This change allows globals to have multiple metadata attached. The
GlobalSetMetadata function only allows only one and is clobbered if
more metadata is attempted to be added. The addDebugInfo
function calls addMetadata. This is needed because some languages have
global structs containing lots of compiler-generated globals.
This introduces a new `ptrtoaddr` instruction which is similar to
`ptrtoint` but has two differences:
1) Unlike `ptrtoint`, `ptrtoaddr` does not capture provenance
2) `ptrtoaddr` only extracts (and then extends/truncates) the low
index-width bits of the pointer
For most architectures, difference 2) does not matter since index (address)
width and pointer representation width are the same, but this does make a
difference for architectures that have pointers that aren't just plain
integer addresses such as AMDGPU fat pointers or CHERI capabilities.
This commit introduces textual and bitcode IR support as well as basic code
generation, but optimization passes do not handle the new instruction yet
so it may result in worse code than using ptrtoint. Follow-up changes will
update capture tracking, etc. for the new instruction.
RFC: https://discourse.llvm.org/t/clarifiying-the-semantics-of-ptrtoint/83987/54
Reviewed By: nikic
Pull Request: https://github.com/llvm/llvm-project/pull/139357
## Purpose
This patch is one in a series of code-mods that annotate LLVM’s public
interface for export. This patch annotates the `llvm-c` interface with a
new `LLVM_C_ABI` annotation, which behaves like the `LLVM_ABI`. This
annotation currently has no meaningful impact on the LLVM build;
however, it is a prerequisite to support an LLVM Windows DLL (shared
library) build.
## Overview
1. Add a new `llvm-c/Visibility.h` header file that defines a new
`LLVM_C_ABI` macro. The macro resolves to the proper DLL export/import
annotation on Windows and a "default" visibility annotation elsewhere.
2. Add a new `LLVM_ENABLE_LLVM_C_EXPORT_ANNOTATIONS` `#cmakedefine` that
is used to gate the definition of `LLVM_C_ABI`.
3. Remove the existing `LLVM_C_ABI` definition from
`llvm/Support/Compiler.h`. Update the small number of `LLVM_C_ABI`
references to get it from the new `llvm-c/Visibility.h` header.
4. Code-mod annotate the public `llvm-c` interface using the [Interface
Definition Scanner (IDS)](https://github.com/compnerd/ids) tool.
5. Format the changes with `clang-format`.
## Background
This effort is tracked in #109483. Additional context is provided in
[this
discourse](https://discourse.llvm.org/t/psa-annotating-llvm-public-interface/85307),
and documentation for `LLVM_ABI` and related annotations is found in the
LLVM repo
[here](https://github.com/llvm/llvm-project/blob/main/llvm/docs/InterfaceExportAnnotations.rst).
## Validation
Local builds and tests to validate cross-platform compatibility. This
included llvm, clang, and lldb on the following configurations:
- Windows with MSVC
- Windows with Clang
- Linux with GCC
- Linux with Clang
- Darwin with Clang
This patch adds support for LLVM IR atomicrmw `fmaximum` and `fminimum`
instructions.
These mirror the `llvm.maximum.*` and `llvm.minimum.*` instructions, but
are atomic and use IEEE754 2019 handling for NaNs, which is different to
`fmax` and `fmin`. See:
https://llvm.org/docs/LangRef.html#llvm-minimum-intrinsic
for more details.
Future changes will allow this LLVM IR to be lowered to specialised
assembler instructions on suitable targets, such as AArch64.
This patch adds support for LLVM IR atomicrmw `fmaximum` and `fminimum`
instructions.
These mirror the `llvm.maximum.*` and `llvm.minimum.*` instructions, but
are atomic and use IEEE754 2019 handling for NaNs, which is different to
`fmax` and `fmin`. See:
https://llvm.org/docs/LangRef.html#llvm-minimum-intrinsic
for more details.
Future changes will allow this LLVM IR to be lowered to specialised
assembler instructions on suitable targets, such as AArch64.
Resolves#129439.
The addition to `echo.ll` is for testing `ConstantArray`, because every
other array in that file is in fact a `ConstantDataArray` and now takes
the new code path in `echo.cpp`.
