These are essentially add/sub 1 with a clamping value.
AMDGPU has instructions for these. CUDA/HIP expose these as
atomicInc/atomicDec. Currently we use target intrinsics for these,
but those do no carry the ordering and syncscope. Add these to
atomicrmw so we can carry these and benefit from the regular
legalization processes.
IR is now always parsed in opaque pointer mode, unless
-opaque-pointers=0 is explicitly given. There is no automatic
detection of typed pointers anymore.
The -opaque-pointers=0 option is added to any remaining IR tests
that haven't been migrated yet.
Differential Revision: https://reviews.llvm.org/D141912
Use the existing mechanism to change the data layout using callbacks.
Before this patch, we had a callback type DataLayoutCallbackTy that receives
a single StringRef specifying the target triple, and optionally returns
the data layout string to be used. Module loaders (both IR and BC) then
apply the callback to potentially override the module's data layout,
after first having imported and parsed the data layout from the file.
We can't do the same to fix invalid data layouts, because the import will already
fail, before the callback has a chance to fix it.
Instead, module loaders now tentatively parse the data layout into a string,
wait until the target triple has been parsed, apply the override callback
to the imported string and only then parse the tentative string as a data layout.
Moreover, add the old data layout string S as second argument to the callback,
in addition to the already existing target triple argument.
S is either the default data layout string in case none is specified, or the data
layout string specified in the module, possibly after auto-upgrades (for the BitcodeReader).
This allows callbacks to inspect the old data layout string,
and fix it instead of setting a fixed data layout.
Also allow to pass data layout override callbacks to lazy bitcode module
loader functions.
Differential Revision: https://reviews.llvm.org/D140985
Use deduction guides instead of helper functions.
The only non-automatic changes have been:
1. ArrayRef(some_uint8_pointer, 0) needs to be changed into ArrayRef(some_uint8_pointer, (size_t)0) to avoid an ambiguous call with ArrayRef((uint8_t*), (uint8_t*))
2. CVSymbol sym(makeArrayRef(symStorage)); needed to be rewritten as CVSymbol sym{ArrayRef(symStorage)}; otherwise the compiler is confused and thinks we have a (bad) function prototype. There was a few similar situation across the codebase.
3. ADL doesn't seem to work the same for deduction-guides and functions, so at some point the llvm namespace must be explicitly stated.
4. The "reference mode" of makeArrayRef(ArrayRef<T> &) that acts as no-op is not supported (a constructor cannot achieve that).
Per reviewers' comment, some useless makeArrayRef have been removed in the process.
This is a follow-up to https://reviews.llvm.org/D140896 that introduced
the deduction guides.
Differential Revision: https://reviews.llvm.org/D140955
Target-extension types represent types that need to be preserved through
optimization, but otherwise are not introspectable by target-independent
optimizations. This patch doesn't add any uses of these types by an existing
backend, it only provides basic infrastructure such that these types would work
correctly.
Reviewed By: nikic, barannikov88
Differential Revision: https://reviews.llvm.org/D135202
Address spaces equal or larger than 1 << 24 don't fit and produce an
assertion during debug builds, or worse in release. This causes an error
to be reported during parsing instead.
Differential Revision: https://reviews.llvm.org/D139528
This allows the LLParser to also accept "A", "G", and "P" in `addrspace`
usages. "A" will be replaced by the alloca address space defined in the
globals, "G" by the default globals address space and "P" by the program
address space. This makes it easier to write tests that use different
address space and only only vary the RUN: lines. Currently, the only
alternative is to pre-process the sources with a tool such as `sed`
Importantly, these new string values are only accepted in .ll files and
not stored in the bitcode format, so it does not round-trip via llvm-as
and llvm-dis (see newly added test).
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D138789
getCanonicalMDString() also returns a nullptr for empty strings, which
tripped over the getSource() method. Solve the ambiguity of no source
versus an optional containing a nullptr by simply storing a pointer.
Differential Revision: https://reviews.llvm.org/D138658
This patch mechanically replaces None with std::nullopt where the
compiler would warn if None were deprecated. The intent is to reduce
the amount of manual work required in migrating from Optional to
std::optional.
This is part of an effort to migrate from llvm::Optional to
std::optional:
https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716
This restores commit 98ed423361de2f9dc0113a31be2aa04524489ca9 and
follow on fix 00c22351ba697dbddb4b5bf0ad94e4bcea4b316b, which were
reverted in 5d938eb6f79b16f55266dd23d5df831f552ea082 due to an
MSVC bot failure. I've included a fix for that failure.
