//===-- Serialize.cpp - ClangDoc Serializer ---------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "Serialize.h" #include "BitcodeWriter.h" #include "clang/AST/Attr.h" #include "clang/AST/Comment.h" #include "clang/AST/DeclFriend.h" #include "clang/AST/Mangle.h" #include "clang/Index/USRGeneration.h" #include "clang/Lex/Lexer.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Support/SHA1.h" using clang::comments::FullComment; namespace clang { namespace doc { namespace serialize { namespace { static SmallString<16> exprToString(const clang::Expr *E) { clang::LangOptions Opts; clang::PrintingPolicy Policy(Opts); SmallString<16> Result; llvm::raw_svector_ostream OS(Result); E->printPretty(OS, nullptr, Policy); return Result; } } // namespace SymbolID hashUSR(llvm::StringRef USR) { return llvm::SHA1::hash(arrayRefFromStringRef(USR)); } template static void populateParentNamespaces(llvm::SmallVector &Namespaces, const T *D, bool &IsAnonymousNamespace); static void populateMemberTypeInfo(MemberTypeInfo &I, const Decl *D); static void populateMemberTypeInfo(RecordInfo &I, AccessSpecifier &Access, const DeclaratorDecl *D, bool IsStatic = false); static void getTemplateParameters(const TemplateParameterList *TemplateParams, llvm::raw_ostream &Stream) { Stream << "template <"; for (unsigned i = 0; i < TemplateParams->size(); ++i) { if (i > 0) Stream << ", "; const NamedDecl *Param = TemplateParams->getParam(i); if (const auto *TTP = llvm::dyn_cast(Param)) { if (TTP->wasDeclaredWithTypename()) Stream << "typename"; else Stream << "class"; if (TTP->isParameterPack()) Stream << "..."; Stream << " " << TTP->getNameAsString(); // We need to also handle type constraints for code like: // template // class C {}; if (TTP->hasTypeConstraint()) { Stream << " = "; TTP->getTypeConstraint()->print( Stream, TTP->getASTContext().getPrintingPolicy()); } } else if (const auto *NTTP = llvm::dyn_cast(Param)) { NTTP->getType().print(Stream, NTTP->getASTContext().getPrintingPolicy()); if (NTTP->isParameterPack()) Stream << "..."; Stream << " " << NTTP->getNameAsString(); } else if (const auto *TTPD = llvm::dyn_cast(Param)) { Stream << "template <"; getTemplateParameters(TTPD->getTemplateParameters(), Stream); Stream << "> class " << TTPD->getNameAsString(); } } Stream << "> "; } // Extract the full function prototype from a FunctionDecl including // Full Decl static llvm::SmallString<256> getFunctionPrototype(const FunctionDecl *FuncDecl) { llvm::SmallString<256> Result; llvm::raw_svector_ostream Stream(Result); const ASTContext &Ctx = FuncDecl->getASTContext(); const auto *Method = llvm::dyn_cast(FuncDecl); // If it's a templated function, handle the template parameters if (const auto *TmplDecl = FuncDecl->getDescribedTemplate()) getTemplateParameters(TmplDecl->getTemplateParameters(), Stream); // If it's a virtual method if (Method && Method->isVirtual()) Stream << "virtual "; // Print return type FuncDecl->getReturnType().print(Stream, Ctx.getPrintingPolicy()); // Print function name Stream << " " << FuncDecl->getNameAsString() << "("; // Print parameter list with types, names, and default values for (unsigned I = 0; I < FuncDecl->getNumParams(); ++I) { if (I > 0) Stream << ", "; const ParmVarDecl *ParamDecl = FuncDecl->getParamDecl(I); QualType ParamType = ParamDecl->getType(); ParamType.print(Stream, Ctx.getPrintingPolicy()); // Print parameter name if it has one if (!ParamDecl->getName().empty()) Stream << " " << ParamDecl->getNameAsString(); // Print default argument if it exists if (ParamDecl->hasDefaultArg() && !ParamDecl->hasUninstantiatedDefaultArg()) { if (const Expr *DefaultArg = ParamDecl->getDefaultArg()) { Stream << " = "; DefaultArg->printPretty(Stream, nullptr, Ctx.getPrintingPolicy()); } } } // If it is a variadic function, add '...' if (FuncDecl->isVariadic()) { if (FuncDecl->getNumParams() > 0) Stream << ", "; Stream << "..."; } Stream << ")"; // If it's a const method, add 'const' qualifier if (Method) { if (Method->isDeleted()) Stream << " = delete"; if (Method->size_overridden_methods()) Stream << " override"; if (Method->hasAttr()) Stream << " final"; if (Method->isConst()) Stream << " const"; if (Method->isPureVirtual()) Stream << " = 0"; } if (auto ExceptionSpecType = FuncDecl->getExceptionSpecType()) Stream << " " << ExceptionSpecType; return Result; // Convert SmallString to std::string for return } static llvm::SmallString<16> getTypeAlias(const TypeAliasDecl *Alias) { llvm::SmallString<16> Result; llvm::raw_svector_ostream Stream(Result); const ASTContext &Ctx = Alias->getASTContext(); if (const auto *TmplDecl = Alias->getDescribedTemplate()) getTemplateParameters(TmplDecl->getTemplateParameters(), Stream); Stream << "using " << Alias->getNameAsString() << " = "; QualType Q = Alias->getUnderlyingType(); Q.print(Stream, Ctx.getPrintingPolicy()); return Result; } // extract full syntax for record declaration static llvm::SmallString<16> getRecordPrototype(const CXXRecordDecl *CXXRD) { llvm::SmallString<16> Result; LangOptions LangOpts; PrintingPolicy Policy(LangOpts); Policy.SuppressTagKeyword = false; Policy.FullyQualifiedName = true; Policy.IncludeNewlines = false; llvm::raw_svector_ostream OS(Result); if (const auto *TD = CXXRD->getDescribedClassTemplate()) { OS << "template <"; bool FirstParam = true; for (const auto *Param : *TD->getTemplateParameters()) { if (!FirstParam) OS << ", "; Param->print(OS, Policy); FirstParam = false; } OS << ">\n"; } if (CXXRD->isStruct()) OS << "struct "; else if (CXXRD->isClass()) OS << "class "; else if (CXXRD->isUnion()) OS << "union "; OS << CXXRD->getNameAsString(); // We need to make sure we have a good enough declaration to check. In the // case where the class is a forward declaration, we'll fail assertions in // DeclCXX. if (CXXRD->isCompleteDefinition() && CXXRD->getNumBases() > 0) { OS << " : "; bool FirstBase = true; for (const auto &Base : CXXRD->bases()) { if (!FirstBase) OS << ", "; if (Base.isVirtual()) OS << "virtual "; OS << getAccessSpelling(Base.getAccessSpecifier()) << " "; OS << Base.getType().getAsString(Policy); FirstBase = false; } } return Result; } // A function to extract the appropriate relative path for a given info's // documentation. The path returned is a composite of the parent namespaces. // // Example: Given the below, the directory path for class C info will be // /A/B // // namespace A { // namespace B { // // class C {}; // // } // } static llvm::SmallString<128> getInfoRelativePath(const llvm::SmallVectorImpl &Namespaces) { llvm::SmallString<128> Path; for (auto R = Namespaces.rbegin(), E = Namespaces.rend(); R != E; ++R) llvm::sys::path::append(Path, R->Name); return Path; } static llvm::SmallString<128> getInfoRelativePath(const Decl *D) { llvm::SmallVector Namespaces; // The third arg in populateParentNamespaces is a boolean passed by reference, // its value is not relevant in here so it's not used anywhere besides the // function call bool B = true; populateParentNamespaces(Namespaces, D, B); return getInfoRelativePath(Namespaces); } class ClangDocCommentVisitor : public ConstCommentVisitor { public: ClangDocCommentVisitor(CommentInfo &CI) : CurrentCI(CI) {} void parseComment(const comments::Comment *C); void visitTextComment(const TextComment *C); void visitInlineCommandComment(const InlineCommandComment *C); void visitHTMLStartTagComment(const HTMLStartTagComment *C); void visitHTMLEndTagComment(const HTMLEndTagComment *C); void visitBlockCommandComment(const BlockCommandComment *C); void visitParamCommandComment(const ParamCommandComment *C); void visitTParamCommandComment(const TParamCommandComment *C); void visitVerbatimBlockComment(const VerbatimBlockComment *C); void visitVerbatimBlockLineComment(const VerbatimBlockLineComment *C); void