Change the return type of `LLVMIntrinsicCopyOverloadedName` and
`LLVMIntrinsicCopyOverloadedName2` to `char *` instead of `const char *`
since the returned memory is owned by the caller and we expect that the
returned pointer is passed to free to deallocate it (without casting it
back to non-const pointer).
Rename the function to reflect its correct behavior and to be consistent
with `Module::getOrInsertFunction`. This is also in preparation of
adding a new `Intrinsic::getDeclaration` that will have behavior similar
to `Module::getFunction` (i.e, just lookup, no creation).
Since the migration from `@llvm.dbg.value` intrinsic to `#dbg_value`
records, there is no way to retrieve the debug records for an
`Instruction` in LLVM-C API.
Previously, with debug info intrinsics, retrieving debug info for an
`Instruction` could be done with `LLVMGetNextInstructions`, because the
intrinsic call was also an instruction.
However, to be able to retrieve debug info with the current LLVM, where
debug records are used, the `getDbgRecordRange()` iterator needs to be
exposed.
Add new functions for DbgRecord sequence traversal:
LLVMGetFirstDbgRecord
LLVMGetLastDbgRecord
LLVMGetNextDbgRecord
LLVMGetPreviousDbgRecord
See llvm/docs/RemoveDIsDebugInfo.md and release notes.
Another upstreaming of C API extensions we have in Julia/LLVM.jl.
Although [we went](https://github.com/maleadt/LLVM.jl/pull/431) with a
string-based API there, here I'm proposing something that's similar to
existing metadata/attribute APIs:
- explicit functions to map syncscope names to IDs, and back
- `LLVM*SyncScope` versions of builder APIs that already take a
`SingleThread` argument: atomic rmw, atomic xchg, fence
- `LLVMGetAtomicSyncScopeID` and `LLVMSetAtomicSyncScopeID` for other
atomic instructions
- testing through `llvm-c-test`'s `--echo` functionality
Add `LLVMGetNamedFunctionWithLength` and `LLVMGetNamedGlobalWithLength`
As far as i know, it isn't currently possible to use
`LLVMGetNamedFunction` and `LLVMGetNamedGlobal` with non-null-terminated
strings.
These new functions are more convenient for C programs that use
non-null-terminated strings or for languages like Rust that primarily
use non-null-terminated strings.
It is now translated to `<1 x i64>`, which allows the removal of a bunch
of special casing.
This _incompatibly_ changes the ABI of any LLVM IR function with
`x86_mmx` arguments or returns: instead of passing in mmx registers,
they will now be passed via integer registers. However, the real-world
incompatibility caused by this is expected to be minimal, because Clang
never uses the x86_mmx type -- it lowers `__m64` to either `<1 x i64>`
or `double`, depending on ABI.
This change does _not_ eliminate the SelectionDAG `MVT::x86mmx` type.
That type simply no longer corresponds to an IR type, and is used only
by MMX intrinsics and inline-asm operands.
Because SelectionDAGBuilder only knows how to generate the
operands/results of intrinsics based on the IR type, it thus now
generates the intrinsics with the type MVT::v1i64, instead of
MVT::x86mmx. We need to fix this before the DAG LegalizeTypes, and thus
have the X86 backend fix them up in DAGCombine. (This may be a
short-lived hack, if all the MMX intrinsics can be removed in upcoming
changes.)
Works towards issue #98272.
This is a new constant type that was added to the C++ API in
0edc97f119f3ac3ff96b11183fe5c001a48a9a8d. This adds the ability to
create instances of this constant and get its values to the C API.
Accessors for the name, type parameters, and integer parameters are
added. A test is added to echo.ll
This was originally done in
https://github.com/llvm/llvm-project/pull/71291 but that has been stale
for several months. This re-applies the changes, but with some tweaks.
e.g. removing the bulk getters in favour of a simple get-by-index
approach for the type/integer parameters. The latter is more in line
with the rest of the API
Add `LLVMPositionBuilderBeforeDbgRecords` and
`LLVMPositionBuilderBeforeInstrAndDbgRecords` to `llvm/include/llvm-c/Core.h`
which behave the same as `LLVMPositionBuilder` and `LVMPositionBuilderBefore`
except that the position is set before debug records attached to the target
instruction (the existing functions set the insertion point to after any
attached debug records).
