This changs the way the assembly matcher works for Aarch32 parsing.
Previously there was a pile of hacks which dictated whether the CC,
CCOut, and VCC operands should be present which de-facto chose if the
wide/narrow (or thumb1/thumb2/arm) instruction version were chosen.
This meant much of the TableGen machinery present for the assembly
matching was effectively being bypassed and worked around.
This patch makes the CC and CCOut operands optional which allows the ASM
matcher operate as it was designed and means we can avoid doing some of
the hacks done previously. This also adds the option for the target to
allow the prioritizing the smaller instruction encodings as is required
for Aarch32.
Correct an issue with Arm Neoverse N2 after it was
changed to a v9a core in change
f576cbe44eabb8a5ac0af817424a0d1e7c8fbf85:
* FEAT_FHM should be enabled for this core.
Neoverse N2 was incorrectly marked as an Armv8.5a core. This has been
changed to an Armv9.0a core. However, crypto options are not enabled
by default for Armv9 cores, so -mcpu=neoverse-n2+crypto is required
to enable crypto for this core.
Neoverse N2 Technical Reference Manual:
https://developer.arm.com/documentation/102099/0003/
AArch64 has five system registers intended to be useful as thread
pointers: one for each exception level which is RW at that level and
inaccessible to lower ones, and the special TPIDRRO_EL0 which is
readable but not writable at EL0. AArch32 has three, corresponding to
the AArch64 ones that aren't specific to EL2 or EL3.
Currently clang supports only a subset of these registers, and not
even a consistent subset between AArch64 and AArch32:
- For AArch64, clang permits you to choose between the four TPIDR_ELn
thread registers, but not the fifth one, TPIDRRO_EL0.
- In AArch32, on the other hand, the //only// thread register you can
choose (apart from 'none, use a function call') is TPIDRURO, which
corresponds to (the bottom 32 bits of) AArch64's TPIDRRO_EL0.
So there is no thread register that you can currently use in both
targets!
For custom and bare-metal purposes, users might very reasonably want
to use any of these thread registers. There's no reason they shouldn't
all be supported as options, even if the default choices follow
existing practice on typical operating systems.
This commit extends the range of values acceptable to the `-mtp=`
clang option, so that you can specify any of these registers by (the
lower-case version of) their official names in the ArmARM:
- For AArch64: tpidr_el0, tpidrro_el0, tpidr_el1, tpidr_el2, tpidr_el3
- For AArch32: tpidrurw, tpidruro, tpidrprw
All existing values of the option are still supported and behave the
same as before. Defaults are also unchanged. No command line that
worked already should change behaviour as a result of this.
The new values for the `-mtp=` option have been agreed with Arm's gcc
developers (although I don't know whether they plan to implement them
in the near future).
Reviewed By: nickdesaulniers
Differential Revision: https://reviews.llvm.org/D152433
The ABI for big-endian AArch32, as specified by AAELF32, is above-
averagely complicated. Relocatable object files are expected to store
instruction encodings in byte order matching the ELF file's endianness
(so, big-endian for a BE ELF file). But executable images can
//either// do that //or// store instructions little-endian regardless
of data and ELF endianness (to support BE32 and BE8 platforms
respectively). They signal the latter by setting the EF_ARM_BE8 flag
in the ELF header.
(In the case of the Thumb instruction set, this all means that each
16-bit halfword of a Thumb instruction is stored in one or other
endianness. The two halfwords of a 32-bit Thumb instruction must
appear in the same order no matter what, because the first halfword is
the one that must avoid overlapping the encoding of any 16-bit Thumb
instruction.)
llvm-objdump was unconditionally expecting Arm instructions to be
stored little-endian. So it would correctly disassemble a BE8 image,
but if you gave it a BE32 image or a BE object file, it would retrieve
every instruction in byte-swapped form and disassemble it to
nonsense. (Even an object file output by LLVM itself, because
ARMMCCodeEmitter outputs instructions big-endian in big-endian mode,
which is correct for writing an object file.)
This patch allows llvm-objdump to correctly disassemble all three of
those classes of Arm ELF file. It does it by introducing a new
SubtargetFeature for big-endian instructions, setting it from the ELF
image type and flags during llvm-objdump setup, and teaching both
ARMDisassembler and llvm-objdump itself to pay attention to it when
retrieving instruction data from a section being disassembled.