visitVerbatimLineComment(const VerbatimLineComment *C); private: std::string getCommandName(unsigned CommandID) const; bool isWhitespaceOnly(StringRef S) const; CommentInfo &CurrentCI; }; void ClangDocCommentVisitor::parseComment(const comments::Comment *C) { CurrentCI.Kind = stringToCommentKind(C->getCommentKindName()); ConstCommentVisitor::visit(C); for (comments::Comment *Child : llvm::make_range(C->child_begin(), C->child_end())) { CurrentCI.Children.emplace_back(std::make_unique()); ClangDocCommentVisitor Visitor(*CurrentCI.Children.back()); Visitor.parseComment(Child); } } void ClangDocCommentVisitor::visitTextComment(const TextComment *C) { if (!isWhitespaceOnly(C->getText())) CurrentCI.Text = C->getText(); } void ClangDocCommentVisitor::visitInlineCommandComment( const InlineCommandComment *C) { CurrentCI.Name = getCommandName(C->getCommandID()); for (unsigned I = 0, E = C->getNumArgs(); I != E; ++I) CurrentCI.Args.push_back(C->getArgText(I)); } void ClangDocCommentVisitor::visitHTMLStartTagComment( const HTMLStartTagComment *C) { CurrentCI.Name = C->getTagName(); CurrentCI.SelfClosing = C->isSelfClosing(); for (unsigned I = 0, E = C->getNumAttrs(); I < E; ++I) { const HTMLStartTagComment::Attribute &Attr = C->getAttr(I); CurrentCI.AttrKeys.push_back(Attr.Name); CurrentCI.AttrValues.push_back(Attr.Value); } } void ClangDocCommentVisitor::visitHTMLEndTagComment( const HTMLEndTagComment *C) { CurrentCI.Name = C->getTagName(); CurrentCI.SelfClosing = true; } void ClangDocCommentVisitor::visitBlockCommandComment( const BlockCommandComment *C) { CurrentCI.Name = getCommandName(C->getCommandID()); for (unsigned I = 0, E = C->getNumArgs(); I < E; ++I) CurrentCI.Args.push_back(C->getArgText(I)); } void ClangDocCommentVisitor::visitParamCommandComment( const ParamCommandComment *C) { CurrentCI.Direction = ParamCommandComment::getDirectionAsString(C->getDirection()); CurrentCI.Explicit = C->isDirectionExplicit(); if (C->hasParamName()) CurrentCI.ParamName = C->getParamNameAsWritten(); } void ClangDocCommentVisitor::visitTParamCommandComment( const TParamCommandComment *C) { if (C->hasParamName()) CurrentCI.ParamName = C->getParamNameAsWritten(); } void ClangDocCommentVisitor::visitVerbatimBlockComment( const VerbatimBlockComment *C) { CurrentCI.Name = getCommandName(C->getCommandID()); CurrentCI.CloseName = C->getCloseName(); } void ClangDocCommentVisitor::visitVerbatimBlockLineComment( const VerbatimBlockLineComment *C) { if (!isWhitespaceOnly(C->getText())) CurrentCI.Text = C->getText(); } void ClangDocCommentVisitor::visitVerbatimLineComment( const VerbatimLineComment *C) { if (!isWhitespaceOnly(C->getText())) CurrentCI.Text = C->getText(); } bool ClangDocCommentVisitor::isWhitespaceOnly(llvm::StringRef S) const { return llvm::all_of(S, isspace); } std::string ClangDocCommentVisitor::getCommandName(unsigned CommandID) const { const CommandInfo *Info = CommandTraits::getBuiltinCommandInfo(CommandID); if (Info) return Info->Name; // TODO: Add parsing for \file command. return ""; } // Serializing functions. static std::string getSourceCode(const Decl *D, const SourceRange &R) { return Lexer::getSourceText(CharSourceRange::getTokenRange(R), D->getASTContext().getSourceManager(), D->getASTContext().getLangOpts()) .str(); } template static std::string serialize(T &I) { SmallString<2048> Buffer; llvm::BitstreamWriter Stream(Buffer); ClangDocBitcodeWriter Writer(Stream); Writer.emitBlock(I); return Buffer.str().str(); } std::string serialize(std::unique_ptr &I) { switch (I->IT) { case InfoType::IT_namespace: return serialize(*static_cast(I.get())); case InfoType::IT_record: return serialize(*static_cast(I.get())); case InfoType::IT_enum: return serialize(*static_cast(I.get())); case InfoType::IT_function: return serialize(*static_cast(I.get())); case InfoType::IT_concept: return serialize(*static_cast(I.get())); case InfoType::IT_variable: return