After 8ec406757cb92 (https://github.com/llvm/llvm-project/pull/95842),
only the lane part of VPIteration is used.
Simplify the code by replacing remaining uses of VPIteration with VPLane directly.
After 8ec406757cb92 (https://github.com/llvm/llvm-project/pull/95842),
VPTransformState only stores a single scalar vector per VPValue.
Simplify the code by replacing the nested SmallVector in PerPartScalars with
a single SmallVector and rename to VPV2Scalars for clarity.
After 8ec406757cb92 (https://github.com/llvm/llvm-project/pull/95842),
VPTransformState only stores a single vector value per VPValue.
Simplify the code by replacing the SmallVector in PerPartOutput with a
single Value * and rename to VPV2Vector for clarity.
Also remove the redundant Part argument from various accessors.
This patch implements explicit unrolling by UF as VPlan transform. In
follow up patches this will allow simplifying VPTransform state (no need
to store unrolled parts) as well as recipe execution (no need to
generate code for multiple parts in an each recipe). It also allows for
more general optimziations (e.g. avoid generating code for recipes that
are uniform-across parts).
It also unifies the logic dealing with unrolled parts in a single place,
rather than spreading it out across multiple places (e.g. VPlan post
processing for header-phi recipes previously.)
In the initial implementation, a number of recipes still take the
unrolled part as additional, optional argument, if their execution
depends on the unrolled part.
The computation for start/step values for scalable inductions changed
slightly. Previously the step would be computed as scalar and then
splatted, now vscale gets splatted and multiplied by the step in a
vector mul.
This has been split off https://github.com/llvm/llvm-project/pull/94339
which also includes changes to simplify VPTransfomState and recipes'
::execute.
The current version mostly leaves existing ::execute untouched and
instead sets VPTransfomState::UF to 1.
A follow-up patch will clean up all references to VPTransformState::UF.
Another follow-up patch will simplify VPTransformState to only store a
single vector value per VPValue.
PR: https://github.com/llvm/llvm-project/pull/95842
Add a new getSCEVExprForVPValue utility which can be used to get a SCEV
expression for a VPValue. The initial implementation only returns SCEVs
for live-in IR values (by constructing a SCEV based on the live-in IR
value) and VPExpandSCEVRecipe. This is enough to serve its first use,
getting a SCEV for a VPlan's trip count, but will be extended in the
future.
It also removes createTripCountSCEV, as the new helper can be used to
retrieve the SCEV from the VPlan.
PR: https://github.com/llvm/llvm-project/pull/94464
I've renamed the variable in replaceVPBBWithIRVPBB from IRMiddleVPBB ->
IRVPBB, since the function is used for more than just replacing the
middle VP block.
We already pass a Type object into the VPTypeAnalysis constructor, which
can be used to obtain the context. While in the same area it also made
sense to avoid passing the context into the VPTransformState and
VPCostContext constructors.
Add a new VPIRInstruction recipe to wrap existing IR instructions not to
be modified during execution, execept for PHIs. For PHIs, a single
VPValue
operand is allowed, and it is used to add a new incoming value for the
single predecessor VPBB. Expect PHIs, VPIRInstructions cannot have any
operands.
Depends on https://github.com/llvm/llvm-project/pull/100658.
PR: https://github.com/llvm/llvm-project/pull/100735
Whilst trying to write some VPlan unit tests I realised
that we don't need to pass a ScalarEvolution object into
VPlanTransforms::optimize because the only thing we
actually need is a LLVMContext.
Similar to VFxUF, also add a VF VPValue to VPlan and use it to get the
runtime VF in VPWidenIntOrFpInductionRecipe. Code for VF is only
generated if there are users of VF, to avoid unnecessary test changes.
PR: https://github.com/llvm/llvm-project/pull/95305
Use getBestVF to select VF up-front and only use
selectVectorizationFactor to get the VF legacy VF to check the
vectorization decision matches the VPlan-based cost model.