Differential Revision: https://reviews.llvm.org/D130902
This adds a +atomic-32 target feature, which instructs LLVM to assume
that lock-free 32-bit atomics are available for this target, even
if they usually wouldn't be.
If only atomic loads/stores are used, then this won't emit libcalls.
If atomic CAS is used, then the user is responsible for providing
any necessary __sync implementations (e.g. by masking interrupts
for single-core privileged use cases).
See https://reviews.llvm.org/D120026#3674333 for context on this
change. The tl;dr is that the thumbv6m target in Rust has
historically made atomic load/store only available, which is
incompatible with the change from D120026, which switched these to
use libatomic.
Differential Revision: https://reviews.llvm.org/D130480
These three subtarget features are meant to control where MVE
instructions take 1 vs 2 vs 4 architectural beats. The mve1beat feature
is described as "Model MVE instructions as a 1 beat per tick
architecture", meaning MVE instruction will execute over 4 cycles.
mve4beat is the opposite where the entire 4 beats of the MVE instruction
execute in a single cycle. The costs for the two were backwards though,
not matching the cycle counts like they should. This patch switches the
costs on the two to bring them in-line with expectations.
Differential Revision: https://reviews.llvm.org/D129141
This patch adds support for Arm's Cortex-M85 CPU. The Cortex-M85 CPU is
an Arm v8.1m Mainline CPU, with optional support for MVE and PACBTI,
both of which are enabled by default.
Parts have been coauthored by by Mark Murray, Alexandros Lamprineas and
David Green.
Differential Revision: https://reviews.llvm.org/D128415
Currently the a AAPCS compliant frame record is not always created for
functions when it should. Although a consistent frame record might not
be required in some cases, there are still scenarios where applications
may want to make use of the call hierarchy made available trough it.
In order to enable the use of AAPCS compliant frame records whilst keep
backwards compatibility, this patch introduces a new command-line option
(`-mframe-chain=[none|aapcs|aapcs+leaf]`) for Aarch32 and Thumb backends.
The option allows users to explicitly select when to use it, and is also
useful to ensure the extra overhead introduced by the frame records is
only introduced when necessary, in particular for Thumb targets.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D125094
This reverts commit 7625e01d661644a560884057755d48a0da8b77b4 and
dependent cbcce82ef6b512d97e92a319a75a03e997c844e1.
Commit 7625e01d661644a560884057755d48a0da8b77b4 causes some new codegen test
failures under asan, e.g., CodeGen/ARM/execute-only.ll:
https://lab.llvm.org/buildbot/#/builders/5/builds/24659/steps/15/logs/stdio.
Currently the a AAPCS compliant frame record is not always created for
functions when it should. Although a consistent frame record might not
be required in some cases, there are still scenarios where applications
may want to make use of the call hierarchy made available trough it.
In order to enable the use of AAPCS compliant frame records whilst keep
backwards compatibility, this patch introduces a new command-line option
(`-mframe-chain=[none|aapcs|aapcs+leaf]`) for Aarch32 and Thumb backends.
The option allows users to explicitly select when to use it, and is also
useful to ensure the extra overhead introduced by the frame records is
only introduced when necessary, in particular for Thumb targets.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D125094
Currently the a AAPCS compliant frame record is not always created for
functions when it should. Although a consistent frame record might not
be required in some cases, there are still scenarios where applications
may want to make use of the call hierarchy made available trough it.
In order to enable the use of AAPCS compliant frame records whilst keep
backwards compatibility, this patch introduces a new command-line option
(`-mframe-chain=[none|aapcs|aapcs+leaf]`) for Aarch32 and Thumb backends.
The option allows users to explicitly select when to use it, and is also
useful to ensure the extra overhead introduced by the frame records is
only introduced when necessary, in particular for Thumb targets.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D125094
This brings clang/llvm into line with GCC. The Pass is still enabled for
the affected cores, but is now opt-in when using `-march=`.
I also took the opportunity to add release notes for this change.