serialize(*static_cast(I.get())); case InfoType::IT_friend: case InfoType::IT_typedef: case InfoType::IT_default: return ""; } llvm_unreachable("unhandled enumerator"); } static void parseFullComment(const FullComment *C, CommentInfo &CI) { ClangDocCommentVisitor Visitor(CI); Visitor.parseComment(C); } static SymbolID getUSRForDecl(const Decl *D) { llvm::SmallString<128> USR; if (index::generateUSRForDecl(D, USR)) return SymbolID(); return hashUSR(USR); } static TagDecl *getTagDeclForType(const QualType &T) { if (const TagDecl *D = T->getAsTagDecl()) return D->getDefinition(); return nullptr; } static RecordDecl *getRecordDeclForType(const QualType &T) { if (const RecordDecl *D = T->getAsRecordDecl()) return D->getDefinition(); return nullptr; } static TypeInfo getTypeInfoForType(const QualType &T, const PrintingPolicy &Policy) { const TagDecl *TD = getTagDeclForType(T); if (!TD) { TypeInfo TI = TypeInfo(Reference(SymbolID(), T.getAsString(Policy))); TI.IsBuiltIn = T->isBuiltinType(); TI.IsTemplate = T->isTemplateTypeParmType(); return TI; } InfoType IT; if (isa(TD)) { IT = InfoType::IT_enum; } else if (isa(TD)) { IT = InfoType::IT_record; } else { IT = InfoType::IT_default; } Reference R = Reference(getUSRForDecl(TD), TD->getNameAsString(), IT, T.getAsString(Policy), getInfoRelativePath(TD)); TypeInfo TI = TypeInfo(R); TI.IsBuiltIn = T->isBuiltinType(); TI.IsTemplate = T->isTemplateTypeParmType(); return TI; } static bool isPublic(const clang::AccessSpecifier AS, const clang::Linkage Link) { if (AS == clang::AccessSpecifier::AS_private) return false; if ((Link == clang::Linkage::Module) || (Link == clang::Linkage::External)) return true; return false; // otherwise, linkage is some form of internal linkage } static bool shouldSerializeInfo(bool PublicOnly, bool IsInAnonymousNamespace, const NamedDecl *D) { bool IsAnonymousNamespace = false; if (const auto *N = dyn_cast(D)) IsAnonymousNamespace = N->isAnonymousNamespace(); return !PublicOnly || (!IsInAnonymousNamespace && !IsAnonymousNamespace && isPublic(D->getAccessUnsafe(), D->getLinkageInternal())); } // The InsertChild functions insert the given info into the given scope using // the method appropriate for that type. Some types are moved into the // appropriate vector, while other types have Reference objects generated to // refer to them. // // See MakeAndInsertIntoParent(). static void InsertChild(ScopeChildren &Scope, const NamespaceInfo &Info) { Scope.Namespaces.emplace_back(Info.USR, Info.Name, InfoType::IT_namespace, Info.Name, getInfoRelativePath(Info.Namespace)); } static void InsertChild(ScopeChildren &Scope, const RecordInfo &Info) { Scope.Records.emplace_back(Info.USR, Info.Name, InfoType::IT_record, Info.Name, getInfoRelativePath(Info.Namespace), Info.MangledName); } static void InsertChild(ScopeChildren &Scope, EnumInfo Info) { Scope.Enums.push_back(std::move(Info)); } static void InsertChild(ScopeChildren &Scope, FunctionInfo Info) { Scope.Functions.push_back(std::move(Info)); } static void InsertChild(ScopeChildren &Scope, TypedefInfo Info) { Scope.Typedefs.push_back(std::move(Info)); } static void InsertChild(ScopeChildren &Scope, ConceptInfo Info) { Scope.Concepts.push_back(std::move(Info)); } static void InsertChild(ScopeChildren &Scope, VarInfo Info) { Scope.Variables.push_back(std::move(Info)); } // Creates a parent of the correct type for the given child and inserts it into // that parent. // // This is complicated by the fact that namespaces and records are inserted by // reference (constructing a "Reference" object with that namespace/record's // info), while everything else is inserted by moving it directly into the child // vectors. // // For namespaces and records, explicitly specify a const& template parameter // when invoking this function: // MakeAndInsertIntoParent(...); // Otherwise, specify an rvalue reference and move into the // parameter. Since each variant is used once, it's not worth having a more // elaborate system to automatically deduce this information. template static std::unique_ptr makeAndInsertIntoParent(ChildType Child) { if (Child.Namespace.empty()) { // Insert into unnamed parent namespace. auto ParentNS = std::make_unique(); InsertChild(ParentNS->Children, std::forward(Child)); return ParentNS; } switch (Child.Namespace[0].RefType) { case InfoType::IT_namespace: { auto ParentNS = std::make_unique(); ParentNS->USR = Child.Namespace[0].USR; InsertChild(ParentNS->Children, std::forward(Child)); return ParentNS; } case InfoType::IT_record: { auto ParentRec = std::make_unique(); ParentRec->USR = Child.Namespace[0].USR; InsertChild(ParentRec->Children, std::forward(Child)); return ParentRec; } case InfoType::IT_default: case InfoType::IT_enum: case InfoType::IT_function: case InfoType::IT_typedef: case InfoType::IT_concept: case InfoType::IT_variable: case InfoType::IT_friend: break; } llvm_unreachable("Invalid reference type for parent namespace"); } // There are two uses for this function. // 1) Getting the resulting mode of inheritance of a record. // Example: class A {}; class B : private A {}; class C : public B {}; // It's explicit that C is publicly inherited from C and B is privately // inherited from A. It's not explicit but C is also privately inherited from // A. This is the AS that this function calculates. FirstAS is the // inheritance mode of `class C : B` and SecondAS is the inheritance mode of // `class B : A`. // 2) Getting the inheritance mode of an inherited attribute / method. // Example : class A { public: int M; }; class B : private A {}; // Class B is inherited from class A, which has a public attribute. This // attribute is now part of the derived class B but it's not public. This // will be private because the inheritance is private. This is the AS that // this function calculates. FirstAS is the inheritance mode and SecondAS is // the AS of the attribute / method. static AccessSpecifier getFinalAccessSpecifier(AccessSpecifier FirstAS, AccessSpecifier SecondAS) { if (FirstAS == AccessSpecifier::AS_none || SecondAS == AccessSpecifier::AS_none) return AccessSpecifier::AS_none; if (FirstAS == AccessSpecifier::AS_private || SecondAS == AccessSpecifier::AS_private) return AccessSpecifier::AS_private; if (FirstAS == AccessSpecifier::AS_protected || SecondAS == AccessSpecifier::AS_protected) return AccessSpecifier::AS_protected; return AccessSpecifier::AS_public; } // The Access parameter is only provided when parsing the field of an inherited // record, the access specification of the field depends on the inheritance mode static void parseFields(RecordInfo &I, const RecordDecl *D, bool PublicOnly, AccessSpecifier Access = AccessSpecifier::AS_public) { for (const FieldDecl *F : D->fields()) { if (!shouldSerializeInfo(PublicOnly, /*IsInAnonymousNamespace=*/false, F)) continue; populateMemberTypeInfo(I, Access, F); } const auto *CxxRD = dyn_cast(D); if (!CxxRD) return; for (Decl *CxxDecl : CxxRD->decls()) { auto *VD = dyn_cast(CxxDecl); if (!VD || !shouldSerializeInfo(PublicOnly, /*IsInAnonymousNamespace=*/false, VD)) continue; if (VD->isStaticDataMember()) populateMemberTypeInfo(I, Access, VD, /*IsStatic=*/true); } } static void parseEnumerators(EnumInfo &I, const EnumDecl *D) { for (const EnumConstantDecl *E : D->enumerators()) { std::string ValueExpr; if (const Expr *InitExpr = E->getInitExpr()) ValueExpr = getSourceCode(D, InitExpr->getSourceRange()); SmallString<16> ValueStr; E->getInitVal().toString(ValueStr); I.Members.emplace_back(E->getNameAsString(), ValueStr.str(), ValueExpr); ASTContext &Context = E->getASTContext(); if (RawComment *Comment = E->getASTContext().getRawCommentForDeclNoCache(E)) { Comment->setAttached(); if (comments::FullComment *Fc = Comment->parse(Context, nullptr, E)) { EnumValueInfo &Member = I.Members.back(); Member.Description.emplace_back(); parseFullComment(Fc, Member.Description.back()); } } } } static void parseParameters(FunctionInfo &I, const FunctionDecl *D) { auto &LO = D->getLangOpts(); for (const ParmVarDecl *P : D->parameters()) { FieldTypeInfo &FieldInfo = I.Params.emplace_back( getTypeInfoForType(P->getOriginalType(), LO), P->getNameAsString()); FieldInfo.DefaultValue = getSourceCode(D, P->getDefaultArgRange()); } } // TODO: Remove the serialization of Parents and VirtualParents, this // information is also extracted in the other definition of parseBases. static void parseBases(RecordInfo &I, const CXXRecordDecl *D) { // Don't parse bases if this isn't a definition. if (!D->isThisDeclarationADefinition()) return; for (const CXXBaseSpecifier &B : D->bases()) { if (B.isVirtual()) continue; if (const auto *Ty = B.getType()->getAs()) { const TemplateDecl *D = Ty->getTemplateName().getAsTemplateDecl(); I.Parents.emplace_back(getUSRForDecl(D), B.getType().getAsString(), InfoType::IT_record, B.getType().getAsString()); } else if (const RecordDecl *P = getRecordDeclForType(B.getType())) I.Parents.emplace_back(getUSRForDecl(P), P->getNameAsString(), InfoType::IT_record, P->getQualifiedNameAsString(), getInfoRelativePath(P)); else I.Parents.emplace_back(SymbolID(), B.getType().getAsString()); } for (const CXXBaseSpecifier &B : D->vbases()) { if (const RecordDecl *P = getRecordDeclForType(B.getType())) I.VirtualParents.emplace_back( getUSRForDecl(P), P->getNameAsString(), InfoType::IT_record, P->getQualifiedNameAsString(), getInfoRelativePath(P)); else I.VirtualParents.emplace_back(SymbolID(), B.getType().getAsString()); } } template static void populateParentNamespaces(llvm::SmallVector &Namespaces, const T *D, bool &IsInAnonymousNamespace) { const DeclContext *DC = D->getDeclContext(); do { if (const auto *N = dyn_cast(DC)) { std::string Namespace; if (N->isAnonymousNamespace()) { Namespace = "@nonymous_namespace"; IsInAnonymousNamespace = true; } else Namespace = N->getNameAsString(); Namespaces.emplace_back(getUSRForDecl(N), Namespace, InfoType::IT_namespace, N->getQualifiedNameAsString()); } else if (const auto *N = dyn_cast(DC)) Namespaces.emplace_back(getUSRForDecl(N), N->getNameAsString(), InfoType::IT_record, N->getQualifiedNameAsString()); else if (const auto *N = dyn_cast(DC)) Namespaces.emplace_back(getUSRForDecl(N), N->getNameAsString(), InfoType::IT_function, N->getQualifiedNameAsString()); else if (const auto *N = dyn_cast(DC)) Namespaces.emplace_back(getUSRForDecl(N), N->getNameAsString(), InfoType::IT_enum, N->getQualifiedNameAsString()); } while ((DC = DC->getParent())); // The global namespace should be added to the list of namespaces if the decl // corresponds to a Record and if it doesn't have any namespace (because this // means it's in the global namespace). Also if its outermost namespace is a // record because that record matches the previous condition mentioned. if ((Namespaces.empty() && isa(D)) || (!Namespaces.empty() && Namespaces.back().RefType == InfoType::IT_record)) Namespaces.emplace_back(SymbolID(), "GlobalNamespace", InfoType::IT_namespace); } static void populateTemplateParameters(std::optional &TemplateInfo, const clang::Decl *D) { if (const TemplateParameterList *ParamList = D->getDescribedTemplateParams()) { if (!TemplateInfo) { TemplateInfo.emplace(); } for (const NamedDecl *ND : *ParamList) { TemplateInfo->Params.emplace_back( getSourceCode(ND, ND->getSourceRange())); } } } static TemplateParamInfo convertTemplateArgToInfo(const clang::Decl *D, const TemplateArgument &Arg) { // The TemplateArgument's pretty printing handles all the normal cases // well enough for our requirements. std::string Str; llvm::raw_string_ostream Stream(Str); Arg.print(PrintingPolicy(D->getLangOpts()), Stream, false); return TemplateParamInfo(Str); } template static void populateInfo(Info &I, const