If there are function calls in the candidate loop and we have vectorized
variants available, try some wider VFs in case the conservative initial
maximum based on the widest types in the loop won't actually allow us
to make use of those function variants.
Replace ConditionalAssume set by treating conditional assumes like other
predicated instructions (i.e. create a VPReplicateRecipe with a mask)
and later remove any assume recipes with masks during VPlan cleanup.
This reduces coupling of VPlan construction and Legal by removing a
shared set between the 2 and results in a cleaner code structure
overall.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D157034
After 572cfa3fde5433, isUniform now checks VF based uniformity instead of
just invariance as before.
As follow-up cleanup suggested in D148841, separate the invariance check
out and update callers that currently check only for invariance.
This also moves the implementation of isUniform from LoopAccessAnalysis
to LoopVectorizationLegality, as LoopAccesAnalysis doesn't use the more
general isUniform.
This patch uses SCEV to check if a value is uniform across a given VF.
The basic idea is to construct SCEVs where the AddRecs of the loop are
adjusted to reflect the version in the vectorized loop (Step multiplied
by VF). We construct a SCEV for the value of the vector lane 0
(offset 0) compare it to the expressions for lanes 1 to the last vector
lane (VF - 1). If they are equal, consider the expression uniform.
While re-writing expressions, we also need to catch expressions we
cannot determine uniformity (e.g. SCEVUnknown).
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D148841
The original commit wasn't quite NFC, and this was caught by an arguably overly strong assert. Specifically, I'd failed to strip off the integer cast off the SCEV before saving it in the map. The result - other than a failed assert - is that we'd speculate on the casted unknown, not the unknown. The only case I can think of where that might change behavior would be a sext(i1 load). I doubt that case is interesting in practice, but it's good to be strictly NFC on this change regardless.
Original commit message follows..
The existing code makes it hard to tell that collectStridedAccess is really about identifying some loop invariant SCEV which is *profitable* to speculate is equal to one. The odd dual usage structure of Value and SCEV confuses this point.
We could choose to loosen the profitability analysis if desired. I'm not proposing doing so at this time as it exposes too many cases where the speculation is unprofitable.
Differential Revision: https://reviews.llvm.org/D147750
This reverts commit d5b840131223f2ffef4e48ca769ad1eb7bb1869a. Running this through broader testing after rebasing is revealing a crash. Reverting while I investigate.
The existing code makes it hard to tell that collectStridedAccess is really about identifying some loop invariant SCEV which is *profitable* to speculate is equal to one. The odd dual usage structure of Value and SCEV confuses this point.
We could choose to loosen the profitability analysis if desired. I'm not proposing doing so at this time as it exposes too many cases where the speculation is unprofitable.
Differential Revision: https://reviews.llvm.org/D147750
This reverts the revert commit 3d8ed8b5192a59104bfbd5bf7ac84d035ee0a4a5.
The new version of the patch adds a set to avoid duplicating work in
isFixedOrderRecurrence, which was previously done through the removed
SinkAfter map.
Original commit message:
Building on D142885 and D142589, retire the SinkAfter map from the
recurrence handling code. It is replaced by checking whether it is
possible to sink all users of a recurrence directly in VPlan. This
results in simpler code overall and allows to handle additional cases
(see the improvements in @test_crash).
Depends on D142885.
Depends on D142589.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D142886
Building on D142885 and D142589, retire the SinkAfter map from the
recurrence handling code. It is replaced by checking whether it is
possible to sink all users of a recurrence directly in VPlan. This
results in simpler code overall and allows to handle additional cases
(see the improvements in @test_crash).
Depends on D142885.
Depends on D142589.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D142886
(JFYI - This has been heavily reframed since original attempt at landing.)
This change updates the InductionDescriptor logic to allow matching a pointer IV with a non-constant stride, but also updates the LoopVectorizer to bailout on such descriptors by default. This preserves the default vectorizer behavior.
In review, it was pointed out that there's multiple unfortunate performance implications which need to be addressed before this can be enabled. Having a flag allows us to exercise the behavior, and write test cases for logic which is otherwise unreachable (or hard to reach).
This will also enable non-constant stride pointer recurrences for other consumers. I've audited said code, and don't see any obvious issues.
Differential Revision: https://reviews.llvm.org/D147336
LLVM has the ability to vectorize using function variants that require
a mask by creating an all-true mask, and to vectorize a conditional
call via scalarization, now we want to join the two parts together
and use a masked variant when a mask is required.
Reviewed By: david-arm
Differential Revision: https://reviews.llvm.org/D136251
This patch adds support for scalarizing calls to a function when
there is a vector variant that cannot be used, either because there
isn't a masked variant or because the cost model indicated a VF
without a masked variant was better.