Reviewed By: john.brawn
Differential Revision: https://reviews.llvm.org/D125775
This adds a late Machine Pass to work around a Cortex CPU Erratum
affecting Cortex-A57 and Cortex-A72:
- Cortex-A57 Erratum 1742098
- Cortex-A72 Erratum 1655431
The pass inserts instructions to make the inputs to the fused AES
instruction pairs no longer trigger the erratum. Here the pass errs on
the side of caution, inserting the instructions wherever we cannot prove
that the inputs came from a safe instruction.
The pass is used:
- for Cortex-A57 and Cortex-A72,
- for "generic" cores (which are used when using `-march=`),
- when the user specifies `-mfix-cortex-a57-aes-1742098` or
`mfix-cortex-a72-aes-1655431` in the command-line arguments to clang.
Reviewed By: dmgreen, simon_tatham
Differential Revision: https://reviews.llvm.org/D119720
Fixed "private field is not used" warning when compiled
with clang.
original commit: 28d09bbbc3d09c912b54a4d5edb32cab7de32a6f
reverted in: fa49021c68ef7a7adcdf7b8a44b9006506523191
------
This patch permits Swing Modulo Scheduling for ARM targets
turns it on by default for the Cortex-M7. The t2Bcc
instruction is recognized as a loop-ending branch.
MachinePipeliner is extended by adding support for
"unpipelineable" instructions. These instructions are
those which contribute to the loop exit test; in the SMS
papers they are removed before creating the dependence graph
and then inserted into the final schedule of the kernel and
prologues. Support for these instructions was not previously
necessary because current targets supporting SMS have only
supported it for hardware loop branches, which have no
loop-exit-contributing instructions in the loop body.
The current structure of the MachinePipeliner makes it difficult
to remove/exclude these instructions from the dependence graph.
Therefore, this patch leaves them in the graph, but adds a
"normalization" method which moves them in the schedule to
stage 0, which causes them to appear properly in kernel and
prologues.
It was also necessary to be more careful about boundary nodes
when iterating across successors in the dependence graph because
the loop exit branch is now a non-artificial successor to
instructions in the graph. In additional, schedules with physical
use/def pairs in the same cycle should be treated as creating an
invalid schedule because the scheduling logic doesn't respect
physical register dependence once scheduled to the same cycle.
Reviewed By: dmgreen
Differential Revision: https://reviews.llvm.org/D122672
This patch permits Swing Modulo Scheduling for ARM targets
turns it on by default for the Cortex-M7. The t2Bcc
instruction is recognized as a loop-ending branch.
MachinePipeliner is extended by adding support for
"unpipelineable" instructions. These instructions are
those which contribute to the loop exit test; in the SMS
papers they are removed before creating the dependence graph
and then inserted into the final schedule of the kernel and
prologues. Support for these instructions was not previously
necessary because current targets supporting SMS have only
supported it for hardware loop branches, which have no
loop-exit-contributing instructions in the loop body.
The current structure of the MachinePipeliner makes it difficult
to remove/exclude these instructions from the dependence graph.
Therefore, this patch leaves them in the graph, but adds a
"normalization" method which moves them in the schedule to
stage 0, which causes them to appear properly in kernel and
prologues.
It was also necessary to be more careful about boundary nodes
when iterating across successors in the dependence graph because
the loop exit branch is now a non-artificial successor to
instructions in the graph. In additional, schedules with physical
use/def pairs in the same cycle should be treated as creating an
invalid schedule because the scheduling logic doesn't respect
physical register dependence once scheduled to the same cycle.
Reviewed By: dmgreen
Differential Revision: https://reviews.llvm.org/D122672
Reland of D120906 after sanitizer failures.
This patch aims to reduce a lot of the boilerplate around adding new subtarget
features. From the SubtargetFeatures tablegen definitions, a series of calls to
the macro GET_SUBTARGETINFO_MACRO are generated in
ARM/AArch64GenSubtargetInfo.inc. ARMSubtarget/AArch64Subtarget can then use
this macro to define bool members and the corresponding getter methods.
Some naming inconsistencies have been fixed to allow this, and one unused
member removed.
This implementation only applies to boolean members; in future both BitVector
and enum members could also be generated.
