There are a lot of lldb commands whose result is really one or more
ValueObjects that we then print with the ValueObjectPrinter. Now that we
have the ability to access the SBCommandReturnObject through a callback
(#125006), we can store the resultant ValueObjects in the return object,
allowing an IDE to access the SBValues and do its own rich formatting.
rdar://143965453
ValueObject is part of lldbCore for historical reasons, but conceptually
it deserves to be its own library. This does introduce a (link-time) circular
dependency between lldbCore and lldbValueObject, which is unfortunate
but probably unavoidable because so many things in LLDB rely on
ValueObject. We already have cycles and these libraries are never built
as dylibs so while this doesn't improve the situation, it also doesn't
make things worse.
The header includes were updated with the following command:
```
find . -type f -exec sed -i.bak "s%include \"lldb/Core/ValueObject%include \"lldb/ValueObject/ValueObject%" '{}' \;
```
Sometimes you only want to temporarily disable a frame recognizer
instead of deleting it. In particular, when dealing with one of the
builtin frame recognizers, which cannot be restored after deletion.
To be able to write test cases for this functionality, I also changed
`lldb/test/API/commands/frame/recognizer` to use normal C instead of
Objective-C
This patch removes all of the Set.* methods from Status.
This cleanup is part of a series of patches that make it harder use the
anti-pattern of keeping a long-lives Status object around and updating
it while dropping any errors it contains on the floor.
This patch is largely NFC, the more interesting next steps this enables
is to:
1. remove Status.Clear()
2. assert that Status::operator=() never overwrites an error
3. remove Status::operator=()
Note that step (2) will bring 90% of the benefits for users, and step
(3) will dramatically clean up the error handling code in various
places. In the end my goal is to convert all APIs that are of the form
` ResultTy DoFoo(Status& error)
`
to
` llvm::Expected<ResultTy> DoFoo()
`
How to read this patch?
The interesting changes are in Status.h and Status.cpp, all other
changes are mostly
` perl -pi -e 's/\.SetErrorString/ = Status::FromErrorString/g' $(git
grep -l SetErrorString lldb/source)
`
plus the occasional manual cleanup.
With this commit, we also hide the implementation details of
`std::invoke`. To do so, the `LibCXXFrameRecognizer` got a couple more
regular expressions.
The regular expression passed into `AddRecognizer` became problematic,
as it was evaluated on the demangled name. Those names also included
result types for C++ symbols. For `std::__invoke` the return type is a
huge `decltype(...)`, making the regular expresison really hard to
write.
Instead, I added support to `AddRecognizer` for matching on the
demangled names without result type and argument types.
By hiding the implementation details of `invoke`, also the back traces
for `std::function` become even nicer, because `std::function` is using
`__invoke` internally.
Co-authored-by: Adrian Prantl <aprantl@apple.com>
Compilers and language runtimes often use helper functions that are
fundamentally uninteresting when debugging anything but the
compiler/runtime itself. This patch introduces a user-extensible
mechanism that allows for these frames to be hidden from backtraces and
automatically skipped over when navigating the stack with `up` and
`down`.
This does not affect the numbering of frames, so `f <N>` will still
provide access to the hidden frames. The `bt` output will also print a
hint that frames have been hidden.
My primary motivation for this feature is to hide thunks in the Swift
programming language, but I'm including an example recognizer for
`std::function::operator()` that I wished for myself many times while
debugging LLDB.
rdar://126629381
Example output. (Yes, my proof-of-concept recognizer could hide even
more frames if we had a method that returned the function name without
the return type or I used something that isn't based off regex, but it's
really only meant as an example).