More info on debug records and the migration towards using them can be found
here: https://llvm.org/docs/RemoveDIsDebugInfo.html
The distinction is important in some situations. An important example is when
inserting a phi before another instruction which has debug records attached to
it (these come "before" the instruction). Inserting before the instruction but
after the debug records would result in having debug records before a phi, which
is illegal. That results in an assertion failure:
`llvm/lib/IR/Instruction.cpp:166: Assertion '!isa<PHINode>(this) && "Inserting
PHI after debug-records!"' failed.`
In llvm (C++) we've added bit to instruction iterators that carries around the
extra information. Adding dedicated functions seemed like the least invasive and
least suprising way to update the C API.
Update llvm/tools/llvm-c-test/debuginfo.c to test this functionality.
Update the OCaml bindings, the migration docs and release notes.
Remove support for the icmp and fcmp constant expressions.
This is part of:
https://discourse.llvm.org/t/rfc-remove-most-constant-expressions/63179
As usual, many of the updated tests will no longer test what they were
originally intended to -- this is hard to preserve when constant
expressions get removed, and in many cases just impossible as the
existence of a specific kind of constant expression was the cause of the
issue in the first place.
This adds LLVMBuildCallBr to create CallBr instructions, and getters for
the CallBr-specific data. The remainder of its data, e.g.
arguments/function, can be accessed using existing getters.
These previously were added in the C++ API in
778cf5431cafc243f81dd5c8cbd27701ff7f9120, but without updating the enum
in the C API or mapping functions.
Corresponding tests for all current atomicrmw bin ops have been added as
well.
Follow on from #84915 which adds the DbgRecord function variants. The C API
changes were reviewed in #85657.
# C API
Update the LLVMDIBuilderInsert... functions to insert DbgRecords instead
of debug intrinsics.
LLVMDIBuilderInsertDeclareBefore
LLVMDIBuilderInsertDeclareAtEnd
LLVMDIBuilderInsertDbgValueBefore
LLVMDIBuilderInsertDbgValueAtEnd
Calling these functions will now cause an assertion if the module is in the
wrong debug info format. They should only be used when the module is in "new
debug format".
Use LLVMIsNewDbgInfoFormat to query and LLVMSetIsNewDbgInfoFormat to change the
debug info format of a module.
Please see https://llvm.org/docs/RemoveDIsDebugInfo.html#c-api-change
(RemoveDIsDebugInfo.md) for more info.
# OCaml bindings
Add set_is_new_dbg_info_format and is_new_dbg_info_format to the OCaml bindings.
These can be used to set and query the current debug info mode. These will
eventually be removed, but are useful while we're transitioning between old and
new debug info formats.
Add string_of_lldbgrecord, like string_of_llvalue but prints DbgRecords.
In test dbginfo.ml, unconditionally set the module debug info to the new mode
and update CHECK lines to check for DbgRecords. Without this change the test
crashes because it attempts to insert DbgRecords (new default behaviour of
llvm_dibuild_insert_declare_...) into a module that is in the old debug info
mode.
Follow on from #84739, which updates the DIBuilder class.
All the functions that have been added are temporary and will be
deprecated in the future. The intention is that they'll help downstream
projects adapt during the transition period.
```
New functions (all to be deprecated)
------------------------------------
LLVMIsNewDbgInfoFormat # Returns true if the module is in the new non-instruction mode.
LLVMSetIsNewDbgInfoFormat # Convert to the requested debug info format.
LLVMDIBuilderInsertDeclareIntrinsicBefore # Insert a debug intrinsic (old debug info format).
LLVMDIBuilderInsertDeclareIntrinsicAtEnd # Same as above.
LLVMDIBuilderInsertDbgValueIntrinsicBefore # Same as above.
LLVMDIBuilderInsertDbgValueIntrinsicAtEnd # Same as above.
LLVMDIBuilderInsertDeclareRecordBefore # Insert a debug record (new debug info format).
LLVMDIBuilderInsertDeclareRecordAtEnd # Same as above.
LLVMDIBuilderInsertDbgValueRecordBefore # Same as above.
LLVMDIBuilderInsertDbgValueRecordAtEnd # Same as above.
```
The existing `LLVMDIBuilderInsert...` functions call through to the
intrinsic versions (old debug info format) currently.