Differential Revision: https://reviews.llvm.org/D120906
This patch aims to reduce a lot of the boilerplate around adding new subtarget
features. From the SubtargetFeatures tablegen definitions, a series of calls to
the macro GET_SUBTARGETINFO_MACRO are generated in
ARM/AArch64GenSubtargetInfo.inc. ARMSubtarget/AArch64Subtarget can then use
this macro to define bool members and the corresponding getter methods.
Some naming inconsistencies have been fixed to allow this, and one unused
member removed.
This implementation only applies to boolean members; in future both BitVector
and enum members could also be generated.
Differential Revision: https://reviews.llvm.org/D120906
FeaturePerfMon relates to the PMU extensions available in armv7-a, and
should not be available in v7-m (it requires loading from a system
register with a mrc). Sink it down a level in the dependency map so that
it isn't present in ARMv7m or HasV8MMainlineOps.
It is also removed from the Neoverse-N2, as it will already be
transitively included.
Differential Revision: https://reviews.llvm.org/D117022
This patch introduces support for targetting the Armv9.3-A architecture,
which should map to the existing Armv8.8-A extensions.
Differential Revision: https://reviews.llvm.org/D116158
This is the first commit in a series that implements support for
"armv8.8-a" architecture. This should contain all the necessary
boilerplate to make the 8.8-A architecture exist from LLVM and Clang's
point of view: it adds the new arch as a subtarget feature, a definition
in TargetParser, a name on the command line, an appropriate set of
predefined macros, and adds appropriate tests. The new architecture name
is supported in both AArch32 and AArch64.
However, in this commit, no actual _functionality_ is added as part of
the new architecture. If you specify -march=armv8.8a, the compiler
will accept it and set the right predefines, but generate no code any
differently.
Differential Revision: https://reviews.llvm.org/D115694
armv9-a, armv9.1-a and armv9.2-a can be targeted using the -march option
both in ARM and AArch64.
- Armv9-A maps to Armv8.5-A.
- Armv9.1-A maps to Armv8.6-A.
- Armv9.2-A maps to Armv8.7-A.
- The SVE2 extension is enabled by default on these architectures.
- The cryptographic extensions are disabled by default on these
architectures.
The Armv9-A architecture is described in the Arm® Architecture Reference
Manual Supplement Armv9, for Armv9-A architecture profile
(https://developer.arm.com/documentation/ddi0608/latest).
Reviewed By: SjoerdMeijer
Differential Revision: https://reviews.llvm.org/D109517
Recently a vulnerability issue is found in the implementation of VLLDM
instruction in the Arm Cortex-M33, Cortex-M35P and Cortex-M55. If the
VLLDM instruction is abandoned due to an exception when it is partially
completed, it is possible for subsequent non-secure handler to access
and modify the partial restored register values. This vulnerability is
identified as CVE-2021-35465.
The mitigation sequence varies between v8-m and v8.1-m as follows:
v8-m.main
---------
mrs r5, control
tst r5, #8 /* CONTROL_S.SFPA */
it ne
.inst.w 0xeeb00a40 /* vmovne s0, s0 */
1:
vlldm sp /* Lazy restore of d0-d16 and FPSCR. */
v8.1-m.main
-----------
vscclrm {vpr} /* Clear VPR. */
vlldm sp /* Lazy restore of d0-d16 and FPSCR. */
More details on
developer.arm.com/support/arm-security-updates/vlldm-instruction-security-vulnerability
Differential Revision: https://reviews.llvm.org/D109157
Linker scripts might not handle COMDAT sections. SLSHardeing adds
new section for each __llvm_slsblr_thunk_xN. This new option allows
the generation of the thunks into the normal text section to handle these
exceptional cases.
,comdat or ,noncomdat can be added to harden-sls to control the codegen.
-mharden-sls=[all|retbr|blr],nocomdat.
Reviewed By: kristof.beyls
Differential Revision: https://reviews.llvm.org/D100546
Mark v6m/v8m-baseline cores as having no branch predictors. This should
not alter very much on its own, but is more correct as the cores do not
have branch predictors and can help in the future.
In the tablegen architecture definition, the Name field for the
ARMv87a record read "ARMv86a". All the other records contain their own
names.
Corrected it to "ARMv87a", and added the necessary value in
ARMArchEnum for that to refer to.
