For consistency with the IRBuilder, OpenMPIRBuilder has method names starting with 'Create'. However, the LLVM coding style has methods names starting with lower case letters, as all other OpenMPIRBuilder already methods do. The clang-tidy configuration used by Phabricator also warns about the naming violation, adding noise to the reviews.
This patch renames all `OpenMPIRBuilder::CreateXYZ` methods to `OpenMPIRBuilder::createXYZ`, and updates all in-tree callers.
I tested check-llvm, check-clang, check-mlir and check-flang to ensure that I did not miss a caller.
Reviewed By: mehdi_amini, fghanim
Differential Revision: https://reviews.llvm.org/D91109
Usage of nested parallel regions were not working correctly and leading
to assertion failures. Fix contains the following changes,
1) Don't set the insertion point in the body callback.
2) Save the continuation IP in a stack and set the branch to
continuationIP at the terminator.
Reviewed By: SouraVX, jdoerfert, ftynse
Differential Revision: https://reviews.llvm.org/D88720
Instead of recursive helper method `topologicalSortImpl()`,
sort's implementation is moved to `topologicalSort()` function's
body directly. `llvm::ReversePostOrderTraversal` is used to create
a traversal of blocks in reverse post order.
Reviewed By: kiranchandramohan, rriddle
Differential Revision: https://reviews.llvm.org/D88544
The OmpDialect is in practice optional during translation to LLVM IR: the code is tolerant
to have a "nullptr" when not present / needed.
The dependency still exists on the export to LLVMIR.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D88351
Unsigned and Signless attributes use uintN_t and signed attributes use intN_t, where N is the fixed width. The 1-bit variants use bool.
Differential Revision: https://reviews.llvm.org/D86739
This changes the behavior of constructing MLIRContext to no longer load globally
registered dialects on construction. Instead Dialects are only loaded explicitly
on demand:
- the Parser is lazily loading Dialects in the context as it encounters them
during parsing. This is the only purpose for registering dialects and not load
them in the context.
- Passes are expected to declare the dialects they will create entity from
(Operations, Attributes, or Types), and the PassManager is loading Dialects into
the Context when starting a pipeline.
This changes simplifies the configuration of the registration: a compiler only
need to load the dialect for the IR it will emit, and the optimizer is
self-contained and load the required Dialects. For example in the Toy tutorial,
the compiler only needs to load the Toy dialect in the Context, all the others
(linalg, affine, std, LLVM, ...) are automatically loaded depending on the
optimization pipeline enabled.
To adjust to this change, stop using the existing dialect registration: the
global registry will be removed soon.
1) For passes, you need to override the method:
virtual void getDependentDialects(DialectRegistry ®istry) const {}
and registery on the provided registry any dialect that this pass can produce.
Passes defined in TableGen can provide this list in the dependentDialects list
field.
2) For dialects, on construction you can register dependent dialects using the
provided MLIRContext: `context.getOrLoadDialect<DialectName>()`
This is useful if a dialect may canonicalize or have interfaces involving
another dialect.
3) For loading IR, dialect that can be in the input file must be explicitly
registered with the context. `MlirOptMain()` is taking an explicit registry for
this purpose. See how the standalone-opt.cpp example is setup:
mlir::DialectRegistry registry;
registry.insert<mlir::standalone::StandaloneDialect>();
registry.insert<mlir::StandardOpsDialect>();
Only operations from these two dialects can be in the input file. To include all
of the dialects in MLIR Core, you can populate the registry this way:
mlir::registerAllDialects(registry);
4) For `mlir-translate` callback, as well as frontend, Dialects can be loaded in
the context before emitting the IR: context.getOrLoadDialect<ToyDialect>()
Differential Revision: https://reviews.llvm.org/D85622
This changes the behavior of constructing MLIRContext to no longer load globally
registered dialects on construction. Instead Dialects are only loaded explicitly
on demand:
- the Parser is lazily loading Dialects in the context as it encounters them
during parsing. This is the only purpose for registering dialects and not load
them in the context.
- Passes are expected to declare the dialects they will create entity from
(Operations, Attributes, or Types), and the PassManager is loading Dialects into
the Context when starting a pipeline.
This changes simplifies the configuration of the registration: a compiler only
need to load the dialect for the IR it will emit, and the optimizer is
self-contained and load the required Dialects. For example in the Toy tutorial,
the compiler only needs to load the Toy dialect in the Context, all the others
(linalg, affine, std, LLVM, ...) are automatically loaded depending on the
optimization pipeline enabled.
To adjust to this change, stop using the existing dialect registration: the
global registry will be removed soon.