before:
```
(lldb) thread backtrace --filtered=false
* thread #1, queue = 'com.apple.main-thread', stop reason = breakpoint 1.1
* frame #0: 0x0000000100001f04 a.out`foo(x=1, y=1) at main.cpp:4:10
frame #1: 0x0000000100003a00 a.out`decltype(std::declval<int (*&)(int, int)>()(std::declval<int>(), std::declval<int>())) std::__1::__invoke[abi:se200000]<int (*&)(int, int), int, int>(__f=0x000000016fdff280, __args=0x000000016fdff224, __args=0x000000016fdff220) at invoke.h:149:25
frame #2: 0x000000010000399c a.out`int std::__1::__invoke_void_return_wrapper<int, false>::__call[abi:se200000]<int (*&)(int, int), int, int>(__args=0x000000016fdff280, __args=0x000000016fdff224, __args=0x000000016fdff220) at invoke.h:216:12
frame #3: 0x0000000100003968 a.out`std::__1::__function::__alloc_func<int (*)(int, int), std::__1::allocator<int (*)(int, int)>, int (int, int)>::operator()[abi:se200000](this=0x000000016fdff280, __arg=0x000000016fdff224, __arg=0x000000016fdff220) at function.h:171:12
frame #4: 0x00000001000026bc a.out`std::__1::__function::__func<int (*)(int, int), std::__1::allocator<int (*)(int, int)>, int (int, int)>::operator()(this=0x000000016fdff278, __arg=0x000000016fdff224, __arg=0x000000016fdff220) at function.h:313:10
frame #5: 0x0000000100003c38 a.out`std::__1::__function::__value_func<int (int, int)>::operator()[abi:se200000](this=0x000000016fdff278, __args=0x000000016fdff224, __args=0x000000016fdff220) const at function.h:430:12
frame #6: 0x0000000100002038 a.out`std::__1::function<int (int, int)>::operator()(this= Function = foo(int, int) , __arg=1, __arg=1) const at function.h:989:10
frame #7: 0x0000000100001f64 a.out`main(argc=1, argv=0x000000016fdff4f8) at main.cpp:9:10
frame #8: 0x0000000183cdf154 dyld`start + 2476
(lldb)
```
after
```
(lldb) bt
* thread #1, queue = 'com.apple.main-thread', stop reason = breakpoint 1.1
* frame #0: 0x0000000100001f04 a.out`foo(x=1, y=1) at main.cpp:4:10
frame #1: 0x0000000100003a00 a.out`decltype(std::declval<int (*&)(int, int)>()(std::declval<int>(), std::declval<int>())) std::__1::__invoke[abi:se200000]<int (*&)(int, int), int, int>(__f=0x000000016fdff280, __args=0x000000016fdff224, __args=0x000000016fdff220) at invoke.h:149:25
frame #2: 0x000000010000399c a.out`int std::__1::__invoke_void_return_wrapper<int, false>::__call[abi:se200000]<int (*&)(int, int), int, int>(__args=0x000000016fdff280, __args=0x000000016fdff224, __args=0x000000016fdff220) at invoke.h:216:12
frame #6: 0x0000000100002038 a.out`std::__1::function<int (int, int)>::operator()(this= Function = foo(int, int) , __arg=1, __arg=1) const at function.h:989:10
frame #7: 0x0000000100001f64 a.out`main(argc=1, argv=0x000000016fdff4f8) at main.cpp:9:10
frame #8: 0x0000000183cdf154 dyld`start + 2476
Note: Some frames were hidden by frame recognizers
```
Currently, CommandObjects are obtaining a target in a variety of ways.
Often the command incorrectly operates on the selected target. As an
example, when a breakpoint command is running, the current target is
passed into the command but the target that hit the breakpoint is not
the selected target. In other places we use the CommandObject's
execution context, which is frozen during the execution of the command,
and comes with its own limitations. Finally, we often want to fall back
to the dummy target if no real target is available.
Instead of having to guess how to get the target, this patch introduces
one helper function in CommandObject to get the most relevant target. In
order of priority, that's the target from the command object's execution
context, from the interpreter's execution context, the selected target
or the dummy target.
rdar://110846511
This change by itself has no measurable effect on the LLDB
testsuite. I'm making it in preparation for threading through more
errors in the Swift language plugin.
