When calling a type-bound procedure from a polymoprhic array element,
the dynamic type needs to be extracted from the array descriptor
and passed to the embox operation for the pass-object.
Depends on D135809
Reviewed By: jeanPerier
Differential Revision: https://reviews.llvm.org/D135856
TARGET dummy arguments have fir.target attribute attached to them,
but globals do not have any sign of TARGET. This patch adds
target attribute for globals, which can be queried via
::fir::GlobalOp::getTarget().
Differential Revision: https://reviews.llvm.org/D135313
This patch updates lowering to produce the correct fir.class types for
various polymorphic and unlimited polymoprhic entities cases. This is only the
lowering. Some TODOs have been added to the CodeGen part to avoid errors since
this part still need to be updated as well.
The fir.class<*> representation for unlimited polymorphic entities mentioned in
the document has been updated to fir.class<none> to avoid useless work in pretty
parse/printer.
This patch is part of the implementation of the poltymorphic
entities.
https://github.com/llvm/llvm-project/blob/main/flang/docs/PolymorphicEntities.md
Depends on D134957
Reviewed By: jeanPerier
Differential Revision: https://reviews.llvm.org/D134959
NULL intrinsic with a MOLD argument can be used in a type constructor.
This patch handles this use case with a specific lowering that create
an unallocated box with the MOLD type.
Reviewed By: PeteSteinfeld
Differential Revision: https://reviews.llvm.org/D134554
BIND(C) Function returning character must return it by value and
not as hidden argument like done currently. This patch update the
code to return it by value for both use cases.
Reviewed By: PeteSteinfeld
Differential Revision: https://reviews.llvm.org/D134530
In some case, the ENTRY statement in a procedure is including some
dummy argument. Until now, deallocation of intent(out) allocatable was
not checking for this and it could result in a segmentation fault.
This patch avoids deallocation when the value is not in the ENTRY stmt.
Reviewed By: jeanPerier, PeteSteinfeld
Differential Revision: https://reviews.llvm.org/D134342
From Fortran 2018 standard 9.7.3.2 point 6:
When a procedure is invoked, any allocated allocatable object that is an actual
argument corresponding to an INTENT (OUT) allocatable dummy argument is
deallocated; any allocated allocatable object that is a subobject of an actual
argument corresponding to an INTENT (OUT) dummy argument is deallocated.
Deallocation is done on the callee side. For BIND(C) procedure, the deallocation
is also done on the caller side.
Reviewed By: jeanPerier
Differential Revision: https://reviews.llvm.org/D133348
Non-global variable which can be in threadprivate directive must be one
variable in main program, and it has implicit SAVE attribute. Take it as
with SAVE attribute, so to create GlobalOp for it to simplify the
translation to LLVM IR.
Reviewed By: NimishMishra
Differential Revision: https://reviews.llvm.org/D127047
This patch is part of the upstreaming effort from fir-dev branch.
This is the last patch for the upstreaming effort.
Reviewed By: jeanPerier
Differential Revision: https://reviews.llvm.org/D129187
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: PeteSteinfeld
Differential Revision: https://reviews.llvm.org/D128935
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Co-authored-by: Peter Steinfeld <psteinfeld@nvidia.com>
Even though the array is declared with '*' upper bounds, it has an
initial value that has a statically known shape. Use the shape from
the type of the initializer when the declared size is '*'.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: jeanPerier
Differential Revision: https://reviews.llvm.org/D128889
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
- BIND(C) was ignored in lowering for objects (it can be used on
module and common blocks): use the bind name as the fir.global name.
- When an procedure is declared BIND(C) indirectly via an interface,
it should have a BIND(C) name. This was not the case because
GetBindName()/bindingName() return nothing in this case: detect this
case in mangler.cpp and use the symbol name.
Add TODOs for corner cases:
- BIND(C) module variables may be initialized on the C side. This does
not fit well with the current linkage strategy. Add a TODO until this
is revisited.
- BIND(C) internal procedures should not have a binding label (see
Fortran 2018 section 18.10.2 point 2), yet we currently lower them as
if they were BIND(C) external procedure.
