Just enough features are implemented to process a simple "hello world"
executable and produce something that still runs (including libc calls).
This was mainly a matter of implementing support for various
relocations. Currently, the following are handled:
- R_RISCV_JAL
- R_RISCV_CALL
- R_RISCV_CALL_PLT
- R_RISCV_BRANCH
- R_RISCV_RVC_BRANCH
- R_RISCV_RVC_JUMP
- R_RISCV_GOT_HI20
- R_RISCV_PCREL_HI20
- R_RISCV_PCREL_LO12_I
- R_RISCV_RELAX
- R_RISCV_NONE
Executables linked with linker relaxation will probably fail to be
processed. BOLT relocates .text to a high address while leaving .plt at
its original (low) address. This causes PC-relative PLT calls that were
relaxed to a JAL to not fit their offset in an I-immediate anymore. This
is something that will be addressed in a later patch.
Changes to the BOLT core are relatively minor. Two things were tricky to
implement and needed slightly larger changes. I'll explain those below.
The R_RISCV_CALL(_PLT) relocation is put on the first instruction of a
AUIPC/JALR pair, the second does not get any relocation (unlike other
PCREL pairs). This causes issues with the combinations of the way BOLT
processes binaries and the RISC-V MC-layer handles relocations:
- BOLT reassembles instructions one by one and since the JALR doesn't
have a relocation, it simply gets copied without modification;
- Even though the MC-layer handles R_RISCV_CALL properly (adjusts both
the AUIPC and the JALR), it assumes the immediates of both
instructions are 0 (to be able to or-in a new value). This will most
likely not be the case for the JALR that got copied over.
To handle this difficulty without resorting to RISC-V-specific hacks in
the BOLT core, a new binary pass was added that searches for
AUIPC/JALR pairs and zeroes-out the immediate of the JALR.
A second difficulty was supporting ABS symbols. As far as I can tell,
ABS symbols were not handled at all, causing __global_pointer$ to break.
RewriteInstance::analyzeRelocation was updated to handle these
generically.
Tests are provided for all supported relocations. Note that in order to
test the correct handling of PLT entries, an ELF file produced by GCC
had to be used. While I tried to strip the YAML representation, it's
still quite large. Any suggestions on how to improve this would be
appreciated.
Reviewed By: rafauler
Differential Revision: https://reviews.llvm.org/D145687
In lite mode (default for X86), BOLT optimizes and relocates functions
with profile. The rest of the code is preserved, but if it references
relocated code such references have to be updated. The update is handled
by scanExternalRefs() function. Note that we cannot solely rely on
relocations written by the linker, as not all code references are
exposed to the linker. Additionally, the linker can modify certain
instructions and relocations will no longer match the code.
With this change, start using symbolic disassembler for scanning code
for references in scanExternalRefs(). Unlike the previous approach, the
symbolizer properly detects and creates references for instructions with
multiple/ambiguous symbolic operands and handles cases where a
relocation doesn't match any operand. See test cases for examples.
Reviewed By: Amir
Differential Revision: https://reviews.llvm.org/D152631
This is a first "serious" version of stale profile matching in BOLT. This diff
extends the hash computation for basic blocks so that we can apply a fuzzy
hash-based matching. The idea is to compute several "versions" of a hash value
for a basic block. A loose version of a hash (computed by ignoring instruction
operands) allows to match blocks in functions whose content has been changed,
while stricter hash values (considering instruction opcodes with operands and
even based on hashes of block's successors/predecessors) allow to resolve
collisions. In order to save space and build time, individual hash components
are blended into a single uint64_t.
There are likely numerous ways of improving hash computation but already this
simple variant provides significant perf benefits.
**Perf testing** on the clang binary: collecting data on clang-10 and using it
to optimize clang-11 (with ~1 year of commits in between). Next, we compare
- //stale_clang// (clang-11 optimized with profile collected on clang-10 with **infer-stale-profile=0**)
- //opt_clang// (clang-11 optimized with profile collected on clang-11)
- //infer_clang// (clang-11 optimized with profile collected on clang-10 with **infer-stale-profile=1**)
`LTO-only` mode:
//stale_clang// vs //opt_clang//: task-clock [delta(%): 9.4252 ± 1.6582, p-value: 0.000002]
(That is, there is a ~9.5% perf regression)
//infer_clang// vs //opt_clang//: task-clock [delta(%): 2.1834 ± 1.8158, p-value: 0.040702]
(That is, the regression is reduced to ~2%)
Related BOLT logs:
```
BOLT-INFO: identified 2114 (18.61%) stale functions responsible for 30.96% samples
BOLT-INFO: inferred profile for 2101 (18.52% of all profiled) functions responsible for 30.95% samples
```
`LTO+AutoFDO` mode:
//stale_clang// vs //opt_clang//: task-clock [delta(%): 19.1293 ± 1.4131, p-value: 0.000002]
//infer_clang// vs //opt_clang//: task-clock [delta(%): 7.4364 ± 1.3343, p-value: 0.000002]
Related BOLT logs:
```
BOLT-INFO: identified 5452 (50.27%) stale functions responsible for 85.34% samples
BOLT-INFO: inferred profile for 5442 (50.23% of all profiled) functions responsible for 85.33% samples
```
Reviewed By: Amir
Differential Revision: https://reviews.llvm.org/D146661
Fix debug printing, making it easier to compare two debug logs side by side:
- `BinaryFunction::addRelocation`: print function name instead of `this` ptr,
- `DataAggregator::doTrace`: remove duplicated function name.
