This patch adds the 'vector.load' and 'vector.store' ops to the Vector
dialect [1]. These operations model *contiguous* vector loads and stores
from/to memory. Their semantics are similar to the 'affine.vector_load' and
'affine.vector_store' counterparts but without the affine constraints. The
most relevant feature is that these new vector operations may perform a vector
load/store on memrefs with a non-vector element type, unlike 'std.load' and
'std.store' ops. This opens the representation to model more generic vector
load/store scenarios: unaligned vector loads/stores, perform scalar and vector
memory access on the same memref, decouple memory allocation constraints from
memory accesses, etc [1]. These operations will also facilitate the progressive
lowering of both Affine vector loads/stores and Vector transfer reads/writes
for those that read/write contiguous slices from/to memory.
In particular, this patch adds the 'vector.load' and 'vector.store' ops to the
Vector dialect, implements their lowering to the LLVM dialect, and changes the
lowering of 'affine.vector_load' and 'affine.vector_store' ops to the new vector
ops. The lowering of Vector transfer reads/writes will be implemented in the
future, probably as an independent pass. The API of 'vector.maskedload' and
'vector.maskedstore' has also been changed slightly to align it with the
transfer read/write ops and the vector new ops. This will improve reusability
among all these operations. For example, the lowering of 'vector.load',
'vector.store', 'vector.maskedload' and 'vector.maskedstore' to the LLVM dialect
is implemented with a single template conversion pattern.
[1] https://llvm.discourse.group/t/memref-type-and-data-layout/
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D96185
This reverts commit 511dd4f4383b1c2873beac4dbea2df302f1f9d0c along with
a couple fixes.
Original message:
Now the context is the first, rather than the last input.
This better matches the rest of the infrastructure and makes
it easier to move these types to being declaratively specified.
Phabricator: https://reviews.llvm.org/D96111
Now the context is the first, rather than the last input.
This better matches the rest of the infrastructure and makes
it easier to move these types to being declaratively specified.
Differential Revision: https://reviews.llvm.org/D96111
Historically, the Vector to LLVM dialect conversion subsumed the Standard to
LLVM dialect conversion patterns. This was necessary because the conversion
infrastructure did not have sufficient support for reconciling type
conversions. This support is now available. Only keep the patterns related to
the Vector dialect in the Vector to LLVM conversion and require type casts
operations to be inserted if necessary. These casts will be removed by
following conversions if possible. Update integration tests to also run the
Standard to LLVM conversion.
There is a significant amount of test churn, which is due to (a) unnecessarily
strict tests in VectorToLLVM and (b) many patterns actually targeting Standard
dialect ops instead of LLVM dialect ops leading to tests actually exercising a
Vector->Standard->LLVM conversion. This churn is a good illustration of the
reason to make the conversion partial: now the tests only check the code in the
Vector to LLVM conversion and will not be randomly broken by changes in
Standard to LLVM conversion.
Arguably, it may be possible to extract Vector to Standard patterns into a
separate pass, but given the ongoing splitting of the Standard dialect, such
pass will be short-lived and will require further refactoring.
Depends On D95626
Reviewed By: nicolasvasilache, aartbik
Differential Revision: https://reviews.llvm.org/D95685
Add the conversion pattern for vector.bitcast to lower it to
the LLVM Dialect.
Reviewed By: ThomasRaoux, aartbik
Differential Revision: https://reviews.llvm.org/D95579
Continue the convergence between LLVM dialect and built-in types by using the
built-in vector type whenever possible, that is for fixed vectors of built-in
integers and built-in floats. LLVM dialect vector type is still in use for
pointers, less frequent floating point types that do not have a built-in
equivalent, and scalable vectors. However, the top-level `LLVMVectorType` class
has been removed in favor of free functions capable of inspecting both built-in
and LLVM dialect vector types: `LLVM::getVectorElementType`,
`LLVM::getNumVectorElements` and `LLVM::getFixedVectorType`. Additional work is
necessary to design an implemented the extensions to built-in types so as to
remove the `LLVMFixedVectorType` entirely.
Note that the default output format for the built-in vectors does not have
whitespace around the `x` separator, e.g., `vector<4xf32>` as opposed to the
LLVM dialect vector type format that does, e.g., `!llvm.vec<4 x fp128>`. This
required changing the FileCheck patterns in several tests.
Reviewed By: mehdi_amini, silvas
Differential Revision: https://reviews.llvm.org/D94405
Adding the ability to index the base address brings these operations closer
to the transfer read and write semantics (with lowering advantages), ensures
more consistent use in vector MLIR code (easier to read), and reduces the
amount of code duplication to lower memrefs into base addresses considerably
(making codegen less error-prone).