In the next patch, I'll swap them to call the debug records versions
(new debug info format). Downstream users of this API can query and
change the current format using the first two functions above, or can
instead opt to temporarily use intrinsics or records explicitly.
Adds `LLVMConstStringInContext2` and `LLVMConstString2`, which are
identical to originals except that they use `size_t` for length. This is
a clone of
35276f16e5
and is needed for https://github.com/rust-lang/rust/pull/122000.
As an aside, the issue of 32 bit overflow on constants is present in the
C++ APIs as well. A few classes, e.g. `ConstantDataArray` and
`ConstantAggregateZero`, can hold 64-bit ArrayTypes but their length
accessors return 32-bit values. This means the same issue from the
original Rust report is also present in LLVM itself. Would it be a
reasonable goal to update all of these length methods & types to be
uint64_t, or would that be too breaking? Alternatively, we could use
safe fallible casts instead of implicit ones inside the accessors (if an
overflow does happen, the solution would be to use
`MyValue->getType()->getArrayNumElements()` instead).
This allows for accessing the function/basic block that a blockaddress
constant refers to
Due to the difficulties of fully supporting cloning BlockAddress values
in echo.cpp, tests are instead done using a unit test.
This previously was up for review at
https://github.com/llvm/llvm-project/pull/77390.
These flags are usable on floating point arithmetic, as well as call,
select, and phi instructions whose resulting type is floating point, or
a vector of, or an array of, a valid type. Whether or not the flags are
valid for a given instruction can be checked with the new
LLVMCanValueUseFastMathFlags function.
These are exposed using a new LLVMFastMathFlags type, which is an alias
for unsigned. An anonymous enum defines the bit values for it.
Tests are added in echo.ll for select/phil/call, and the floating point
types in the new float_ops.ll bindings test.
Select and the floating point arithmetic instructions were not
implemented in llvm-c-test/echo.cpp, so they were added as well.
Added the following functions for manipulating operand bundles, as well as
building ``call`` and ``invoke`` instructions that use operand bundles:
* LLVMBuildCallWithOperandBundles
* LLVMBuildInvokeWithOperandBundles
* LLVMCreateOperandBundle
* LLVMDisposeOperandBundle
* LLVMGetNumOperandBundles
* LLVMGetOperandBundleAtIndex
* LLVMGetNumOperandBundleArgs
* LLVMGetOperandBundleArgAtIndex
* LLVMGetOperandBundleTag
Fixes#71873.
I'd copied and adjusted the doc comments for LLVMGetNNeg and LLVMSetNNeg
in #74517. Nikita pointed out in that review my comments were missing a
full stop, so I'm applying the same fix to these.
The WebKit Calling Convention was created specifically for the WebKit
FTL. FTL
doesn't use LLVM anymore and therefore this calling convention is
obsolete.
This commit removes the WebKit CC, its associated tests, and
documentation.
Remove support for the fptrunc, fpext, fptoui, fptosi, uitofp and sitofp
constant expressions. All places creating them have been removed
beforehand, so this just removes the APIs and uses of these constant
expressions in tests.
With this, the only remaining FP operation that still has constant
expression support is fcmp.
This is part of
https://discourse.llvm.org/t/rfc-remove-most-constant-expressions/63179.
Remove support for zext and sext constant expressions. All places
creating them have been removed beforehand, so this just removes the
APIs and uses of these constant expressions in tests.
There is some additional cleanup that can be done on top of this, e.g.
we can remove the ZExtInst vs ZExtOperator footgun.
This is part of
https://discourse.llvm.org/t/rfc-remove-most-constant-expressions/63179.
This change adds support for accessing information about inline
assembly calls through the C API, enough to be able to round-trip the
information. This partially addresses https://llvm.org/pr42692 which
points out gaps in the C API
Getters for each of the parameters to LLVMGetInlineAsm/InlineAsm::get
have been added, such that the C API now has enough surface to clone
inline assembly calls
This API currently only returns the raw constraint string via
LLVMGetInlineAsmConstraintString: it may be prudent to also expose the
parsed constraints via InlineAsm::ParseConstraints, but I wasn't sure
how that should look like. This at least exposes the information for
clients
Patch by Benji Smith. Thanks!
Differential Revision: https://reviews.llvm.org/D153185