Merging regions can enable new sinking opportunities (e.g. if users of a
scalar value are moved from different VPBBs into the same VPBB). Sinking
in turn can also enable new merging opportunities (e.g. if a recipe
between to merge-able regions is moved.
To enable more sinking opportunities, repeat sinking & merging if
regions could be merged.
Also fix mergeReplicateRegions to return the correct Changed status.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D139788
Add and run VPlan transform to fold blocks with a single predecessor
into the predecessor. This remove redundant blocks and addresses a TODO
to replace special handling for the vector latch VPBB.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D139927
Just comparing constant trip counts causes LV to miss cases where the
vector loop body only executes once.
The motivation for this is to remove the need for unrolling to remove
vector loop back-edges, if the body only executes once in more cases.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D133017
This sets the stage for D133017 by moving out the code that performs
VPlan based simplifications to a separate transform that takes the
chosen VF & UF as arguments.
The main advantage is that this transform runs before any changes to
the CFG are being made. This allows using SCEV without worrying about
making queries while the IR is in an incomplete state.
Note that this patch switches the reasoning to use SCEV, but still only
simplifies loops with constant trip counts. Using SCEV here is needed to
access the backedge taken count, because the trip count IR value has not
been created yet.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D135017
In scalar plans, replicate recipes will only generate a single value per
UF, independent of whether they are uniform or not. So don't consider
uniformity for plans with scalar VFs only.
This allows us to handle a few additional cases in VPlan sinking instead
of non-VPlan sinkScalarOperands.
Depends on D133762.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D134218
This patch extends VP-based sinking to also sink VPScalarStepsRecipe.
This takes us a step closer towards retiring the IR based sinking.
The main change is extending VPScalarIVStepsRecipe::execute to support
executing in a replicate-region.
Depends on D133758.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D133760
This reverts commit bf15f1e489aa2f1ac13268c9081a992a8963eb5b.
The updated version fixes a crash by checking the induction kind instead
of the opcode; for integer inductions, the step is always added, but the
opcode might not be set.
This patch splits off the logic to transform the canonical IV to a
a value for an induction with a different start and step. This
transformation only needs to be done once (independent of VF/UF) and
enables sinking of VPScalarIVStepsRecipe as follow-up.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D133758
Replace custom code to check if only the first lane is used by generic
helper `onlyFirstLaneUsed`. This enables VPlan-based sinking in a few
additional cases and was suggested in D133760.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D136368
This patch moves the cost-based decision whether to use an intrinsic or
library call to the point where the recipe is created. This untangles
code-gen from the cost model and also avoids doing some extra work as
the information is already computed at construction.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D132585
In some cases, there may be widened users of inductions even though the
plan includes the scalar VF. In those cases, make sure we still replace
the VPWidenIntOrFpInductionRecipe with scalar steps, as otherwise we may
try to execute a VPWidenIntOrFpInductionRecipe with a scalar VF.
Alternatively the patch could also split the range if needed.
This fixes a crash exposed by D123720.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D128755
All information is already available in VPlan. Note that there are some
test changes, because we now can correctly look through instructions
like truncates to analyze the actual users.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D123541
This reverts commit 266ea446ab747671eb6c736569c3c9c5f3c53d11.
The reasons for the revert have been addressed by cleaning up condition
handling in VPlan and properly marking VPBranchOnMaskRecipe as using
scalars.
The test case for the revert from D123720 has been added in 3d663308a5d.
This patch removes CondBit and Predicate from VPBasicBlock. To do so,
the patch introduces a new branch-on-cond VPInstruction opcode to model
a branch on a condition explicitly.
This addresses a long-standing TODO/FIXME that blocks shouldn't be users
of VPValues. Those extra users can cause issues for VPValue-based
analyses that don't expect blocks. Addressing this fixme should allow us
to re-introduce 266ea446ab7476.
The generic branch opcode can also be used in follow-up patches.
Depends on D123005.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D126618
This patch updates the VPlan native path to use VPRegionBlocks for all
loops in a loop nest. Up to now, only the outermost loop used a region.
This is a step towards unifying both paths and keep things consistent
between them. It also prepares various code-gen parts for modeling the
pre-header in the inner loop vectorizer (D121624).
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D123005
This patch introduces a new VPLiveOut subclass of VPUser to model
exit values explicitly. The initial version handles exit values that
are neither part of induction or reduction chains nor first order
recurrence phis.
Fixes#51366, #54867, #55167, #55459
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D123537
Those helpers model properties of a user and they should also be
available to non-recipe users. This will be used in D123537 for a new
exit value user.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D124936
This reverts commit 8b48223447311af8b3022697dd58858e1ce6975f.
This triggers an assertion on a test case mentioned in D123720.
Revert while I investigate.
This reverts commit f4e1eaa3755a13f85696be3b74b387122b74a558.
The patch was originally reverted because it uncovered an issue that has
now been fixed in 0ef8ca6d88aa7e4abc.
This reverts commit 43842b887e0a7b918bb2d6c9f672025b2c621f8a while I
investigate a buildbot failure.