Reviewed By: #bolt, maksfb
Differential Revision: https://reviews.llvm.org/D152314
Extending yaml profile format with block hashes, which are used for stale
profile matching. To avoid duplication of the code, created a new class with a
collection of utilities for computing hashes.
Reviewed By: Amir
Differential Revision: https://reviews.llvm.org/D144306
When there is a direct jump right after an indirect one, in
the absence of code jumpting to this direct jump, this is obviously
dead code. However, BOLT was failing to recognize that by mistakenly
placing both jmp instructions in the same basic block, and creating
wrong successor edges. Fix that, so we can safely run UCE on
that. This bug also causes validateCFG to fail and BOLT to crash if it
is running ICP on that function.
Reviewed By: #bolt, Amir
Differential Revision: https://reviews.llvm.org/D148055
All users of MCCodeEmitter::encodeInstruction use a raw_svector_ostream
to encode the instruction into a SmallVector. The raw_ostream however
incurs some overhead for the actual encoding.
This change allows an MCCodeEmitter to directly emit an instruction into
a SmallVector without using a raw_ostream and therefore allow for
performance improvments in encoding. A default path that uses existing
raw_ostream implementations is provided.
Reviewed By: MaskRay, Amir
Differential Revision: https://reviews.llvm.org/D145791
`Function.RawBranchCount` is initialized for fdata profile but not for yaml one.
The diff adds the computation of the field for yaml profiles
Reviewed By: Amir
Differential Revision: https://reviews.llvm.org/D144211
The two methods don't belong in BinaryFunction methods.
Move the dispatch tables into target-specific MCPlusBuilder methods.
Reviewed By: rafauler
Differential Revision: https://reviews.llvm.org/D131813
This patch fixes few problems with supporting dynamic relocations in CI.
1. After dynamic relocations and functions were read search for dynamic
relocations located in functions. Currently we expected them only to be
relative and only to be in constant island. Mark islands of such
functions to have dynamic relocations and create CI access symbol on the
relocation offset, so the BD would be created for such place.
2. During function disassemble and handling address reference for
constant island check if the referred external CI has dynamic
relocation. And if it has one we would continue to refer original CI
rather then creating a local copy.
3. After function disassembly stage mark function that has dynamic reloc
in CI as non-simple. We don't want such functions to be optimized, since
such passes as split function would create 2 copies of CI which we
unable to support currently.
4. During updating output values for BF search for BD located in CI and
update their output locations.
5. On dynamic relocation patching stage search for binary data located
on relocation offset. If it was moved use new relocation offset value
rather then an old one.
Vladislav Khmelevsky,
Advanced Software Technology Lab, Huawei
Differential Revision: https://reviews.llvm.org/D143748
In case of a function with unknown control flow but with a single jump
table and a single jump table site, we attempt to match the jump table
and a site and update block successors using jump table targets.
Restrict this behavior for split jump tables which have targets in a
fragment function.
Fixes https://github.com/llvm/llvm-project/issues/60795.
Reviewed By: #bolt, rafauler
Differential Revision: https://reviews.llvm.org/D144602
Use llvm::reverse instead of `for (auto I = rbegin(), E = rend(); I != E; ++I)`
Reviewed By: #bolt, rafauler
Differential Revision: https://reviews.llvm.org/D140516
Always use non-symbolizing disassembler for instruction encoding
validation as symbols will be treated as undefined/zeros be the encoder
and causing byte sequence mismatches.
Reviewed By: Amir
Differential Revision: https://reviews.llvm.org/D136118
Put code that creates references to symbol+addend behind MCPlusBuilder.
Will use this later in validate memory references pass.