1) For passes, you need to override the method:
virtual void getDependentDialects(DialectRegistry ®istry) const {}
and registery on the provided registry any dialect that this pass can produce.
Passes defined in TableGen can provide this list in the dependentDialects list
field.
2) For dialects, on construction you can register dependent dialects using the
provided MLIRContext: `context.getOrLoadDialect<DialectName>()`
This is useful if a dialect may canonicalize or have interfaces involving
another dialect.
3) For loading IR, dialect that can be in the input file must be explicitly
registered with the context. `MlirOptMain()` is taking an explicit registry for
this purpose. See how the standalone-opt.cpp example is setup:
mlir::DialectRegistry registry;
registry.insert<mlir::standalone::StandaloneDialect>();
registry.insert<mlir::StandardOpsDialect>();
Only operations from these two dialects can be in the input file. To include all
of the dialects in MLIR Core, you can populate the registry this way:
mlir::registerAllDialects(registry);
4) For `mlir-translate` callback, as well as frontend, Dialects can be loaded in
the context before emitting the IR: context.getOrLoadDialect<ToyDialect>()
Differential Revision: https://reviews.llvm.org/D85622
This changes the behavior of constructing MLIRContext to no longer load globally
registered dialects on construction. Instead Dialects are only loaded explicitly
on demand:
- the Parser is lazily loading Dialects in the context as it encounters them
during parsing. This is the only purpose for registering dialects and not load
them in the context.
- Passes are expected to declare the dialects they will create entity from
(Operations, Attributes, or Types), and the PassManager is loading Dialects into
the Context when starting a pipeline.
This changes simplifies the configuration of the registration: a compiler only
need to load the dialect for the IR it will emit, and the optimizer is
self-contained and load the required Dialects. For example in the Toy tutorial,
the compiler only needs to load the Toy dialect in the Context, all the others
(linalg, affine, std, LLVM, ...) are automatically loaded depending on the
optimization pipeline enabled.
To adjust to this change, stop using the existing dialect registration: the
global registry will be removed soon.
1) For passes, you need to override the method:
virtual void getDependentDialects(DialectRegistry ®istry) const {}
and registery on the provided registry any dialect that this pass can produce.
Passes defined in TableGen can provide this list in the dependentDialects list
field.
2) For dialects, on construction you can register dependent dialects using the
provided MLIRContext: `context.getOrLoadDialect<DialectName>()`
This is useful if a dialect may canonicalize or have interfaces involving
another dialect.
3) For loading IR, dialect that can be in the input file must be explicitly
registered with the context. `MlirOptMain()` is taking an explicit registry for
this purpose. See how the standalone-opt.cpp example is setup:
mlir::DialectRegistry registry;
mlir::registerDialect<mlir::standalone::StandaloneDialect>();
mlir::registerDialect<mlir::StandardOpsDialect>();
Only operations from these two dialects can be in the input file. To include all
of the dialects in MLIR Core, you can populate the registry this way:
mlir::registerAllDialects(registry);
4) For `mlir-translate` callback, as well as frontend, Dialects can be loaded in
the context before emitting the IR: context.getOrLoadDialect<ToyDialect>()
Legacy implementation of the LLVM dialect in MLIR contained an instance of
llvm::Module as it was required to parse LLVM IR types. The access to the data
layout of this module was exposed to the users for convenience, but in practice
this layout has always been the default one obtained by parsing an empty layout
description string. Current implementation of the dialect no longer relies on
wrapping LLVM IR types, but it kept an instance of DataLayout for
compatibility. This effectively forces a single data layout to be used across
all modules in a given MLIR context, which is not desirable. Remove DataLayout
from the LLVM dialect and attach it as a module attribute instead. Since MLIR
does not yet have support for data layouts, use the LLVM DataLayout in string
form with verification inside MLIR. Introduce the layout when converting a
module to the LLVM dialect and keep the default "" description for
compatibility.
This approach should be replaced with a proper MLIR-based data layout when it
becomes available, but provides an immediate solution to compiling modules with
different layouts, e.g. for GPUs.
This removes the need for LLVMDialectImpl, which is also removed.
Depends On D85650
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D85652
This changes the behavior of constructing MLIRContext to no longer load globally registered dialects on construction. Instead Dialects are only loaded explicitly on demand:
- the Parser is lazily loading Dialects in the context as it encounters them during parsing. This is the only purpose for registering dialects and not load them in the context.
- Passes are expected to declare the dialects they will create entity from (Operations, Attributes, or Types), and the PassManager is loading Dialects into the Context when starting a pipeline.
This changes simplifies the configuration of the registration: a compiler only need to load the dialect for the IR it will emit, and the optimizer is self-contained and load the required Dialects. For example in the Toy tutorial, the compiler only needs to load the Toy dialect in the Context, all the others (linalg, affine, std, LLVM, ...) are automatically loaded depending on the optimization pipeline enabled.