Partly, there's just a lot of unnecessary boiler plate. It's also
possible to define combinations of arguments that make no sense (e.g.
eArgRepeatPlus followed by eArgRepeatPlain...) but these are never
checked since we just push_back directly into the argument definitions.
This commit is step 1 of this cleanup - do the obvious stuff. In it, all
the simple homogenous argument lists and the breakpoint/watchpoint
ID/Range types, are set with common functions. This is an NFC change, it
just centralizes boiler plate. There's no checking yet because you can't
get a single argument wrong.
The end goal is that all argument definition goes through functions and
m_arguments is hidden so that you can't define inconsistent argument
sets.
This is a follow-on to:
https://github.com/llvm/llvm-project/pull/82085
The completer for register names was missing from the argument table. I
somehow missed that the only register completer test was x86_64, so that
test broke.
I added the completer in to the right slot in the argument table, and
added a small completions test that just uses the alias register names.
If we end up having a platform that doesn't define register names, we'll
have to skip this test there, but it should add a sniff test for
register completion that will run most everywhere.
This reverts commit 21631494b068d9364b8dc8f18e59adee9131a0a5.
Reverted because of greendragon failure:
******************** TEST 'lldb-api :: functionalities/completion/TestCompletion.py' FAILED ********************
Script:
Most commands were adding argument completion handling by themselves,
resulting in a lot of unnecessary boilerplate. In many cases, this could
be done generically given the argument definition and the entries in the
g_argument_table.
I'm going to address this in a couple passes. In this first pass, I
added handling of commands that have only one argument list, with one
argument type, either single or repeated, and changed all the commands
that are of this sort (and don't have other bits of business in their
completers.)
I also added some missing connections between arg types and completions
to the table, and added a RemoteFilename and RemotePath to use in places
where we were using the Remote completers. Those arguments used to say
they were "files" but they were in fact remote files.
I also added a module arg type to use where we were using the module
completer. In that case, we should call the argument module.
I get a small but fairly steady stream of crash reports which I can only
explain by ValueObjectPrinter trying to access its m_valobj field, and
finding it NULL. I have never been able to reproduce any of these, and
the reports show a state too long after the fact to know what went
wrong.
I've read through this section of lldb a bunch of times trying to figure
out how this could happen, but haven't ever found anything actually
wrong that could cause this. OTOH, ValueObjectPrinter is somewhat sloppy
about how it handles the ValueObject it is printing.
a) lldb allows you to make a ValueObjectPrinter with a Null incoming
ValueObject. However, there's no affordance to set the ValueObject in
the Printer after the fact, and it doesn't really make sense to do that.
So I change the ValueObjectPrinter API's to take a ValueObject
reference, rather than a pointer. All the places that make
ValueObjectPrinters already check the non-null status of their
ValueObject's before making the ValueObjectPrinter, so sadly, I didn't
find the bug, but this will enforce the intent.
b) The next step in printing the ValueObject is deciding which of the
associated DynamicValue/SyntheticValue we are actually printing (based
on the use_dynamic and use_synthetic settings in the original
ValueObject. This was put in a pointer by GetMostSpecializedValue, but
most of the printer code just accessed the pointer, and it was hard to
reason out whether we were guaranteed to always call this before using
m_valobj. So far as I could see we always do (sigh, didn't find the bug
there either) but this was way too hard to reason about.
In fact, we figure out once which ValueObject we're going to print and
don't change that through the life of the printer. So I changed this to
both set the "most specialized value" in the constructor, and then to
always access it through GetMostSpecializedValue(). That makes it easier
to reason about the use of this ValueObject as well.
This is an NFC change, all it does is make the code easier to reason
about.