It also reverts the follow-up commit
2883de05145fc5b4afb99b91f69ebb835af36af5.
Remove one of the last remaining uses of ::needsVectorIV, preparing for
its removal. Now that usesScalars is available and based on the
information explicit in VPlan, there is no need to use the pre-computed
needsVectorIV.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D123720
This patch moves SCEV expansion of steps used by
VPWidenIntOrFpInductionRecipes to the pre-header using
VPExpandSCEVRecipe. This ensures that those steps are expanded while the
CFG is in a valid state. Previously, SCEV expansion may happen during
vector body code-generation, during which the CFG may be invalid,
causing issues with SCEV expansion.
Depends on D122095.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D122096
This addresses an existing TODO by keeping a mapping of external IR
Value * definitions wrapped in VPValues for use in a VPlan.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D123700
After D121624 models the pre-header in VPlan, VPExpandSCEVRecipes can be
placed there. This ensures SCEV expansion happens before modifying the
CFG during VPlan execution, when CFG is incomplete.
Depends on D121624.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D122095
Update all places that currently assume the entry block to the plan is
also the vector loop header to use getVectorLoopRegion instead.
getVectorLoopRegion will keep doing the right thing when the pre-header
is modeled explicitly (and becomes the new entry block in the plan).
This patch is a follow-up to D115953. It updates optimizeInductions
to also introduce new VPScalarIVStepsRecipes if an IV has both vector
and scalar uses.
It updates all uses that only need scalar values to use the newly
created recipe for the scalar steps.
This completes untangling of VPWidenIntOrFpInductionRecipe
code-generation. Now the recipe *only* creates the widened vector
values, as it says on the tin.
The code to genereate IR has been moved directly to
VPWidenIntOrFpInductionRecipe::execute.
Note that the recipe has been updated to hold a reference to
ScalarEvolution, which is needed to expand the step, until we can place
the corresponding SCEV expansion in the pre-header.
Depends on D120827.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D120828
Single value phis won't be modeled in VPlan. If the phi only gets used
outside the loop, the current code misses the fact that the incoming
value is not dead. Update the code to also look through such phis to
check for outside users.
Fixes#54266
Instead of relying on underlying instructions, this patch updates
VPScalarIVStepsRecipe to only store the required type information.
This removes access to unrelated information, as well as avoiding issues
with the same underlying instruction being shared by multiple recipes.
This change should only change the debug output and not cause any
codegen changes, hence NFCI.
This reverts the revert commit ff93260bf6bddfbad1fa65c4d5184988885b900f.
The underlying issue causing the PPC bot failures has been fixed in
cbaac1473403 and a corresponding test case has been added in
ad2cad1c521c.
Original message:
This patch adds a new VPScalarIVStepsRecipe to handle building scalar
steps.
In the first patch, it only handles the case where there is no vector
induction variable needed.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D115953
Exit values of vector inductions are generated completely independent of
the induction recipes. Consider them for removal, if they are not used
in loop.
This fixes a crash exposed by 49b23f451cf7130.
This patch adds a new VPScalarIVStepsRecipe to handle building scalar
steps.
In the first patch, it only handles the case where there is no vector
induction variable needed.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D115953
This patch adds a new transform to remove dead recipes. For now, it only
removes dead recipes in the header, to keep the number tests that require
updating manageable. Future patches will extend this to remove dead
recipes across the whole plan.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D118051
This removes the remaining dependence on LoopVectorizationCostModel from
buildScalarSteps and is required so it can be moved out of ILV.
It also improves allows us to remove a few unneeded instructions.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D116554
This patch tries to use an existing VPWidenCanonicalIVRecipe
instead of creating another step-vector for canonical
induction recipes in widenIntOrFpInduction.
This has the following benefits:
1. First step to avoid setting both vector and scalar values for the
same induction def.
2. Reducing complexity of widenIntOrFpInduction through making things
more explicit in VPlan
3. Only need to splat the vector IV for block in masks.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D116123
This explicitly records whether a scalar IV is needed in the
VPWidenIntOrFpInductionRecipe, to remove a dependence on the cost-model
during its ::execute.
It will also be used in D116123 to determine if a vector phi will be
generated.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D118167
This patch updates createBlockInMask to always generate
VPWidenCanonicalIVRecipe and adds a transform to optimize it away later,
if it is not needed.
This is a step towards breaking up VPWidenIntOrFpInductionRecipe and
explicitly distinguishing between vector phis and scalarizing.
Split off from D116123.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D117140
This patch simplifies handling of redundant induction casts, by
removing dead cast instructions after initial VPlan construction.
This has the following benefits:
1. fixes a crash
(see @test_optimized_cast_induction_feeding_first_order_recurrence)
2. Simplifies VPWidenIntOrFpInduction to a single-def recipes
3. Retires recordVectorLoopValueForInductionCast.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D115112
This allows easier access to the induction descriptor from VPlan,
without needing to go through Legal. VPReductionPHIRecipe already
contains a RecurrenceDescriptor in a similar fashion.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D115111