Reviewed By: ThomasRaoux
Differential Revision: https://reviews.llvm.org/D94278
Continue the convergence between LLVM dialect and built-in types by replacing
the bfloat, half, float and double LLVM dialect types with their built-in
counterparts. At the API level, this is a direct replacement. At the syntax
level, we change the keywords to `bf16`, `f16`, `f32` and `f64`, respectively,
to be compatible with the built-in type syntax. The old keywords can still be
parsed but produce a deprecation warning and will be eventually removed.
Depends On D94178
Reviewed By: mehdi_amini, silvas, antiagainst
Differential Revision: https://reviews.llvm.org/D94179
The LLVM dialect type system has been closed until now, i.e. did not support
types from other dialects inside containers. While this has had obvious
benefits of deriving from a common base class, it has led to some simple types
being almost identical with the built-in types, namely integer and floating
point types. This in turn has led to a lot of larger-scale complexity: simple
types must still be converted, numerous operations that correspond to LLVM IR
intrinsics are replicated to produce versions operating on either LLVM dialect
or built-in types leading to quasi-duplicate dialects, lowering to the LLVM
dialect is essentially required to be one-shot because of type conversion, etc.
In this light, it is reasonable to trade off some local complexity in the
internal implementation of LLVM dialect types for removing larger-scale system
complexity. Previous commits to the LLVM dialect type system have adapted the
API to support types from other dialects.
Replace LLVMIntegerType with the built-in IntegerType plus additional checks
that such types are signless (these are isolated in a utility function that
replaced `isa<LLVMType>` and in the parser). Temporarily keep the possibility
to parse `!llvm.i32` as a synonym for `i32`, but add a deprecation notice.
Reviewed By: mehdi_amini, silvas, antiagainst
Differential Revision: https://reviews.llvm.org/D94178
BEGIN_PUBLIC
[mlir] Remove LLVMType, LLVM dialect types now derive Type directly
This class has become a simple `isa` hook with no proper functionality.
Removing will allow us to eventually make the LLVM dialect type infrastructure
open, i.e., support non-LLVM types inside container types, which itself will
make the type conversion more progressive.
Introduce a call `LLVM::isCompatibleType` to be used instead of
`isa<LLVMType>`. For now, this is strictly equivalent.
END_PUBLIC
Depends On D93681
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D93713
Implement Bug 46698, making ODS synthesize a getType() method that returns a
specific C++ class for OneResult methods where we know that class. This eliminates
a common source of casts in things like:
myOp.getType().cast<FIRRTLType>().getPassive()
because we know that myOp always returns a FIRRTLType. This also encourages
op authors to type their results more tightly (which is also good for
verification).
I chose to implement this by splitting the OneResult trait into itself plus a
OneTypedResult trait, given that many things are using `hasTrait<OneResult>`
to conditionalize various logic.
While this changes makes many many ops get more specific getType() results, it
is generally drop-in compatible with the previous behavior because 'x.cast<T>()'
is allowed when x is already known to be a T. The one exception to this is that
we need declarations of the types used by ops, which is why a couple headers
needed additional #includes.
I updated a few things in tree to remove the now-redundant `.cast<>`'s, but there
are probably many more than can be removed.
Differential Revision: https://reviews.llvm.org/D93790
LLVMType contains numerous static constructors that were initially introduced
for API compatibility with LLVM. Most of these merely forward to arguments to
`SpecificType::get` (MLIR defines classes for all types, unlike LLVM IR), while
some introduce subtle semantics differences due to different modeling of MLIR
types (e.g., structs are not auto-renamed in case of conflicts). Furthermore,
these constructors don't match MLIR idioms and actively prevent us from making
the LLVM dialect type system more open. Remove them and use `SpecificType::get`
instead.
Depends On D93680
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D93681
LLVMType contains multiple instance methods that were introduced initially for
compatibility with LLVM API. These methods boil down to `cast` followed by
type-specific call. Arguably, they are mostly used in an LLVM cast-follows-isa
anti-pattern. This doesn't connect nicely to the rest of the MLIR
infrastructure and actively prevents it from making the LLVM dialect type
system more open, e.g., reusing built-in types when appropriate. Remove such
instance methods and replaces their uses with apporpriate casts and methods on
derived classes. In some cases, the result may look slightly more verbose, but
most cases should actually use a stricter subtype of LLVMType anyway and avoid
the isa/cast.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D93680
Transfer_ops can now work on both buffers and tensor. Right now, lowering of
the tensor case is not supported yet.
Differential Revision: https://reviews.llvm.org/D93500
- use ConvertOpToLLVMPattern to avoid explicit casting and in most cases the
constructor can be reused to save a few lines of code.