Differential Revision: https://reviews.llvm.org/D85622
This changes the behavior of constructing MLIRContext to no longer load globally registered dialects on construction. Instead Dialects are only loaded explicitly on demand:
- the Parser is lazily loading Dialects in the context as it encounters them during parsing. This is the only purpose for registering dialects and not load them in the context.
- Passes are expected to declare the dialects they will create entity from (Operations, Attributes, or Types), and the PassManager is loading Dialects into the Context when starting a pipeline.
This changes simplifies the configuration of the registration: a compiler only need to load the dialect for the IR it will emit, and the optimizer is self-contained and load the required Dialects. For example in the Toy tutorial, the compiler only needs to load the Toy dialect in the Context, all the others (linalg, affine, std, LLVM, ...) are automatically loaded depending on the optimization pipeline enabled.
This patch adds the translation of the proc_bind clause in a
parallel operation.
The values that can be specified for the proc_bind clause are
specified in the OMP.td tablegen file in the llvm/Frontend/OpenMP
directory. From this single source of truth enumeration for
proc_bind is generated in llvm and mlir (used in specification of
the parallel Operation in the OpenMP dialect). A function to return
the enum value from the string representation is also generated.
A new header file (DirectiveEmitter.h) containing definitions of
classes directive, clause, clauseval etc is created so that it can
be used in mlir as well.
Reviewers: clementval, jdoerfert, DavidTruby
Differential Revision: https://reviews.llvm.org/D84347
This simple patch translates the num_threads and if clauses of the parallel
operation. Also includes test cases.
A minor change was made to parsing of the if clause to parse AnyType and
return the parsed type. Updates to test cases also.
Reviewed by: SouraVX
Differential Revision: https://reviews.llvm.org/D84798
Due to the original type system implementation, LLVMDialect in MLIR contains an
LLVMContext in which the relevant objects (types, metadata) are created. When
an MLIR module using the LLVM dialect (and related intrinsic-based dialects
NVVM, ROCDL, AVX512) is converted to LLVM IR, it could only live in the
LLVMContext owned by the dialect. The type system no longer relies on the
LLVMContext, so this limitation can be removed. Instead, translation functions
now take a reference to an LLVMContext in which the LLVM IR module should be
constructed. The caller of the translation functions is responsible for
ensuring the same LLVMContext is not used concurrently as the translation no
longer uses a dialect-wide context lock.
As an additional bonus, this change removes the need to recreate the LLVM IR
module in a different LLVMContext through printing and parsing back, decreasing
the compilation overhead in JIT and GPU-kernel-to-blob passes.
Reviewed By: rriddle, mehdi_amini
Differential Revision: https://reviews.llvm.org/D85443
Previous type model in the LLVM dialect did not support identified structure
types properly and therefore could use stateless translations implemented as
free functions. The new model supports identified structs and must keep track
of the identified structure types present in the target context (LLVMContext or
MLIRContext) to avoid creating duplicate structs due to LLVM's type
auto-renaming. Expose the stateful type translation classes and use them during
translation, storing the state as part of ModuleTranslation.
Drop the test type translation mechanism that is no longer necessary and update
the tests to exercise type translation as part of the main translation flow.
Update the code in vector-to-LLVM dialect conversion that relied on stateless
translation to use the new class in a stateless manner.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D85297
A new first-party modeling for LLVM IR types in the LLVM dialect has been
developed in parallel to the existing modeling based on wrapping LLVM `Type *`
instances. It resolves the long-standing problem of modeling identified
structure types, including recursive structures, and enables future removal of
LLVMContext and related locking mechanisms from LLVMDialect.
This commit only switches the modeling by (a) renaming LLVMTypeNew to LLVMType,
(b) removing the old implementaiton of LLVMType, and (c) updating the tests. It
is intentionally minimal. Separate commits will remove the infrastructure built
for the transition and update API uses where appropriate.
Depends On D85020
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D85021
The current modeling of LLVM IR types in MLIR is based on the LLVMType class
that wraps a raw `llvm::Type *` and delegates uniquing, printing and parsing to
LLVM itself. This is model makes thread-safe type manipulation hard and is
being progressively replaced with a cleaner MLIR model that replicates the type
system. In the new model, LLVMType will no longer have an underlying LLVM IR
type. Restrict access to this type in the current model in preparation for the
change.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D84389
This patch introduces branch weights metadata to `llvm.cond_br` op in
LLVM Dialect. It is modelled as optional `ElementsAttr`, for example:
```
llvm.cond_br %cond weights(dense<[1, 3]> : vector<2xi32>), ^bb1, ^bb2
```
When exporting to proper LLVM, this attribute is transformed into metadata
node. The test for metadata creation is added to `../Target/llvmir.mlir`.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D83658
Linkage support is already present in the LLVM dialect, and is being translated
for globals other than functions. Translation support has been missing for
functions because their conversion goes through a different code path than
other globals.
