df3d44121b6.
This reinstates commit fc28f600e558c1344618bda149a068d6162b6f0b
with a fix to initialize HasShaderCyclesRegister. See
https://reviews.llvm.org/D97928.
gfx1030 added a new way to implement readcyclecounter using the
SHADER_CYCLES hardware register, but the s_memtime instruction still
exists, so the MC layer should still accept it and the
llvm.amdgcn.s.memtime intrinsic should still work.
Differential Revision: https://reviews.llvm.org/D97928
gfx90a operations require even aligned registers, but this was
previously achieved by reserving registers inside the full class.
Ideally this would be captured in the static instruction definitions
for the operands, and we would have different instructions per
subtarget. The hackiest part of this is we need to manually reassign
AGPR register classes after instruction selection (we get away without
this for VGPRs since those types are actually registered for legal
types).
Support for XNACK and SRAMECC is not static on some GPUs. We must be able
to differentiate between different scenarios for these dynamic subtarget
features.
The possible settings are:
- Unsupported: The GPU has no support for XNACK/SRAMECC.
- Any: Preference is unspecified. Use conservative settings that can run anywhere.
- Off: Request support for XNACK/SRAMECC Off
- On: Request support for XNACK/SRAMECC On
GCNSubtarget will track the four options based on the following criteria. If
the subtarget does not support XNACK/SRAMECC we say the setting is
"Unsupported". If no subtarget features for XNACK/SRAMECC are requested we
must support "Any" mode. If the subtarget features XNACK/SRAMECC exist in the
feature string when initializing the subtarget, the settings are "On/Off".
The defaults are updated to be conservatively correct, meaning if no setting
for XNACK or SRAMECC is explicitly requested, defaults will be used which
generate code that can be run anywhere. This corresponds to the "Any" setting.
Differential Revision: https://reviews.llvm.org/D85882