Differential Revision: https://reviews.llvm.org/D92989
This is part of a larger refactoring the better congregates the builtin structures under the BuiltinDialect. This also removes the problematic "standard" naming that clashes with the "standard" dialect, which is not defined within IR/. A temporary forward is placed in StandardTypes.h to allow time for downstream users to replaced references.
Differential Revision: https://reviews.llvm.org/D92435
A separate AVX512 lowering pass does not compose well with the regular
vector lowering pass. As such, it is at risk of code duplication and
lowering inconsistencies. This change removes the separate AVX512 lowering
pass and makes it an "option" in the regular vector lowering pass
(viz. vector dialect "augmented" with AVX512 dialect).
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D92614
Make the interface match the one of ConvertToLLVMPattern::getDataPtr() (to be removed in a separate change).
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D91599
These includes have been deprecated in favor of BuiltinDialect.h, which contains the definitions of ModuleOp and FuncOp.
Differential Revision: https://reviews.llvm.org/D91572
This class represents a rewrite pattern list that has been frozen, and thus immutable. This replaces the uses of OwningRewritePatternList in pattern driver related API, such as dialect conversion. When PDL becomes more prevalent, this API will allow for optimizing a set of patterns once without the need to do this per run of a pass.
Differential Revision: https://reviews.llvm.org/D89104
There are several pieces of pattern rewriting infra in IR/ that really shouldn't be there. This revision moves those pieces to a better location such that they are easier to evolve in the future(e.g. with PDL). More concretely this revision does the following:
* Create a Transforms/GreedyPatternRewriteDriver.h and move the apply*andFold methods there.
The definitions for these methods are already in Transforms/ so it doesn't make sense for the declarations to be in IR.
* Create a new lib/Rewrite library and move PatternApplicator there.
This new library will be focused on applying rewrites, and will also include compiling rewrites with PDL.
Differential Revision: https://reviews.llvm.org/D89103
The Pattern class was originally intended to be used for solely matching operations, but that use never materialized. All of the pattern infrastructure uses RewritePattern, and the infrastructure for pure matching(Matchers.h) is implemented inline. This means that this class isn't a useful abstraction at the moment, so this revision refactors it to solely encapsulate the "metadata" of a pattern. The metadata includes the various state describing a pattern; benefit, root operation, etc. The API on PatternApplicator is updated to now operate on `Pattern`s as nothing special from `RewritePattern` is necessary.
This refactoring is also necessary for the upcoming use of PDL patterns alongside C++ rewrite patterns.
Differential Revision: https://reviews.llvm.org/D86258
This revision also inserts an end-to-end test that lowers tensors to buffers all the way to executable code on CPU.
Differential revision: https://reviews.llvm.org/D88998
Recently, restrictions on vector reductions were made more relaxed by
accepting any width signless integer and floating-point. This CL relaxes
the restriction even more by including unsigned and signed integers.
Reviewed By: bkramer
Differential Revision: https://reviews.llvm.org/D88442
(1) simplify integer printing logic by always using 64-bit print
(2) add index support (since vector<16xindex> is planned to be added)
(3) adjust naming convention print_x -> printX
Reviewed By: bkramer
Differential Revision: https://reviews.llvm.org/D88436
This generalizes printing beyond just i1,i32,i64 and also accounts
for signed and unsigned interpretation in the output.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D88290
- Use TypeRange instead of ArrayRef<Type> where possible.
- Change some of the custom builders to also use TypeRange
Differential Revision: https://reviews.llvm.org/D87944
This replaces the select chain for edge-padding with an scf.if that
performs the memory operation when the index is in bounds and uses the
pad value when it's not. For transfer_write the same mechanism is used,
skipping the store when the index is out of bounds.
The integration test has a bunch of cases of how I believe this should
work.
Differential Revision: https://reviews.llvm.org/D87241
When allowed, use 32-bit indices rather than 64-bit indices in the
SIMD computation of masks. This runs up to 2x and 4x faster on
a number of AVX2 and AVX512 microbenchmarks.
Reviewed By: bkramer
Differential Revision: https://reviews.llvm.org/D87116
Legacy implementation of the LLVM dialect in MLIR contained an instance of
llvm::Module as it was required to parse LLVM IR types. The access to the data
layout of this module was exposed to the users for convenience, but in practice
this layout has always been the default one obtained by parsing an empty layout
description string. Current implementation of the dialect no longer relies on
wrapping LLVM IR types, but it kept an instance of DataLayout for
compatibility. This effectively forces a single data layout to be used across
all modules in a given MLIR context, which is not desirable. Remove DataLayout
from the LLVM dialect and attach it as a module attribute instead. Since MLIR
does not yet have support for data layouts, use the LLVM DataLayout in string
form with verification inside MLIR. Introduce the layout when converting a
module to the LLVM dialect and keep the default "" description for
compatibility.