Differential Revision: https://reviews.llvm.org/D84149
This patch introduces lowering of the OpenMP parallel operation to LLVM
IR using the OpenMPIRBuilder.
Functions topologicalSort and connectPhiNodes are generalised so that
they work with operations also. connectPhiNodes is also made static.
Lowering works for a parallel region with multiple blocks. Clauses and
arguments of the OpenMP operation are not handled.
Reviewed By: rriddle, anchu-rajendran
Differential Revision: https://reviews.llvm.org/D81660
`llvm.mlir.constant` was originally introduced as an LLVM dialect counterpart
to `std.constant`. As such, it was supporting "function pointer" constants
derived from the symbol name. This is different from `std.constant` that allows
for creation of a "function" constant since MLIR, unlike LLVM IR, supports
this. Later, `llvm.mlir.addressof` was introduced as an Op that obtains a
constant pointer to a global in the LLVM dialect. It naturally extends to
functions (in LLVM IR, functions are globals) and should be used for defining
"function pointer" values instead.
Fixes PR46344.
Differential Revision: https://reviews.llvm.org/D82667
Summary:
With this change, a function argument attribute of the form
"llvm.align" = <int> will be translated to the corresponding align
attribute in LLVM by the ModuleConversion.
Differential Revision: https://reviews.llvm.org/D82161
This simplifies a lot of handling of BoolAttr/IntegerAttr. For example, a lot of places currently have to handle both IntegerAttr and BoolAttr. In other places, a decision is made to pick one which can lead to surprising results for users. For example, DenseElementsAttr currently uses BoolAttr for i1 even if the user initialized it with an Array of i1 IntegerAttrs.
Differential Revision: https://reviews.llvm.org/D81047
Summary:
This patch adds support for flush operation in OpenMP dialect and translation of this construct to LLVM IR.
The OpenMP IRBuilder is used for this translation.
The patch includes code changes and testcase modifications.
Reviewed By: ftynse, kiranchandramohan
Differential Revision: https://reviews.llvm.org/D79937
This change makes the ModuleTranslation threadsafe by locking on the
LLVMContext. Furthermore, we now clone the llvm module into a new
context when compiling to PTX similar to what the OrcJit does.
Differential Revision: https://reviews.llvm.org/D78207
This class implements a switch-like dispatch statement for a value of 'T' using dyn_cast functionality. Each `Case<T>` takes a callable to be invoked if the root value isa<T>, the callable is invoked with the result of dyn_cast<T>() as a parameter.
Differential Revision: https://reviews.llvm.org/D78070
This patch adds support for taskwait and taskyield operations in OpenMP dialect and translation of the these constructs to LLVM IR. The OpenMP IRBuilder is used for this translation.
The patch includes code changes and a testcase modifications.
Differential Revision: https://reviews.llvm.org/D77634
Now that we have scalable vectors, there's a distinction that isn't
getting captured in the original SequentialType: some vectors don't have
a known element count, so counting the number of elements doesn't make
sense.
In some cases, there's a better way to express the commonality using
other methods. If we're dealing with GEPs, there's GEP methods; if we're
dealing with a ConstantDataSequential, we can query its element type
directly.
In the relatively few remaining cases, I just decided to write out
the type checks. We're talking about relatively few places, and I think
the abstraction doesn't really carry its weight. (See thread "[RFC]
Refactor class hierarchy of VectorType in the IR" on llvmdev.)
Differential Revision: https://reviews.llvm.org/D75661
Summary:
LLVM IR functions can have arbitrary attributes attached to them, some of which
affect may affect code transformations. Until we can model all attributes
consistently, provide a pass-through mechanism that forwards attributes from
the LLVMFuncOp in MLIR to LLVM IR functions during translation. This mechanism
relies on LLVM IR being able to recognize string representations of the
attributes and performs some additional checking to avoid hitting assertions
within LLVM code.
Differential Revision: https://reviews.llvm.org/D77072
This change adds a new option to the StandardToLLVM lowering to configure
the bitwidth of the index type independently of the target architecture's
pointer size.
Differential revision: https://reviews.llvm.org/D76353
The existing API for successor operands on operations is in the process of being removed. This revision simplifies a later one that completely removes the existing API.
Differential Revision: https://reviews.llvm.org/D75316