This fixes:
```
[6083/7449] Building CXX object tools\lldb\source\Commands\CMakeFiles\lldbCommands.dir\CommandObjectFrame.cpp.obj
C:\git\llvm-project\lldb\source\Commands\CommandObjectFrame.cpp(497) : warning C4715: 'CommandObjectFrameVariable::ScopeRequested': not all control paths return a value
```
Add the ability to get a C++ vtable ValueObject from another
ValueObject.
This patch adds the ability to ask a ValueObject for a ValueObject that
represents the virtual function table for a C++ class. If the
ValueObject is not a C++ class with a vtable, a valid ValueObject value
will be returned that contains an appropriate error. If it is successful
a valid ValueObject that represents vtable will be returned. The
ValueObject that is returned will have a name that matches the demangled
value for a C++ vtable mangled name like "vtable for <class-name>". It
will have N children, one for each virtual function pointer. Each
child's value is the function pointer itself, the summary is the
symbolication of this function pointer, and the type will be a valid
function pointer from the debug info if there is debug information
corresponding to the virtual function pointer.
The vtable SBValue will have the following:
- SBValue::GetName() returns "vtable for <class>"
- SBValue::GetValue() returns a string representation of the vtable
address
- SBValue::GetSummary() returns NULL
- SBValue::GetType() returns a type appropriate for a uintptr_t type for
the current process
- SBValue::GetLoadAddress() returns the address of the vtable adderess
- SBValue::GetValueAsUnsigned(...) returns the vtable address
- SBValue::GetNumChildren() returns the number of virtual function
pointers in the vtable
- SBValue::GetChildAtIndex(...) returns a SBValue that represents a
virtual function pointer
The child SBValue objects that represent a virtual function pointer has
the following values:
- SBValue::GetName() returns "[%u]" where %u is the vtable function
pointer index
- SBValue::GetValue() returns a string representation of the virtual
function pointer
- SBValue::GetSummary() returns a symbolicated respresentation of the
virtual function pointer
- SBValue::GetType() returns the function prototype type if there is
debug info, or a generic funtion prototype if there is no debug info
- SBValue::GetLoadAddress() returns the address of the virtual function
pointer
- SBValue::GetValueAsUnsigned(...) returns the virtual function pointer
- SBValue::GetNumChildren() returns 0
- SBValue::GetChildAtIndex(...) returns invalid SBValue for any index
Examples of using this API via python:
```
(lldb) script vtable = lldb.frame.FindVariable("shape_ptr").GetVTable()
(lldb) script vtable
vtable for Shape = 0x0000000100004088 {
[0] = 0x0000000100003d20 a.out`Shape::~Shape() at main.cpp:3
[1] = 0x0000000100003e4c a.out`Shape::~Shape() at main.cpp:3
[2] = 0x0000000100003e7c a.out`Shape::area() at main.cpp:4
[3] = 0x0000000100003e3c a.out`Shape::optional() at main.cpp:7
}
(lldb) script c = vtable.GetChildAtIndex(0)
(lldb) script c
(void ()) [0] = 0x0000000100003d20 a.out`Shape::~Shape() at main.cpp:3
```
[lldb] Part 2 of 2 - Refactor `CommandObject::DoExecute(...)` to return
`void` instead of ~~`bool`~~
Justifications:
- The code doesn't ultimately apply the `true`/`false` return values.
- The methods already pass around a `CommandReturnObject`, typically
with a `result` parameter.
- Each command return object already contains:
- A more precise status
- The error code(s) that apply to that status
Part 1 refactors the `CommandObject::Execute(...)` method.
- See
[https://github.com/llvm/llvm-project/pull/69989](https://github.com/llvm/llvm-project/pull/69989)
rdar://117378957
Currently frame var --regex sometimes searches globals, sometimes it doesn't.
This happens because `StackFrame::GetVariableList` always returns the biggest
list it has, regardless of whether only globals were requested or not. In other
words, if a previous call to `GetVariableList` requested globals, all subsequent
calls will see them.