Differential Revision: https://reviews.llvm.org/D135714
This reverts commit 00c22351ba697dbddb4b5bf0ad94e4bcea4b316b.
This reverts commit 98ed423361de2f9dc0113a31be2aa04524489ca9.
Seemingly MSVC has some kind of issue with this patch, in terms of linking:
https://lab.llvm.org/buildbot/#/builders/123/builds/14137
I'll post more detail on D135714 momentarily.
This restores 47459455009db4790ffc3765a2ec0f8b4934c2a4, which was
reverted in commit 452a14efc84edf808d1e2953dad2c694972b312f, along with
fixes for a couple of bot failures.
Implements the ThinLTO summary support for memprof related metadata.
This includes support for the assembly format, and for building the
summary from IR during ModuleSummaryAnalysis.
To reduce space in both the bitcode format and the in memory index,
we do 2 things:
1. We keep a single vector of all uniq stack id hashes, and record the
index into this vector in the callsite and allocation memprof
summaries.
2. When building the combined index during the LTO link, the callsite
and allocation memprof summaries are only kept on the FunctionSummary
of the prevailing copy.
Differential Revision: https://reviews.llvm.org/D135714
The TableGen implementation was using a homegrown implementation of
FunctionModRefInfo. This switches it to use MemoryEffects instead.
This makes the code simpler, and will allow exposing the full
representational power of MemoryEffects in the future. Among other
things, this will allow us to map IntrHasSideEffects to an
inaccessiblemem readwrite, rather than just ignoring it entirely
in most cases.
To avoid layering issues, this moves the ModRef.h header from IR
to Support, so that it can be included in the TableGen layer.
Differential Revision: https://reviews.llvm.org/D137641
Previously reverted in 41f5a0004e442ae71c8e754fdadb4bd1e172fb2d. Fold in
D133576 previously reverted in d29d5ffb6332569e85d5eda5130603bbd8664635.
---
The Assignment Tracking debug-info feature is outlined in this RFC:
https://discourse.llvm.org/t/
rfc-assignment-tracking-a-better-way-of-specifying-variable-locations-in-ir
Overview
It's possible to find intrinsics linked to an instruction by looking at the
MetadataAsValue uses of the attached DIAssignID. That covers instruction ->
intrinsic(s) lookup. Add a global DIAssignID -> instruction(s) map which gives
us the ability to perform intrinsic -> instruction(s) lookup. Add plumbing to
keep the map up to date through optimisations and add utility functions
including two that perform those lookups. Finally, add a unittest.
Details
In llvm/lib/IR/LLVMContextImpl.h add AssignmentIDToInstrs which maps DIAssignID
* attachments to Instruction *s. Because the DIAssignID * is the key we can't
use a TrackingMDNodeRef for it, and therefore cannot easily update the mapping
when a temporary DIAssignID is replaced.
Temporary DIAssignID's are only used in IR parsing to deal with metadata
forward references. Update llvm/lib/AsmParser/LLParser.cpp to avoid using
temporary DIAssignID's for attachments.
In llvm/lib/IR/Metadata.cpp add Instruction::updateDIAssignIDMapping which is
called to remove or add an entry (or both) to AssignmentIDToInstrs. Call this
from Instruction::setMetadata and add a call to setMetadata in Intruction's
dtor that explicitly unsets the DIAssignID so that the mappging gets updated.
In llvm/lib/IR/DebugInfo.cpp and DebugInfo.h add utility functions:
getAssignmentInsts(const DbgAssignIntrinsic *DAI)
getAssignmentMarkers(const Instruction *Inst)
RAUW(DIAssignID *Old, DIAssignID *New)
deleteAll(Function *F)
deleteAssignmentMarkers(const Instruction *Inst)
These core utils are tested in llvm/unittests/IR/DebugInfoTest.cpp.
Reviewed By: jmorse
Differential Revision: https://reviews.llvm.org/D132224
This reverts commit 171f7024cc82e8702abebdedb699d37b50574be7.