This approach should be replaced with a proper MLIR-based data layout when it
becomes available, but provides an immediate solution to compiling modules with
different layouts, e.g. for GPUs.
This removes the need for LLVMDialectImpl, which is also removed.
Depends On D85650
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D85652
Using a shuffle for the last recursive step in progressive lowering not only
results in much more compact IR, but also more efficient code (since the
backend is no longer confused on subvector aliasing for longer vectors).
E.g. the following
%f = vector.shape_cast %v0: vector<1024xf32> to vector<32x32xf32>
yields much better x86-64 code that runs 3x faster than the original.
Reviewed By: bkramer, nicolasvasilache
Differential Revision: https://reviews.llvm.org/D85482
Original modeling of LLVM IR types in the MLIR LLVM dialect had been wrapping
LLVM IR types and therefore required the LLVMContext in which they were created
to outlive them, which was solved by placing the LLVMContext inside the dialect
and thus having the lifetime of MLIRContext. This has led to numerous issues
caused by the lack of thread-safety of LLVMContext and the need to re-create
LLVM IR modules, obtained by translating from MLIR, in different LLVM contexts
to enable parallel compilation. Similarly, llvm::Module had been introduced to
keep track of identified structure types that could not be modeled properly.
A recent series of commits changed the modeling of LLVM IR types in the MLIR
LLVM dialect so that it no longer wraps LLVM IR types and has no dependence on
LLVMContext and changed the ownership model of the translated LLVM IR modules.
Remove LLVMContext and LLVM modules from the implementation of MLIR LLVM
dialect and clean up the remaining uses.
The only part of LLVM IR that remains necessary for the LLVM dialect is the
data layout. It should be moved from the dialect level to the module level and
replaced with an MLIR-based representation to remove the dependency of the
LLVMDialect on LLVM IR library.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D85445
Historical modeling of the LLVM dialect types had been wrapping LLVM IR types
and therefore needed access to the instance of LLVMContext stored in the
LLVMDialect. The new modeling does not rely on that and only needs the
MLIRContext that is used for uniquing, similarly to other MLIR types. Change
LLVMType::get<Kind>Ty functions to take `MLIRContext *` instead of
`LLVMDialect *` as first argument. This brings the code base closer to
completely removing the dependence on LLVMContext from the LLVMDialect,
together with additional support for thread-safety of its use.
Depends On D85371
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D85372
This prepares for the removal of llvm::Module and LLVMContext from the
mlir::LLVMDialect.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D85371
The intrinsics were already supported and vector.transfer_read/write lowered
direclty into these operations. By providing them as individual ops, however,
clients can used them directly, and it opens up progressively lowering transfer
operations at higher levels (rather than direct lowering to LLVM IR as done now).
Reviewed By: bkramer
Differential Revision: https://reviews.llvm.org/D85357
Previous type model in the LLVM dialect did not support identified structure
types properly and therefore could use stateless translations implemented as
free functions. The new model supports identified structs and must keep track
of the identified structure types present in the target context (LLVMContext or
MLIRContext) to avoid creating duplicate structs due to LLVM's type
auto-renaming. Expose the stateful type translation classes and use them during
translation, storing the state as part of ModuleTranslation.
Drop the test type translation mechanism that is no longer necessary and update
the tests to exercise type translation as part of the main translation flow.
Update the code in vector-to-LLVM dialect conversion that relied on stateless
translation to use the new class in a stateless manner.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D85297
Introduces the expand and compress operations to the Vector dialect
(important memory operations for sparse computations), together
with a first reference implementation that lowers to the LLVM IR
dialect to enable running on CPU (and other targets that support
the corresponding LLVM IR intrinsics).
Reviewed By: reidtatge
Differential Revision: https://reviews.llvm.org/D84888
A new first-party modeling for LLVM IR types in the LLVM dialect has been
developed in parallel to the existing modeling based on wrapping LLVM `Type *`
instances. It resolves the long-standing problem of modeling identified
structure types, including recursive structures, and enables future removal of
LLVMContext and related locking mechanisms from LLVMDialect.
This commit only switches the modeling by (a) renaming LLVMTypeNew to LLVMType,
(b) removing the old implementaiton of LLVMType, and (c) updating the tests. It
is intentionally minimal. Separate commits will remove the infrastructure built
for the transition and update API uses where appropriate.
Depends On D85020
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D85021