The implication here is that users of `StackFrame::GetVariableList` are expected
to filter the results of this function. This is what we do for a vanilla
`frame var` command. But it is not what we do when `--regex` is used. This
commit solves the issue by:
1. Making `--regex` imply `--globals`. This matches the behavior of `frame var
<some_name>`, which will also search the global scope.
2. Making the `--regex` search respect the command object options.
See the added test for an example of the oddities this patch addresses. Without
the patch, the test fails. However it could be made to pass by calling a plain
`frame var` before calling `frame var --regex A::`.
Differential Revision: https://reviews.llvm.org/D155334
Also, make it possible for new Targets which haven't been added to
the TargetList yet to check for interruption, and add a few more
places in building modules where we can check for interruption.
Differential Revision: https://reviews.llvm.org/D154542
This patch should allow the user to set specific auto-completion type
for their custom commands.
To do so, we had to hoist the `CompletionType` enum so the user can
access it and add a new completion type flag to the CommandScriptAdd
Command Object.
So now, the user can specify which completion type will be used with
their custom command, when they register it.
This also makes the `crashlog` custom commands use disk-file completion
type, to browse through the user file system and load the report.
Differential Revision: https://reviews.llvm.org/D152011
Signed-off-by: Med Ismail Bennani <ismail@bennani.ma>
This is a user facing action, it is meant to focus the user's attention on
something other than the 0th frame when you stop somewhere where that's
helpful. For instance, stopping in pthread_kill after an assert will select
the assert frame.
This is not something you want to have happen internally in lldb, both
because internally you really don't want the selected frame changing out
from under you, and because the recognizers can do arbitrary work, and that
can cause deadlocks or other unexpected behavior.
However, it's not something that the current code does
explicitly after a stop has been delivered, it's expected to happen implicitly
as part of stopping. I changing this to call SMRF explicitly after a user
stop, but that got pretty ugly quickly.
So I added a bool to control whether to run this and audited all the current
uses to determine whether we're returning to the user or not.
Differential Revision: https://reviews.llvm.org/D148863
std::optional::value() has undesired exception checking semantics and is
unavailable in older Xcode (see _LIBCPP_AVAILABILITY_BAD_OPTIONAL_ACCESS). The
call sites block std::optional migration.
Summary:
Many times when debugging variables might not be available even though a user can successfully set breakpoints and stops somewhere. Letting the user know will help users fix these kinds of issues and have a better debugging experience.
Examples of this include:
- enabling -gline-tables-only and being able to set file and line breakpoints and yet see no variables
- unable to open object file for DWARF in .o file debugging for darwin targets due to modification time mismatch or not being able to locate the N_OSO file.
This patch adds an new API to SBValueList:
lldb::SBError lldb::SBValueList::GetError();
object so that if you request a stack frame's variables using SBValueList SBFrame::GetVariables(...), you can get an error the describes why the variables were not available.
This patch adds the ability to get an error back when requesting variables from a lldb_private::StackFrame when calling GetVariableList.
It also now shows an error in response to "frame variable" if we have debug info and are unable to get varialbes due to an error as mentioned above:
(lldb) frame variable
error: "a.o" object from the "/tmp/libfoo.a" archive: either the .o file doesn't exist in the archive or the modification time (0x63111541) of the .o file doesn't match
Reviewers: labath JDevlieghere aadsm yinghuitan jdoerfert sscalpone
Subscribers:
Differential Revision: https://reviews.llvm.org/D133164
Many times when debugging variables might not be available even though a user can successfully set breakpoints and stops somewhere. Letting the user know will help users fix these kinds of issues and have a better debugging experience.
Examples of this include:
- enabling -gline-tables-only and being able to set file and line breakpoints and yet see no variables
- unable to open object file for DWARF in .o file debugging for darwin targets due to modification time mismatch or not being able to locate the N_OSO file.