Reviewed By: #bolt, maksfb, yota9
Differential Revision: https://reviews.llvm.org/D134097
For functions with references to internal offsets from data, verify externally
referenced blocks against the set of jump table targets. Mark the function
as non-simple if there are any unclaimed data to code references.
Reviewed By: #bolt, maksfb
Differential Revision: https://reviews.llvm.org/D132495
For exception handling, LSDA call sites have to be emitted for each
fragment individually. With this patch, call sites and respective LSDA
symbols are generated and associated with each fragment of their
function, such that they can be used by the emitter.
Reviewed By: maksfb
Differential Revision: https://reviews.llvm.org/D132052
To generate all symbols correctly, it is necessary to record the address
of each fragment. This patch moves the address info for the main and
cold fragments from BinaryFunction to FunctionFragment, where this data
is recorded for all fragments.
Reviewed By: rafauler
Differential Revision: https://reviews.llvm.org/D132051
This changes `FunctionFragment` from being used as a temporary proxy
object to access basic block ranges to a heap-allocated object that can
store fragment-specific information.
Reviewed By: rafauler
Differential Revision: https://reviews.llvm.org/D132050
A const-qualified reference to function layout allows accessing
non-const qualified basic blocks on a const-qualified function. This
patch adds or removes const-qualifiers where necessary to indicate where
basic blocks are used in a non-const manner.
Reviewed By: rafauler
Differential Revision: https://reviews.llvm.org/D132049
To generate all symbols correctly, it is necessary to record the address
of each fragment. This patch moves the address info for the main and
cold fragments from BinaryFunction to FunctionFragment, where this data
is recorded for all fragments.
Reviewed By: rafauler
Differential Revision: https://reviews.llvm.org/D132051
This changes `FunctionFragment` from being used as a temporary proxy
object to access basic block ranges to a heap-allocated object that can
store fragment-specific information.
Reviewed By: rafauler
Differential Revision: https://reviews.llvm.org/D132050
A const-qualified reference to function layout allows accessing
non-const qualified basic blocks on a const-qualified function. This
patch adds or removes const-qualifiers where necessary to indicate where
basic blocks are used in a non-const manner.
Reviewed By: rafauler
Differential Revision: https://reviews.llvm.org/D132049
Move the large lambda out of BinaryFunction::disassemble, reducing its size from
255 to 233 LoC.
Reviewed By: rafauler
Differential Revision: https://reviews.llvm.org/D132104
Move the large lambda out of BinaryFunction::disassemble, reducing its size from
295 to 255 LoC.
Differential Revision: https://reviews.llvm.org/D132101
Move the large lambda out of BinaryFunction::disassemble, reducing its size from
338 to 295 LoC.
Reviewed By: rafauler
Differential Revision: https://reviews.llvm.org/D132100
Move the large lambda out of BinaryFunction::disassemble, reducing its size from
377 to 338 LoC.
Reviewed By: rafauler
Differential Revision: https://reviews.llvm.org/D132099
This patch adds support to generate any number of sections that are
assigned to fragments of functions that are split more than two-way.
With this, a function's *nth* split fragment goes into section
`.text.cold.n`.
This also changes `FunctionLayout::erase` to make sure, that there are
no empty fragments at the end of the function. This sometimes happens
when blocks are erased from the function. To avoid creating symbols
pointing to these fragments, they need to be removed.
Reviewed By: rafauler
Differential Revision: https://reviews.llvm.org/D130521
This adds basic fragment awareness in the exception handling passes and
generates the necessary symbols for fragments.
Reviewed By: rafauler
Differential Revision: https://reviews.llvm.org/D130520
This changes code emission such that it can emit specific function
fragments instead of scanning all basic blocks of a function and just
emitting those that are hot or cold.
To implement this, `FunctionLayout` explicitly distinguishes the "main"
fragment (i.e. the one that contains the entry block and is associated
with the original symbol) from "split" fragments. Additionally,
`BinaryFunction` receives support for multiple cold symbols - one for
each split fragment.
Reviewed By: rafauler
Differential Revision: https://reviews.llvm.org/D130052
Functions that do not contain any code still have to be emitted. This
occurs on AArch64 where functions can consist only of a constant island.
To support fragment semantics in code emission, this commits adds a
guaranteed main fragment to function layout. This fragment might be
empty, but allows us omit checks whether the function is empty in most
places.
Reviewed By: rafauler
Differential Revision: https://reviews.llvm.org/D130051
This patch adds a dedicated class to keep track of each function's
layout. It also lays the groundwork for splitting functions into
multiple fragments (as opposed to a strict hot/cold split).
Reviewed By: maksfb
Differential Revision: https://reviews.llvm.org/D129518