Reverting this patch because it causes a cyclic dependency in the module build
https://green.lab.llvm.org/green/view/LLDB/job/lldb-cmake/48197/consoleFull#-69937453049ba4694-19c4-4d7e-bec5-911270d8a58c
In file included from <module-includes>:1:
/Users/buildslave/jenkins/workspace/lldb-cmake/llvm-project/llvm/include/llvm/IR/Argument.h:18:10: fatal error: cyclic dependency in module 'LLVM_IR': LLVM_IR -> LLVM_intrinsic_gen -> LLVM_IR
^
While building module 'LLVM_MC' imported from /Users/buildslave/jenkins/workspace/lldb-cmake/llvm-project/llvm/lib/MC/MCAsmInfoCOFF.cpp:14:
While building module 'LLVM_IR' imported from /Users/buildslave/jenkins/workspace/lldb-cmake/llvm-project/llvm/include/llvm/MC/MCPseudoProbe.h:57:
In file included from <module-includes>:12:
/Users/buildslave/jenkins/workspace/lldb-cmake/llvm-project/llvm/include/llvm/IR/DebugInfo.h:24:10: fatal error: could not build module 'LLVM_intrinsic_gen'
~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~
While building module 'LLVM_MC' imported from /Users/buildslave/jenkins/workspace/lldb-cmake/llvm-project/llvm/lib/MC/MCAsmInfoCOFF.cpp:14:
In file included from <module-includes>:15:
In file included from /Users/buildslave/jenkins/workspace/lldb-cmake/llvm-project/llvm/include/llvm/MC/MCContext.h:23:
/Users/buildslave/jenkins/workspace/lldb-cmake/llvm-project/llvm/include/llvm/MC/MCPseudoProbe.h:57:10: fatal error: could not build module 'LLVM_IR'
~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~
/Users/buildslave/jenkins/workspace/lldb-cmake/llvm-project/llvm/lib/MC/MCAsmInfoCOFF.cpp:14:10: fatal error: could not build module 'LLVM_MC'
~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~
4 errors generated.
The Assignment Tracking debug-info feature is outlined in this RFC:
https://discourse.llvm.org/t/
rfc-assignment-tracking-a-better-way-of-specifying-variable-locations-in-ir
Overview
It's possible to find intrinsics linked to an instruction by looking at the
MetadataAsValue uses of the attached DIAssignID. That covers instruction ->
intrinsic(s) lookup. Add a global DIAssignID -> instruction(s) map which gives
us the ability to perform intrinsic -> instruction(s) lookup. Add plumbing to
keep the map up to date through optimisations and add utility functions
including two that perform those lookups. Finally, add a unittest.
Details
In llvm/lib/IR/LLVMContextImpl.h add AssignmentIDToInstrs which maps DIAssignID
* attachments to Instruction *s. Because the DIAssignID * is the key we can't
use a TrackingMDNodeRef for it, and therefore cannot easily update the mapping
when a temporary DIAssignID is replaced.
Temporary DIAssignID's are only used in IR parsing to deal with metadata
forward references. Update llvm/lib/AsmParser/LLParser.cpp to avoid using
temporary DIAssignID's for attachments.
In llvm/lib/IR/Metadata.cpp add Instruction::updateDIAssignIDMapping which is
called to remove or add an entry (or both) to AssignmentIDToInstrs. Call this
from Instruction::setMetadata and add a call to setMetadata in Intruction's
dtor that explicitly unsets the DIAssignID so that the mappging gets updated.
In llvm/lib/IR/DebugInfo.cpp and DebugInfo.h add utility functions:
getAssignmentInsts(const DbgAssignIntrinsic *DAI)
getAssignmentMarkers(const Instruction *Inst)
RAUW(DIAssignID *Old, DIAssignID *New)
deleteAll(Function *F)
These core utils are tested in llvm/unittests/IR/DebugInfoTest.cpp.
Reviewed By: jmorse
Differential Revision: https://reviews.llvm.org/D132224
The Assignment Tracking debug-info feature is outlined in this RFC:
https://discourse.llvm.org/t/
rfc-assignment-tracking-a-better-way-of-specifying-variable-locations-in-ir
Add the DIAssignID metadata attachment boilerplate. Includes a textual-bitcode
roundtrip test and tests that the verifier and parser catch badly formed IR.
This piece of metadata links together stores (used as an attachment) and the
yet-to-be-added llvm.dbg.assign debug intrinsic (used as an operand).
Reviewed By: jmorse
Differential Revision: https://reviews.llvm.org/D132222
This switches everything to use the memory attribute proposed in
https://discourse.llvm.org/t/rfc-unify-memory-effect-attributes/65579.
The old argmemonly, inaccessiblememonly and inaccessiblemem_or_argmemonly
attributes are dropped. The readnone, readonly and writeonly attributes
are restricted to parameters only.
The old attributes are auto-upgraded both in bitcode and IR.
The bitcode upgrade is a policy requirement that has to be retained
indefinitely. The IR upgrade is mainly there so it's not necessary
to update all tests using memory attributes in this patch, which
is already large enough. We could drop that part after migrating
tests, or retain it longer term, to make it easier to import IR
from older LLVM versions.
