Fix comparing type id pointers, add mor info when print()ing them, use
the most derived type in GetTypeidPtr() and the canonically unqualified
type when we know the type statically.
This is a basic implementation of P2719: "Type-aware allocation and
deallocation functions" described at http://wg21.link/P2719
The proposal includes some more details but the basic change in
functionality is the addition of support for an additional implicit
parameter in operators `new` and `delete` to act as a type tag. Tag is
of type `std::type_identity<T>` where T is the concrete type being
allocated. So for example, a custom type specific allocator for `int`
say can be provided by the declaration of
void *operator new(std::type_identity<int>, size_t, std::align_val_t);
void operator delete(std::type_identity<int>, void*, size_t, std::align_val_t);
However this becomes more powerful by specifying templated declarations,
for example
template <typename T> void *operator new(std::type_identity<T>, size_t, std::align_val_t);
template <typename T> void operator delete(std::type_identity<T>, void*, size_t, std::align_val_t););
Where the operators being resolved will be the concrete type being
operated over (NB. A completely unconstrained global definition as above
is not recommended as it triggers many problems similar to a general
override of the global operators).
These type aware operators can be declared as either free functions or
in class, and can be specified with or without the other implicit
parameters, with overload resolution performed according to the existing
standard parameter prioritisation, only with type parameterised
operators having higher precedence than non-type aware operators. The
only exception is destroying_delete which for reasons discussed in the
paper we do not support type-aware variants by default.
The Pointer class already has the capability to be a function pointer,
but we still classifed function pointers as PT_FnPtr/FunctionPointer.
This means when converting from a Pointer to a FunctionPointer, we lost
the information of what the original Pointer pointed to.
This issue is very convoluted, but in essence, in the new version:
For a Pointer P that points to the root of a multidimensional, primitive
array:
`P.narrow()` does nothing.
`P.atIndex(0)` points `P[0]`
`P.atIndex(0).atIndex(0)` is the same as `P.atIndex(0)` (as before)
`P.atIndex(0).narrow().atIndex(0)` points to `P[0][0]`
`P.atIndex(0).narrow().narrow()` is the same as `P.atIndex(0).narrow()`.
C2y adds the `_Countof` operator which returns the number of elements in
an array. As with `sizeof`, `_Countof` either accepts a parenthesized
type name or an expression. Its operand must be (of) an array type. When
passed a constant-size array operand, the operator is a constant
expression which is valid for use as an integer constant expression.
This is being exposed as an extension in earlier C language modes, but
not in C++. C++ already has `std::extent` and `std::size` to cover these
needs, so the operator doesn't seem to get the user enough benefit to
warrant carrying this as an extension.
Fixes#102836
Introduce a trait to determine the number of bindings that would be
produced by
```cpp
auto [...p] = expr;
```
This is necessary to implement P2300
(https://eel.is/c++draft/exec#snd.concepts-5), but can also be used to
implement a general get<N> function that supports aggregates
`__builtin_structured_binding_size` is a unary type trait that evaluates
to the number of bindings in a decomposition
If the argument cannot be decomposed, a sfinae-friendly error is
produced.
A type is considered a valid tuple if `std::tuple_size_v<T>` is a valid
expression, even if there is no valid `std::tuple_element`
specialization or suitable `get` function for that type.
Fixes#46049
Create the Function* handles for all functions we see, but delay the
actual compilation until we really call the function. This speeds up
compile times with the new interpreter a bit.
This implements the R2 semantics of P0963.
The R1 semantics, as outlined in the paper, were introduced in Clang 6.
In addition to that, the paper proposes swapping the evaluation order of
condition expressions and the initialization of binding declarations
(i.e. std::tuple-like decompositions).
This is similar to what the current interpreter is doing - the
FoldConstant RAII object surrounds the entire HandleConditionalOperator
call, which means the condition and both TrueExpr or FalseExpr.
Use the regular code paths for interpreting.
Add new instructions: `StartSpeculation` will reset the diagnostics
pointers to `nullptr`, which will keep us from reporting any diagnostics
during speculation. `EndSpeculation` will undo this.
The rest depends on what `Emitter` we use.
For `EvalEmitter`, we have no bytecode, so we implement `speculate()` by
simply visiting the first argument of `__builtin_constant_p`. If the
evaluation fails, we push a `0` on the stack, otherwise a `1`.
For `ByteCodeEmitter`, add another instrucion called `BCP`, that
interprets all the instructions following it until the next
`EndSpeculation` instruction. If any of those instructions fails, we
jump to the `EndLabel`, which brings us right before the
`EndSpeculation`. We then push the result on the stack.
This happens a lot with `if constexpr` with a condition based on a
template param. In those cases, the condition is a ConstantExpr with a
value already set, so we can use that and ignore the other branch.
…tExpr
If the ImplicitValueInitExpr is of incomplete array type, we ignore it
in its Visit function. This is a special case here, so pull out the
element type and zero the elements.
This used to cause certain std::range tests in libc++ to be diagnosed as
modifying a const-qualified field, because we set the IsConst flag to
true unconditionally. Check the type instead.
For `new A[N]{1,2,3}`, we need to allocate N elements of type A, and
initialize the first three with the given InitListExpr elements.
However, if N is larger than 3, we need to initialize the remaining
elements with the InitListExpr array filler.
Similarly, for `new A[N];`, we need to initilize all fields with the
constructor of A. The initializer type is a CXXConstructExpr of
IncompleteArrayType in this case, which we can't generally handle.
Make lifetime management more explicit. We're only using this for
CXXPseudoDestructorExprs for now but we need this to handle
std::construct_at/placement-new after destructor calls later anyway.