PR: https://github.com/llvm/llvm-project/pull/103033
As suggested in https://github.com/llvm/llvm-project/pull/103033, more
accurately rename to getPlanFor , as it simplify returns the VPlan for
VF, relying on the fact that there is a single VPlan for each VF at the
moment.
Members not requiring access to LoopVectorizationLegality or
LoopVectorizationCostModel can safely be moved out of the very large
LoopVectorization.cpp and are more accurately placed in VPlan.cpp
The current assertion VPTransformState::get when retrieving a single
scalar only does not account for cases where a def has multiple users,
some demanding all scalar lanes, some demanding only a single scalar.
For an example, see the modified test case. Relax the assertion by also
allowing requesting scalar lanes only when the Def doesn't have only its
first lane used.
Fixes https://github.com/llvm/llvm-project/issues/88849.
This reverts commit 6f538f6a2d3224efda985e9eb09012fa4275ea92.
A number of crashes have been fixed by separate fixes, including
ttps://github.com/llvm/llvm-project/pull/96622. This version of the
PR also pre-computes the costs for branches (except the latch) instead
of computing their costs as part of costing of replicate regions, as
there may not be a direct correspondence between original branches and
number of replicate regions.
Original message:
This adds a new interface to compute the cost of recipes, VPBasicBlocks,
VPRegionBlocks and VPlan, initially falling back to the legacy cost model
for all recipes. Follow-up patches will gradually migrate recipes to
compute their own costs step-by-step.
It also adds getBestPlan function to LVP which computes the cost of all
VPlans and picks the most profitable one together with the most
profitable VF.
The VPlan selected by the VPlan cost model is executed and there is an
assert to catch cases where the VPlan cost model and the legacy cost
model disagree. Even though I checked a number of different build
configurations on AArch64 and X86, there may be some differences
that have been missed.
Additional discussions and context can be found in @arcbbb's
https://github.com/llvm/llvm-project/pull/67647 and
https://github.com/llvm/llvm-project/pull/67934 which is an earlier
version of the current PR.
PR: https://github.com/llvm/llvm-project/pull/92555
The empty header and latch blocks can be created together with the
vector loop region.
This is in preparation for splitting up the very large
tryToBuildVPlanWithVPRecipes into several distinct functions, as
suggested multiple times, including in
https://github.com/llvm/llvm-project/pull/94760
This patch moves branch condition creation to enter the scalar epilogue
loop to VPlan. Modeling the branch in the middle block also requires
modeling the successor blocks. This is done using the recently
introduced VPIRBasicBlock.
Note that the middle.block is still created as part of the skeleton and
then patched in during VPlan execution. Unfortunately the skeleton needs
to create the middle.block early on, as it is also used for induction
resume value creation and is also needed to properly update the
dominator tree during skeleton creation.
After this patch lands, I plan to move induction resume value and phi
node creation in the scalar preheader to VPlan. Once that is done, we
should be able to create the middle.block in VPlan directly.
This is a re-worked version based on the earlier
https://reviews.llvm.org/D150398 and the main change is the use of
VPIRBasicBlock.
Depends on https://github.com/llvm/llvm-project/pull/92525
PR: https://github.com/llvm/llvm-project/pull/92651
Rewrite cloneSESE to perform 2 depth-first passes with the first one
cloning blocks and the second one updating the predecessors and
successors.
This is needed to preserve the correct predecessor/successor ordering
with https://github.com/llvm/llvm-project/pull/92651 and has been split
off as suggested.
This reverts commit 242cc200ccb24e22eaf54aed7b0b0c84cfc54c0b and
eea150c84053035163f307b46549a2997a343ce9, as it is causing a build bot
failure and there have been a number of crashes reported at
https://github.com/llvm/llvm-project/pull/92555
In WebAssembly, costs != 0 are assigned to be backedge and induction
phis, so make sure we include those costs in the VPlan-based cost model.