High-level Function/CallBase APIs like doesNotAccessMemory() or
setDoesNotAccessMemory() are mapped transparently to the memory
attribute. Code that directly manipulates attributes (e.g. via
AttributeList) on the other hand needs to switch to working with
the memory attribute instead.
Differential Revision: https://reviews.llvm.org/D135780
The Assignment Tracking debug-info feature is outlined in this RFC:
https://discourse.llvm.org/t/
rfc-assignment-tracking-a-better-way-of-specifying-variable-locations-in-ir
Add the DIAssignID metadata attachment boilerplate. Includes a textual-bitcode
roundtrip test and tests that the verifier and parser catch badly formed IR.
This piece of metadata links together stores (used as an attachment) and the
yet-to-be-added llvm.dbg.assign debug intrinsic (used as an operand).
Reviewed By: jmorse
Differential Revision: https://reviews.llvm.org/D132222
This implements IR and bitcode support for the memory attribute,
as specified in https://reviews.llvm.org/D135597.
The new attribute is not used for anything yet (and as such, the
old memory attributes are unaffected).
Differential Revision: https://reviews.llvm.org/D135592
UpgradeCallsToIntrinsic() is already intended to perform remangling
in case no other upgrades are necessary. The additional
remangleIntrinsicFunction() calls are not needed and can hide bugs
in the UpgradeCallsToIntrinsic() implementation.
This was the odd one out, with similar methods not existing for
any other attributes. In the places where it is used, it is best
replaced by AttrBuilder::getAttribute(), which allows us to both
test for presence of the attribute and retrieve its value at the
same time. (To just check for presence, contains() could be used.)
Disallow this meaningless combination. Doing so simplifies analysis
of LLVM code w.r.t t DLL storage-class, and prevents mistakes with
DLL storage class.
- Change the assembler to reject DLL storage class on symbols with
local linkage.
- Change the bitcode reader to clear the DLL Storage class when the
linkage is local for auto-upgrading
- Update LangRef.
There is an existing restriction on non-default visibility and local
linkage which this is modelled on.
Differential Review: https://reviews.llvm.org/D134784
This reverts commit eef5db2c744e4799dc40ada54fdde7dbbd552807.
See https://github.com/llvm/llvm-project/issues/57815.
dso_local_equivalent would fail with an assertion on forward-referenced
globals. This is an issue that only comes up in textual IR, which is why
we've never seen this assertion with clang.
Differential Revision: https://reviews.llvm.org/D134234
A thread may not have access to SME or TPIDR2_EL0, so in order to
safely query PSTATE.SM in a streaming-compatible function, the
code should call `__arm_sme_state()`, as described in the ABI:
c2bb09c4d4
This means that the value of pstate.sm is:
* 0 if the function is non-streaming.
* 1 if the function has `arm_streaming` or `arm_locally_streaming`.
* evaluated at runtime by a call to __arm_sme_state() otherwise.
This patch also adds a calling convention for calls to SME support routines.
At some point we can remove the need for the llvm.aarch64.get.pstatesm() intrinsic
and use function calls (with the corresponding cc) directly instead.
Reviewed By: aemerson
Differential Revision: https://reviews.llvm.org/D131571
Zero-input phi nodes are accepted by the verifier and bitcode reader,
but currently rejected by the IR parser. Allow them there as well.
Because phi nodes must have one entry for each predecessor, such
phis can only occur in blocks without predecessors, aka unreachable
code.
Usually, when removing the last predecessor from a block, we also
remove phi nodes in it. However, this is not possible for
invalidation reasons sometimes, which is why we ended up allowing
zero-entry phis at some point in the past. See 9eb2c0113dfe,
D92247 and PR48296 for context.
I've dropped the verifier unit test, because this is now covered
by the regular IR test.
This fixes at least part of https://github.com/llvm/llvm-project/issues/57446.
Differential Revision: https://reviews.llvm.org/D133000
For MTE globals, we should have clang emit the attribute for all GV's
that it creates, and then use that in the upcoming AArch64 global
tagging IR pass. We need a positive attribute for this sanitizer (rather
than implicit sanitization of all globals) because it needs to interact
with other parts of LLVM, including:
1. Suppressing certain global optimisations (like merging),
2. Emitting extra directives by the ASM writer, and
3. Putting extra information in the symbol table entries.
While this does technically make the LLVM IR / bitcode format
non-backwards-compatible, nobody should have used this attribute yet,
because it's a no-op.
Reviewed By: eugenis
Differential Revision: https://reviews.llvm.org/D128950