I think this and the indirect interface case should really be
handled by symbol.GetBindName instead of adding more logic in
lowering to deal with this case: add a TODO.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: klausler
Differential Revision: https://reviews.llvm.org/D128340
Co-authored-by: Jean Perier <jperier@nvidia.com>
Remove a backwards dependence from Optimizer -> Lower by moving Todo.h
to the optimizer and out of lowering.
This patch is part of the upstreaming effort from fir-dev branch.
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Reviewed By: jeanPerier
Differential Revision: https://reviews.llvm.org/D127292
Move tthe function to allow its usage in the Optimizer/Builder functions.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: jeanPerier
Differential Revision: https://reviews.llvm.org/D127295
A dummy argument in an entry point of a subprogram with multiple
entry points need not be defined in other entry points. It is only
legal to reference such an argument when calling an entry point that
does have a definition. An entry point without such a definition
needs a local "substitute" definition sufficient to generate code.
It is nonconformant to reference such a definition at runtime.
Most such definitions and associated code will be deleted as dead
code at compile time. However, that is not always possible, as in
the following code. This code is conformant if all calls to entry
point ss set m=3, and all calls to entry point ee set n=3.
subroutine ss(a, b, m, d, k) ! no x, y, n
integer :: a(m), b(a(m)), m, d(k)
integer :: x(n), y(x(n)), n
integer :: k
1 print*, m, k
print*, a
print*, b
print*, d
if (m == 3) return
entry ee(x, y, n, d, k) ! no a, b, m
print*, n, k
print*, x
print*, y
print*, d
if (n /= 3) goto 1
end
integer :: xx(3), yy(5), zz(3)
xx = 5
yy = 7
zz = 9
call ss(xx, yy, 3, zz, 3)
call ss(xx, yy, 3, zz, 3)
end
Lowering currently generates fir::UndefOp's for all unused arguments.
This is usually ok, but cases such as the one here incorrectly access
unused UndefOp arguments for m and n from an entry point that doesn't
have a proper definition.
The problem is addressed by creating a more complete definition of an
unused argument in most cases. This is implemented in large part by
moving the definition of an unused argument from mapDummiesAndResults
to mapSymbolAttributes. The code in mapSymbolAttributes then chooses
one of three code generation options, depending on information
available there.
This patch deals with dummy procedures in alternate entries, and adds
a TODO for procedure pointers (the PFTBuilder is modified to analyze
procedure pointer symbol so that they are not silently ignored, and
instead hits proper TODOs).
BoxAnalyzer is also changed because assumed-sized arrays were wrongfully
categorized as constant shape arrays. This had no impact, except when
there were unused entry points.
Co-authored-by: jeanPerier <jperier@nvidia.com>
Differential Revision: https://reviews.llvm.org/D125867
A recent change is eliciting a valid warning from the out-of-tree
flang build bot; fix by using a reference in a range-based for().
Differential Revision: https://reviews.llvm.org/D124682
Semantics is not preventing a named common block to appear with
different size in a same file (named common block should always have
the same storage size (see Fortran 2018 8.10.2.5), but it is a common
extension to accept different sizes).
Lowering was not coping with this well, since it just use the first
common block appearance, starting with BLOCK DATAs to define common
blocks (this also was an issue with the blank common block, which can
legally appear with different size in different scoping units).
Semantics is also not preventing named common from being initialized
outside of a BLOCK DATA, and lowering was dealing badly with this,
since it only gave an initial value to common blocks Globals if the
first common block appearance, starting with BLOCK DATAs had an initial
value.
Semantics is also allowing blank common to be initialized, while
lowering was assuming this would never happen, and was never creating
an initial value for it.
Lastly, semantics was not complaining if a COMMON block was initialized
in several scoping unit in a same file, while lowering can only generate
one of these initial value.
To fix this, add a structure to keep track of COMMON block properties
(biggest size, and initial value if any) at the Program level. Once the
size of a common block appearance is know, the common block appearance
is checked against this information. It allows semantics to emit an error
in case of multiple initialization in different scopes of a same common
block, and to warn in case named common blocks appears with different
sizes. Lastly, this allows lowering to use the Program level info about
common blocks to emit the right GlobalOp for a Common Block, regardless
of the COMMON Block appearances order: It emits a GlobalOp with the
biggest size, whose lowest bytes are initialized with the initial value
if any is given in a scope where the common block appears.