This fixes a downstream crash with WebAssembly after 242cc200ccb
(https://github.com/llvm/llvm-project/pull/92555)
This reverts commit 6f538f6a2d3224efda985e9eb09012fa4275ea92.
Extra tests for crashes discovered when building Chromium have been
added in fb86cb7ec157689e, 3be7312f81ad2.
Original message:
This adds a new interface to compute the cost of recipes, VPBasicBlocks,
VPRegionBlocks and VPlan, initially falling back to the legacy cost model
for all recipes. Follow-up patches will gradually migrate recipes to
compute their own costs step-by-step.
It also adds getBestPlan function to LVP which computes the cost of all
VPlans and picks the most profitable one together with the most
profitable VF.
The VPlan selected by the VPlan cost model is executed and there is an
assert to catch cases where the VPlan cost model and the legacy cost
model disagree. Even though I checked a number of different build
configurations on AArch64 and X86, there may be some differences
that have been missed.
Additional discussions and context can be found in @arcbbb's
https://github.com/llvm/llvm-project/pull/67647 and
https://github.com/llvm/llvm-project/pull/67934 which is an earlier
version of the current PR.
PR: https://github.com/llvm/llvm-project/pull/92555
Use VPIRBasicBlock to wrap the middle block and implement patching up
branches in predecessors in VPIRBasicBlock::execute. The IR middle block
is only created after skeleton creation. Initially a regular
VPBasicBlock is created, which will later be replaced by a
VPIRBasicBlock once the middle IR basic block has been created.
Note that this slightly changes the order of instructions created in the
middle block; code generated by recipe execution in the middle block
will now be inserted before the terminator (and in between the compare
to used by the terminator). The original order will be restored in
https://github.com/llvm/llvm-project/pull/92651.
PR: https://github.com/llvm/llvm-project/pull/95816
If the value we are extracting a lane from is uniform, only the first
lane will be set. Return lane 0 for any requested lane.
This fixes a crash when trying to extract the last lane for a
first-order recurrence resume value.
Fixes https://github.com/llvm/llvm-project/issues/95520.
This reverts commit 90fd99c0795711e1cf762a02b29b0a702f86a264.
This reverts commit 43e6f46936e177e47de6627a74b047ba27561b44.
Causes crashes, see comments on https://github.com/llvm/llvm-project/pull/92555.
This reverts commit 46080abe9b136821eda2a1a27d8a13ceac349f8c.
Extra tests have been added in 52d29eb287.
Original message:
This adds a new interface to compute the cost of recipes, VPBasicBlocks,
VPRegionBlocks and VPlan, initially falling back to the legacy cost model
for all recipes. Follow-up patches will gradually migrate recipes to
compute their own costs step-by-step.
It also adds getBestPlan function to LVP which computes the cost of all
VPlans and picks the most profitable one together with the most
profitable VF.
The VPlan selected by the VPlan cost model is executed and there is an
assert to catch cases where the VPlan cost model and the legacy cost
model disagree. Even though I checked a number of different build
configurations on AArch64 and X86, there may be some differences
that have been missed.
Additional discussions and context can be found in @arcbbb's
https://github.com/llvm/llvm-project/pull/67647 and
https://github.com/llvm/llvm-project/pull/67934 which is an earlier
version of the current PR.
PR: https://github.com/llvm/llvm-project/pull/92555
This adds a new interface to compute the cost of recipes, VPBasicBlocks,
VPRegionBlocks and VPlan, initially falling back to the legacy cost model
for all recipes. Follow-up patches will gradually migrate recipes to
compute their own costs step-by-step.
It also adds getBestPlan function to LVP which computes the cost of all
VPlans and picks the most profitable one together with the most
profitable VF.
The VPlan selected by the VPlan cost model is executed and there is an
assert to catch cases where the VPlan cost model and the legacy cost
model disagree. Even though I checked a number of different build
configurations on AArch64 and X86, there may be some differences
that have been missed.