Reviewed By: paulwalker-arm
Differential Revision: https://reviews.llvm.org/D134422
Use LoopAccessInfoManager directly instead of various GetLAA lambdas.
Depends on D134608.
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D134609
Fixes#57572
Generally LICM pass is responsible for sinking out code that calculates
invariant address inside loop as it only needed to be calculated once.
But in rare case it does not happen we will not be vectorizing the
loop.
Differential Revision: https://reviews.llvm.org/D133687
This is purely NFC restructure in advance of a change which actually exposes zero strides. This is mostly because I find this interface confusing each time I look at it.
If the incoming previous value of a fixed-order recurrence is a phi in
the header, go through incoming values from the latch until we find a
non-phi value. Use this as the new Previous, all uses in the header
will be dominated by the original phi, but need to be moved after
the non-phi previous value.
At the moment, fixed-order recurrences are modeled as a chain of
first-order recurrences.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D119661
As integer div/rem constant expressions are no longer supported,
constants can no longer trap and are always safe to speculate.
Remove the Constant::canTrap() method and its usages.
This patch replaces the tight hard cut-off for the number of runtime
checks with a more accurate cost-driven approach.
The new approach allows vectorization with a larger number of runtime
checks in general, but only executes the vector loop (and runtime checks) if
considered profitable at runtime. Profitable here means that the cost-model
indicates that the runtime check cost + vector loop cost < scalar loop cost.
To do that, LV computes the minimum trip count for which runtime check cost
+ vector-loop-cost < scalar loop cost.
Note that there is still a hard cut-off to avoid excessive compile-time/code-size
increases, but it is much larger than the original limit.
The performance impact on standard test-suites like SPEC2006/SPEC2006/MultiSource
is mostly neutral, but the new approach can give substantial gains in cases where
we failed to vectorize before due to the over-aggressive cut-offs.
On AArch64 with -O3, I didn't observe any regressions outside the noise level (<0.4%)
and there are the following execution time improvements. Both `IRSmk` and `srad` are relatively short running, but the changes are far above the noise level for them on my benchmark system.
```
CFP2006/447.dealII/447.dealII -1.9%
CINT2017rate/525.x264_r/525.x264_r -2.2%
ASC_Sequoia/IRSmk/IRSmk -9.2%
Rodinia/srad/srad -36.1%
```
`size` regressions on AArch64 with -O3 are
```
MultiSource/Applications/hbd/hbd 90256.00 106768.00 18.3%
MultiSourc...ks/ASCI_Purple/SMG2000/smg2000 240676.00 257268.00 6.9%
MultiSourc...enchmarks/mafft/pairlocalalign 472603.00 489131.00 3.5%
External/S...2017rate/525.x264_r/525.x264_r 613831.00 630343.00 2.7%
External/S...NT2006/464.h264ref/464.h264ref 818920.00 835448.00 2.0%
External/S...te/538.imagick_r/538.imagick_r 1994730.00 2027754.00 1.7%
MultiSourc...nchmarks/tramp3d-v4/tramp3d-v4 1236471.00 1253015.00 1.3%
MultiSource/Applications/oggenc/oggenc 2108147.00 2124675.00 0.8%
External/S.../CFP2006/447.dealII/447.dealII 4742999.00 4759559.00 0.3%
External/S...rate/510.parest_r/510.parest_r 14206377.00 14239433.00 0.2%
```
Reviewed By: lebedev.ri, ebrevnov, dmgreen
Differential Revision: https://reviews.llvm.org/D109368
The implementations of VPlanDominatorTree, VPlanLoopInfo and VPlanPredicator
are all incompatible with modeling loops in VPlans as region without
explicit back-edges.
Those pieces are not actively used and only exercised by a few gtest
unit tests. They are at the moment blocking progress towards unifying
the native and inner-loop vectorizer paths in D121624 and D123005.
I think we should not block forward progress on unused pieces of code,
so this patch removes the utilities for now. The plan is to re-introduce
them as needed in a way that is compatible with the unified VPlan scheme
used in both the inner loop vectorizer and the native path.
Reviewed By: sguggill
Differential Revision: https://reviews.llvm.org/D123017
Adds ability to vectorize loops containing a store to a loop-invariant
address as part of a reduction that isn't converted to SSA form due to
lack of aliasing info. Runtime checks are generated to ensure the store
does not alias any other accesses in the loop.
Ordered fadd reductions are not yet supported.
Differential Revision: https://reviews.llvm.org/D110235
This adds fptosi_sat and fptoui_sat to the list of trivially
vectorizable functions, mainly so that the loop vectorizer can vectorize
the instruction. Marking them as trivially vectorizable also allows them
to be SLP vectorized, and Scalarized.