This patch adds an new API to SBValueList:
lldb::SBError lldb::SBValueList::GetError();
object so that if you request a stack frame's variables using SBValueList SBFrame::GetVariables(...), you can get an error the describes why the variables were not available.
This patch adds the ability to get an error back when requesting variables from a lldb_private::StackFrame when calling GetVariableList.
It also now shows an error in response to "frame variable" if we have debug info and are unable to get varialbes due to an error as mentioned above:
(lldb) frame variable
error: "a.o" object from the "/tmp/libfoo.a" archive: either the .o file doesn't exist in the archive or the modification time (0x63111541) of the .o file doesn't match
Differential Revision: https://reviews.llvm.org/D133164
Refactor the command option enum values and the command argument table
to connect the two. This has two benefits:
- We guarantee that two options that use the same argument type have
the same accepted values.
- We can print the enum values and their description in the help
output. (D129707)
Differential revision: https://reviews.llvm.org/D129703
This is currently being done in an ad hoc way, and so for some
commands it isn't being checked. We have the info to make this check,
since commands are supposed to add their arguments to the m_arguments
field of the CommandObject. This change uses that info to check whether
the command received arguments in error.
A handful of commands weren't defining their argument types, I also had
to fix them. And a bunch of commands were checking for arguments by
hand, so I removed those checks in favor of the CommandObject one. That
also meant I had to change some tests that were checking for the ad hoc
error outputs.
Differential Revision: https://reviews.llvm.org/D128453
Nowhere in lldb do we call this with a null pointer.
If we did, the first line of the function would fault anyway.
Reviewed By: JDevlieghere
Differential Revision: https://reviews.llvm.org/D125218
This adds a setting (`target.max-children-depth`) that will provide a default value for the `--depth` flag used by `expression` and `frame variable`.
The new setting uses the same default that's currently fixed in source: `UINT32_MAX`.
This provides two purposes:
1. Allowing downstream forks to provide a customized default.
2. Allowing users to set their own default.
Following `target.max-children-count`, a warning is emitted when the max depth is reached. The warning lets users know which flags or settings they can customize. This warning is shown only when the limit is the default value.
rdar://87466495
Differential Revision: https://reviews.llvm.org/D123954
Applied modernize-use-equals-default clang-tidy check over LLDB.
This check is already present in the lldb/.clang-tidy config.
Differential Revision: https://reviews.llvm.org/D121844
Ensure that errors in `frame variable` are reflected in result object.
The statistics for `frame variable` show invocations as being successful, even
when executing one of the error paths.
This change replaces `result.GetErrorStream()` with `result.AppendError()`,
which also sets the status to `eReturnStatusFailed`.
Differential Revision: https://reviews.llvm.org/D116788
Recommitting after D116901 and D116863.
(cherry picked from commit 2c7d10c41278181e3e45c68f28b501cd95193a8a)
Ensure that errors in `frame variable` are reflected in result object.
The statistics for `frame variable` show invocations as being successful, even
when executing one of the error paths.
This change replaces `result.GetErrorStream()` with `result.AppendError()`,
which also sets the status to `eReturnStatusFailed`.
Differential Revision: https://reviews.llvm.org/D116788
(cherry picked from commit 2c7d10c41278181e3e45c68f28b501cd95193a8a)
Ensure that errors in `frame variable` are reflected in result object.
The statistics for `frame variable` show invocations as being successful, even
when executing one of the error paths.
This change replaces `result.GetErrorStream()` with `result.AppendError()`,
which also sets the status to `eReturnStatusFailed`.
Differential Revision: https://reviews.llvm.org/D116788
The current help for `frame variable` is somewhat long. Its length, combined
with the few aliases (`var`, `v`, and `vo`) can make the output of `apropos`
redundant and noisy.
This separates out the details into a separate long help.
Differential Revision: https://reviews.llvm.org/D116708