Additional discussions and context can be found in @arcbbb's
https://github.com/llvm/llvm-project/pull/67647 and
https://github.com/llvm/llvm-project/pull/67934 which is an earlier
version of the current PR.
PR: https://github.com/llvm/llvm-project/pull/92555
This patch adds a new special type of VPBasicBlock that wraps an
existing IR basic block. Recipes of the block get added before the
terminator of the wrapped IR basic block. Making it a subclass of
VPBasicBlock avoids duplicating various APIs to manage recipes in a
block, as well as makes sure the traversals filtering VPBasicBlocks
automatically apply as well.
Initially VPIRBasicBlock are only used for the pre-preheader (wrapping
the original preheader of the scalar loop).
As follow-up, this will be used to move more parts of the skeleton
inside VPlan, starting with the branch and condition in the middle
block.
Separated out of https://github.com/llvm/llvm-project/pull/92651
PR: https://github.com/llvm/llvm-project/pull/93398
As a follow-up to b2f65e80, use the DTU to also update and preserve
the DT in the native path. This should also allow preserving SCEV in the
native path
PR: https://github.com/llvm/llvm-project/pull/93287
Use DTU to queue DominatorTree updates directly when connecting basic
blocks during VPlan execution.
This simplifies DT updates and will also automatically allow updating
the DT for the VPlan-native path as additional benefit in a follow-up.
PR: https://github.com/llvm/llvm-project/pull/92525
There are cases where a vector value has some users that demand the
the single scalar value only (NeedsScalar), while other users demand the
vector value (see attached test cases). In those cases, the NeedsScalar
users should only demand the first lane.
Fixes https://github.com/llvm/llvm-project/issues/91883.
This patch restructures the way names for printing VPValues are handled.
It moves the logic to generate names for printing to VPSlotTracker.
VPSlotTracker will now version names of the same underlying value if it
is used by multiple VPValues, by adding a .V suffix to the name.
This fixes cases where at the moment the same name is printed for
different VPValues.
PR: https://github.com/llvm/llvm-project/pull/81411
This patch introduces generating VP intrinsics in the Loop Vectorizer.
Currently the Loop Vectorizer supports vector predication in a very
limited capacity via tail-folding and masked load/store/gather/scatter
intrinsics. However, this does not let architectures with active vector
length predication support take advantage of their capabilities.
Architectures with general masked predication support also can only take
advantage of predication on memory operations. By having a way for the
Loop Vectorizer to generate Vector Predication intrinsics, which (will)
provide a target-independent way to model predicated vector
instructions. These architectures can make better use of their
predication capabilities.
Our first approach (implemented in this patch) builds on top of the
existing tail-folding mechanism in the LV (just adds a new tail-folding
mode using EVL), but instead of generating masked intrinsics for memory
operations it generates VP intrinsics for loads/stores instructions. The
patch adds a new VPlanTransforms to replace the wide header predicate
compare with EVL and updates codegen for load/stores to use VP
store/load with EVL.
Other important part of this approach is how the Explicit Vector Length
is computed. (VP intrinsics define this vector length parameter as
Explicit Vector Length (EVL)). We use an experimental intrinsic
`get_vector_length`, that can be lowered to architecture specific
instruction(s) to compute EVL.
Also, added a new recipe to emit instructions for computing EVL. Using
VPlan in this way will eventually help build and compare VPlans
corresponding to different strategies and alternatives.
Differential Revision: https://reviews.llvm.org/D99750
Add a new PtrAdd opcode to VPInstruction that corresponds to
IRBuilder::CreatePtrAdd, which creates a GEP with source element type
i8.
This is then used to model scalarizing VPWidenPointerInductionRecipe by
introducing scalar-steps to model the index increment followed by a
PtrAdd.
Note that PtrAdd needs to be able to generate code for only the first
lane or for all lanes. This may warrant introducing a separate recipe
for scalarizing that can be created without relying on the underlying
IR.
Depends on https://github.com/llvm/llvm-project/pull/80271
PR: https://github.com/llvm/llvm-project/pull/83068