Reviewed By: pratlucas
Differential Revision: https://reviews.llvm.org/D96493
This patch upstreams support for the Armv8-a Cortex-A78C
processor for AArch64 and ARM.
In detail:
Adding cortex-a78c as cpu option for aarch64 and arm targets in clang
Adding Cortex-A78C CPU name and ProcessorModel in llvm
Details of the CPU can be found here:
https://www.arm.com/products/silicon-ip-cpu/cortex-a/cortex-a78c
Adds ARMBankConflictHazardRecognizer. This hazard recognizer
looks for a few situations where the same base pointer is used and
then checks whether the offsets lead to a bank conflict. Two
parameters are also added to permit overriding of the target
assumptions:
arm-data-bank-mask=<int> - Mask of bits which are to be checked for
conflicts. If all these bits are equal in the offsets, there is a
conflict.
arm-assume-itcm-bankconflict=<bool> - Assume that there will be bank
conflicts on any loads to a constant pool.
This hazard recognizer is enabled for Cortex-M7, where the Technical
Reference Manual states that there are two DTCM banks banked using bit
2 and one ITCM bank.
Differential Revision: https://reviews.llvm.org/D93054
To make sure that no barrier gets placed on the architectural execution
path, each indirect call calling the function in register rN, it gets
transformed to a direct call to __llvm_slsblr_thunk_mode_rN. mode is
either arm or thumb, depending on the mode of where the indirect call
happens.
The llvm_slsblr_thunk_mode_rN thunk contains:
bx rN
<speculation barrier>
Therefore, the indirect call gets split into 2; one direct call and one
indirect jump.
This transformation results in not inserting a speculation barrier on
the architectural execution path.
The mitigation is off by default and can be enabled by the
harden-sls-blr subtarget feature.
As a linker is allowed to clobber r12 on function calls, the
above code transformation is not correct in case a linker does so.
Similarly, the transformation is not correct when register lr is used.
Avoiding r12/lr being used is done in a follow-on patch to make
reviewing this code easier.
Differential Revision: https://reviews.llvm.org/D92468
Some processors may speculatively execute the instructions immediately
following indirect control flow, such as returns, indirect jumps and
indirect function calls.
To avoid a potential miss-speculatively executed gadget after these
instructions leaking secrets through side channels, this pass places a
speculation barrier immediately after every indirect control flow where
control flow doesn't return to the next instruction, such as returns and
indirect jumps, but not indirect function calls.
Hardening of indirect function calls will be done in a later,
independent patch.
This patch is implementing the same functionality as the AArch64 counter
part implemented in https://reviews.llvm.org/D81400.
For AArch64, returns and indirect jumps only occur on RET and BR
instructions and hence the function attribute to control the hardening
is called "harden-sls-retbr" there. On AArch32, there is a much wider
variety of instructions that can trigger an indirect unconditional
control flow change. I've decided to stick with the name
"harden-sls-retbr" as introduced for the corresponding AArch64
mitigation.
This patch implements this for ARM mode. A future patch will extend this
to also support Thumb mode.
The inserted barriers are never on the correct, architectural execution
path, and therefore performance overhead of this is expected to be low.
To ensure these barriers are never on an architecturally executed path,
when the harden-sls-retbr function attribute is present, indirect
control flow is never conditionalized/predicated.
On targets that implement that Armv8.0-SB Speculation Barrier extension,
a single SB instruction is emitted that acts as a speculation barrier.
On other targets, a DSB SYS followed by a ISB is emitted to act as a
speculation barrier.
These speculation barriers are implemented as pseudo instructions to
avoid later passes to analyze them and potentially remove them.
The mitigation is off by default and can be enabled by the
harden-sls-retbr subtarget feature.
Differential Revision: https://reviews.llvm.org/D92395
This extends the command-line support for the 'armv8.7-a' architecture
name to the ARM target.
Based on a patch written by Momchil Velikov.
Reviewed By: ostannard
Differential Revision: https://reviews.llvm.org/D93231
Patch fixes scheduling of ALU instructions which modify pc register. Patch
also fixes computation of mutually exclusive predicates for sequences of
variants to be properly expanded
Differential revision: https://reviews.llvm.org/D91266