Lowering is updated to go emit the common blocks before anything else so
that the related GlobalOps are available when lowering the scopes where
common block appear. It is also updated to not assume that blank common
are never initialized.
Differential Revision: https://reviews.llvm.org/D124622
Follow up of https://reviews.llvm.org/D121488. Ensure lower bounds
are `1` when the related dimension extent is zero. Note that lower
bounds from descriptors are now guaranteed to fulfill this property
after the runtime/codegen patches.
Also fixes explicit shape array extent lowering when instantiating
variables to deal with negative extent cases (issue found while testing
LBOUND edge case). This notably caused allocation crashes when dealing
with automatic arrays with reversed bounds or negative size
specification expression. The standard specifies that the extent of such
arrays is zero. This change has some ripple effect in the current lit
tests.
Add move two helpers as part of this change:
- Add a helper to tell if a fir::ExtendedValue describes an assumed size
array (last dimension extent is unknown to the compiler, both at compile
time and runtime).
- Move and share getIntIfConstant from Character.cpp so that it can be
used elsewhere (NFC).
Differential Revision: https://reviews.llvm.org/D122467
There is no need to lower the implicit lower bounds for assumed-shape
array in lowerExplicitLowerBounds. Remove the unused code.
Reviewed By: Jean Perier
Differential Revision: https://reviews.llvm.org/D122280
In FIR, we want to wrap function pointers in a special box known as a
boxproc value. Fortran has a limited form of dynamic scoping
[https://tinyurl.com/2p8v2hw7] between "host procedures" and "internal
procedures". There are a number of implementations possible.
Boxproc typed values abstract away the implementation details of when a
function pointer can be passed directly (as a raw address) and when a
function pointer has to account for the presence of a dynamic scope.
When lowering Fortran syntax to FIR, all function pointers are emboxed
as boxproc values.
When creating LLVM IR, we must strip away the abstraction and produce
low-level LLVM "assembly" code. This patch implements that
transformation as converting the boxproc values to either raw function
pointers or executable trampolines on the stack as needed. The
trampoline then captures the dynamic scope context within an executable
thunk that can be passed instead of the function's raw address.
Some extra handling is required for Fortran functions that return a
character value to deal with LEN values here.
Some of the code in Bridge.cpp and ConvertExpr.cpp and be re-arranged to
faciliate the upstreaming effort.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: jeanPerier, PeteSteinfeld
Differential Revision: https://reviews.llvm.org/D122223
Co-authored-by: mleair <leairmark@gmail.com>
Co-authored-by: Jean Perier <jperier@nvidia.com>
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Co-authored-by: V Donaldson <vdonaldson@nvidia.com>
Co-authored-by: Kiran Chandramohan <kiran.chandramohan@arm.com>
This patch lowers more cases of pointer assignments and
disassociations.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: PeteSteinfeld, schweitz
Differential Revision: https://reviews.llvm.org/D121697
Co-authored-by: V Donaldson <vdonaldson@nvidia.com>
Co-authored-by: Jean Perier <jperier@nvidia.com>
Co-authored-by: mleair <leairmark@gmail.com>
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
This patch lowers common block variable to FIR.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: PeteSteinfeld
Differential Revision: https://reviews.llvm.org/D121610
Co-authored-by: V Donaldson <vdonaldson@nvidia.com>
Co-authored-by: Jean Perier <jperier@nvidia.com>
This patch adds tests and missing lowering
code to lower elemental function/subroutine calls
in array expression
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: PeteSteinfeld
Differential Revision: https://reviews.llvm.org/D121474
Co-authored-by: Jean Perier <jperier@nvidia.com>
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
This patch lowers pointer component part of derived types to
FIR.
This patch is part of the upstreaming effort from fir-dev branch.
Depends on D121383
Reviewed By: PeteSteinfeld, schweitz
Differential Revision: https://reviews.llvm.org/D121384
Co-authored-by: V Donaldson <vdonaldson@nvidia.com>
Co-authored-by: Jean Perier <jperier@nvidia.com>
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
This patches adds the code to handle host association for
inner subroutines and functions.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: jeanPerier
Differential Revision: https://reviews.llvm.org/D121134
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Co-authored-by: Jean Perier <jperier@nvidia.com>
Co-authored-by: V Donaldson <vdonaldson@nvidia.com>
This patch enables the lowering of various allocatable assignements
for character type and numeric types.