The signature of a fptosi_sat requires two type overrides
(@llvm.fptosi.sat.v2i32.v2f32), unlike other intrinsics that often only
take a single. This patch alters hasVectorInstrinsicOverloadedScalarOpd
to isVectorIntrinsicWithOverloadTypeAtArg, so that it can mark the first
operand of the intrinsic as a overloaded (but not scalar) operand.
Differential Revision: https://reviews.llvm.org/D124358
This patch moves pointer induction handling from VPWidenPHIRecipe to its
own recipe. In the process, it adds all information required to generate
code for pointer inductions without relying on Legal to access the list
of induction phis.
Alternatively VPWidenPHIRecipe could also take an optional pointer to InductionDescriptor.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D121615
Note that this doesn't actually cause the top level predicate to become a non-union just yet.
The * above comes from a case in the LoopVectorizer where a predicate which is later proven no longer blocks vectorization due to a change from checking if predicates exists to whether the predicate is possibly false.
The availability of SVE should be sufficient to enable scalable
auto-vectorization.
This patch adds a new TTI interface to query the target what style of
vectorization it wants when scalable vectors are available. For other
targets than AArch64, this currently defaults to 'FixedWidthOnly'.
Differential Revision: https://reviews.llvm.org/D115651
This allows easier access to the induction descriptor from VPlan,
without needing to go through Legal. VPReductionPHIRecipe already
contains a RecurrenceDescriptor in a similar fashion.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D115111
Pass the access type to getPtrStride(), so it is not determined
from the pointer element type. Many cases still fetch the element
type at a higher level though, so this only partially addresses
the issue.
This change enables vectorization of multiple exit loops when the exit count is statically computable. That requirement - shared with the rest of LV - in turn requires each exit to be analyzeable and to dominate the latch.
The majority of work to support this was done in a set of previous patches. In particular,, 72314466 avoids having multiple edges from the middle block to the exits, and 4b33b2387 which added support for non-latch single exit and multiple exits with a single exiting block. As a result, this change is basically just removing a bailout and adjusting some tests now that the prerequisite work is done and has stuck in tree for a bit.
Differential Revision: https://reviews.llvm.org/D105817
We were passing the RecurrenceDescriptor by value to most of the reduction analysis methods, despite it being rather bulky with TrackingVH members (that can be costly to copy). In all these cases we're only using the RecurrenceDescriptor for rather basic purposes (access to types/kinds etc.).
Differential Revision: https://reviews.llvm.org/D104029
As noted in https://bugs.llvm.org/show_bug.cgi?id=46666, the current behavior of assuming if-conversion safety if a loop is annotated parallel (`!llvm.loop.parallel_accesses`), is not expectable, the documentation for this behavior was since removed from the LangRef again, and can lead to invalid reads.
This was observed in POCL (https://github.com/pocl/pocl/issues/757) and would require similar workarounds in current work at hipSYCL.
The question remains why this was initially added and what the implications of removing this optimization would be.
Do we need an alternative mechanism to propagate the information about legality of if-conversion?
Or is the idea that conditional loads in `#pragma clang loop vectorize(assume_safety)` can be executed unmasked without additional checks flawed in general?
I think this implication is not part of what a user of that pragma (and corresponding metadata) would expect and thus dangerous.
Only two additional tests failed, which are adapted in this patch. Depending on the further direction force-ifcvt.ll should be removed or further adapted.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D103907
When loop hints are passed via metadata, the allowReordering function
in LoopVectorizationLegality will allow the order of floating point
operations to be changed:
bool allowReordering() const {
// When enabling loop hints are provided we allow the vectorizer to change
// the order of operations that is given by the scalar loop. This is not
// enabled by default because can be unsafe or inefficient.
The -enable-strict-reductions flag introduced in D98435 will currently only
vectorize reductions in-loop if hints are used, since canVectorizeFPMath()
will return false if reordering is not allowed.
This patch changes canVectorizeFPMath() to query whether it is safe to
vectorize the loop with ordered reductions if no hints are used. For
testing purposes, an additional flag (-hints-allow-reordering) has been
added to disable the reordering behaviour described above.
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D101836
This patch adds a new option to the LoopVectorizer to control how
scalable vectors can be used.
Initially, this suggests three levels to control scalable
vectorization, although other more aggressive options can be added in
the future.
The possible options are:
- Disabled: Disables vectorization with scalable vectors.
- Enabled: Vectorize loops using scalable vectors or fixed-width
vectors, but favors fixed-width vectors when the cost
is a tie.
- Preferred: Like 'Enabled', but favoring scalable vectors when the
cost-model is inconclusive.
Reviewed By: paulwalker-arm, vkmr
Differential Revision: https://reviews.llvm.org/D101945