This patch is part of the upstreaming effort from fir-dev branch.
Depends on D120819
Reviewed By: PeteSteinfeld, schweitz
Differential Revision: https://reviews.llvm.org/D120820
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Co-authored-by: Jean Perier <jperier@nvidia.com>
This patch enables the lowering of basic modules and functions/subroutines
in modules.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: PeteSteinfeld
Differential Revision: https://reviews.llvm.org/D120819
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Co-authored-by: Jean Perier <jperier@nvidia.com>
This patch adds couple of tests for allocatable
on the callee side. Lowering for some missing underlying features
is added as well.
This patch is part of the upstreaming effort from fir-dev branch.
Depends on D120744
Reviewed By: PeteSteinfeld, schweitz
Differential Revision: https://reviews.llvm.org/D120746
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Co-authored-by: Jean Perier <jperier@nvidia.com>
Co-authored-by: V Donaldson <vdonaldson@nvidia.com>
This patch enables dynamic array lowering
and use the funcationality inside some IO tests.
This patch is part of the upstreaming effort from fir-dev branch.
Depends on D120743
Reviewed By: PeteSteinfeld, schweitz
Differential Revision: https://reviews.llvm.org/D120744
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Co-authored-by: Jean Perier <jperier@nvidia.com>
Co-authored-by: V Donaldson <vdonaldson@nvidia.com>
This patch enables the lowering of the print, read and write
IO statements.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: PeteSteinfeld, schweitz
Differential Revision: https://reviews.llvm.org/D120743
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Co-authored-by: Jean Perier <jperier@nvidia.com>
Co-authored-by: V Donaldson <vdonaldson@nvidia.com>
Co-authored-by: Kiran Chandramohan <kiran.chandramohan@arm.com>
Handles function with character return.
Character scalar results are passed as arguments in lowering so
that an assumed length character function callee can access the result
length.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: PeteSteinfeld, schweitz
Differential Revision: https://reviews.llvm.org/D120558
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Co-authored-by: Jean Perier <jperier@nvidia.com>
Co-authored-by: V Donaldson <vdonaldson@nvidia.com>
This patch handles lowering of simple array assignment.
```
a(:) = 10
```
or
```
a(1) = 1
```
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: PeteSteinfeld, schweitz
Differential Revision: https://reviews.llvm.org/D120501
Co-authored-by: Jean Perier <jperier@nvidia.com>
Co-authored-by: V Donaldson <vdonaldson@nvidia.com>
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Add lowering for simple assignement on allocatable
scalars.
This patch is part of the upstreaming effort from fir-dev branch.
Depends on D120483
Reviewed By: PeteSteinfeld
Differential Revision: https://reviews.llvm.org/D120488
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Co-authored-by: Jean Perier <jperier@nvidia.com>
This patch introduce basic function/subroutine calls.
Because of the state of lowering only simple scalar arguments
can be used in the calls. This will be enhanced in follow up
patches with arrays, allocatable, pointer ans so on.
```
subroutine sub1()
end
subroutine sub2()
call sub1()
end
```
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: schweitz
Differential Revision: https://reviews.llvm.org/D120419
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Co-authored-by: Jean Perier <jperier@nvidia.com>
Co-authored-by: V Donaldson <vdonaldson@nvidia.com>
This patch adds infrsatrcutrue to be able to lower
arguments in functions and subroutines.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: PeteSteinfeld
Differential Revision: https://reviews.llvm.org/D119957
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Co-authored-by: Jean Perier <jperier@nvidia.com>
This patch add lowering for simple local variable.
- The signatures in `ConvertType.h` have been simplified to take advantage of the `AbstractConverter`.
- The lowering make use of the `allocateLocal` from the `FirOpBuilder`.
This lowering is used in patch D118982
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: kiranchandramohan, jeanPerier, schweitz
Differential Revision: https://reviews.llvm.org/D118978