T *D, const FullComment *C, bool &IsInAnonymousNamespace) { I.USR = getUSRForDecl(D); if (auto ConversionDecl = dyn_cast_or_null(D); ConversionDecl && ConversionDecl->getConversionType() .getTypePtr() ->isTemplateTypeParmType()) I.Name = "operator " + ConversionDecl->getConversionType().getAsString(); else I.Name = D->getNameAsString(); populateParentNamespaces(I.Namespace, D, IsInAnonymousNamespace); if (C) { I.Description.emplace_back(); parseFullComment(C, I.Description.back()); } } template static void populateSymbolInfo(SymbolInfo &I, const T *D, const FullComment *C, Location Loc, bool &IsInAnonymousNamespace) { populateInfo(I, D, C, IsInAnonymousNamespace); if (D->isThisDeclarationADefinition()) I.DefLoc = Loc; else I.Loc.emplace_back(Loc); auto *Mangler = ItaniumMangleContext::create( D->getASTContext(), D->getASTContext().getDiagnostics()); std::string MangledName; llvm::raw_string_ostream MangledStream(MangledName); if (auto *CXXD = dyn_cast(D)) Mangler->mangleCXXVTable(CXXD, MangledStream); else MangledStream << D->getNameAsString(); if (MangledName.size() > 255) // File creation fails if the mangled name is too long, so default to the // USR. We should look for a better check since filesystems differ in // maximum filename length I.MangledName = llvm::toStringRef(llvm::toHex(I.USR)); else I.MangledName = MangledName; delete Mangler; } static void handleCompoundConstraints(const Expr *Constraint, std::vector &ConstraintInfos) { if (Constraint->getStmtClass() == Stmt::ParenExprClass) { handleCompoundConstraints(dyn_cast(Constraint)->getSubExpr(), ConstraintInfos); } else if (Constraint->getStmtClass() == Stmt::BinaryOperatorClass) { auto *BinaryOpExpr = dyn_cast(Constraint); handleCompoundConstraints(BinaryOpExpr->getLHS(), ConstraintInfos); handleCompoundConstraints(BinaryOpExpr->getRHS(), ConstraintInfos); } else if (Constraint->getStmtClass() == Stmt::ConceptSpecializationExprClass) { auto *Concept = dyn_cast(Constraint); ConstraintInfo CI(getUSRForDecl(Concept->getNamedConcept()), Concept->getNamedConcept()->getNameAsString()); CI.ConstraintExpr = exprToString(Concept); ConstraintInfos.push_back(CI); } } static void populateConstraints(TemplateInfo &I, const TemplateDecl *D) { if (!D || !D->hasAssociatedConstraints()) return; SmallVector AssociatedConstraints; D->getAssociatedConstraints(AssociatedConstraints); for (const auto &Constraint : AssociatedConstraints) { if (!Constraint) continue; // TODO: Investigate if atomic constraints need to be handled specifically. if (const auto *ConstraintExpr = dyn_cast_or_null( Constraint.ConstraintExpr)) { ConstraintInfo CI(getUSRForDecl(ConstraintExpr->getNamedConcept()), ConstraintExpr->getNamedConcept()->getNameAsString()); CI.ConstraintExpr = exprToString(ConstraintExpr); I.Constraints.push_back(std::move(CI)); } else { handleCompoundConstraints(Constraint.ConstraintExpr, I.Constraints); } } } static void populateFunctionInfo(FunctionInfo &I, const FunctionDecl *D, const FullComment *FC, Location Loc, bool &IsInAnonymousNamespace) { populateSymbolInfo(I, D, FC, Loc, IsInAnonymousNamespace); auto &LO = D->getLangOpts(); I.ReturnType = getTypeInfoForType(D->getReturnType(), LO); I.Prototype = getFunctionPrototype(D); parseParameters(I, D); I.IsStatic = D->isStatic(); populateTemplateParameters(I.Template, D); if (I.Template) populateConstraints(I.Template.value(), D->getDescribedFunctionTemplate()); // Handle function template specializations. if (const FunctionTemplateSpecializationInfo *FTSI = D->getTemplateSpecializationInfo()) { if (!I.Template) I.Template.emplace(); I.Template->Specialization.emplace(); auto &Specialization = *I.Template->Specialization; Specialization.SpecializationOf = getUSRForDecl(FTSI->getTemplate()); // Template parameters to the specialization. if (FTSI->TemplateArguments) { for (const TemplateArgument &Arg : FTSI->TemplateArguments->asArray()) { Specialization.Params.push_back(convertTemplateArgToInfo(D, Arg)); } } } } static void populateMemberTypeInfo(MemberTypeInfo &I, const Decl *D) { assert(D && "Expect non-null FieldDecl in populateMemberTypeInfo"); ASTContext &Context = D->getASTContext(); // TODO investigate whether we can use ASTContext::getCommentForDecl instead // of this logic. See also similar code in Mapper.cpp. RawComment *Comment = Context.getRawCommentForDeclNoCache(D); if (!Comment) return; Comment->setAttached(); if (comments::FullComment *Fc = Comment->parse(Context, nullptr, D)) { I.Description.emplace_back(); parseFullComment(Fc, I.Description.back()); } } static void populateMemberTypeInfo(RecordInfo &I, AccessSpecifier &Access, const DeclaratorDecl *D, bool IsStatic) { // Use getAccessUnsafe so that we just get the default AS_none if it's not // valid, as opposed to an assert. MemberTypeInfo &NewMember = I.Members.emplace_back( getTypeInfoForType(D->getTypeSourceInfo()->getType(), D->getLangOpts()), D->getNameAsString(), getFinalAccessSpecifier(Access, D->getAccessUnsafe()), IsStatic); populateMemberTypeInfo(NewMember, D); } static void parseBases(RecordInfo &I, const CXXRecordDecl *D, bool IsFileInRootDir, bool PublicOnly, bool IsParent, AccessSpecifier ParentAccess = AccessSpecifier::AS_public) { // Don't parse bases if this isn't a definition. if (!D->isThisDeclarationADefinition()) return; for (const CXXBaseSpecifier &B : D->bases()) { if (const RecordType *Ty = B.getType()->getAs()) { if (const CXXRecordDecl *Base = cast_or_null( Ty->getOriginalDecl()->getDefinition())) { // Initialized without USR and name, this will be set in the following // if-else stmt. BaseRecordInfo BI( {}, "", getInfoRelativePath(Base), B.isVirtual(), getFinalAccessSpecifier(ParentAccess, B.getAccessSpecifier()), IsParent); if (const auto *Ty = B.getType()->getAs()) { const TemplateDecl *D = Ty->getTemplateName().getAsTemplateDecl(); BI.USR = getUSRForDecl(D); BI.Name = B.getType().getAsString(); } else { BI.USR = getUSRForDecl(Base); BI.Name = Base->getNameAsString(); } parseFields(BI, Base, PublicOnly, BI.Access); for (const auto &Decl : Base->decls()) if (const auto *MD = dyn_cast(Decl)) { // Don't serialize private methods if (MD->getAccessUnsafe() == AccessSpecifier::AS_private || !MD->isUserProvided()) continue; FunctionInfo FI; FI.IsMethod = true; FI.IsStatic = MD->isStatic(); // The seventh arg in populateFunctionInfo is a boolean passed by // reference, its value is not relevant in here so it's not used // anywhere besides the function call. bool IsInAnonymousNamespace; populateFunctionInfo(FI, MD, /*FullComment=*/{}, /*Location=*/{}, IsInAnonymousNamespace); FI.Access = getFinalAccessSpecifier(BI.Access, MD->getAccessUnsafe()); BI.Children.Functions.emplace_back(std::move(FI)); } I.Bases.emplace_back(std::move(BI)); // Call this function recursively to get the inherited classes of // this base; these new bases will also get stored in the original // RecordInfo: I. parseBases(I, Base, IsFileInRootDir, PublicOnly, false, I.Bases.back().Access); } } } } std::pair, std::unique_ptr> emitInfo(const NamespaceDecl *D, const FullComment *FC, Location Loc, bool PublicOnly) { auto NSI = std::make_unique(); bool IsInAnonymousNamespace = false; populateInfo(*NSI, D, FC, IsInAnonymousNamespace); if (!shouldSerializeInfo(PublicOnly, IsInAnonymousNamespace, D)) return {}; NSI->Name = D->isAnonymousNamespace() ? llvm::SmallString<16>("@nonymous_namespace") : NSI->Name; NSI->Path = getInfoRelativePath(NSI->Namespace); if (NSI->Namespace.empty() && NSI->USR == SymbolID()) return {std::unique_ptr{std::move(NSI)}, nullptr}; // Namespaces are inserted into the parent by reference, so we need to return // both the parent and the record itself. return {std::move(NSI), makeAndInsertIntoParent(*NSI)}; } static void parseFriends(RecordInfo &RI, const CXXRecordDecl *D) { if (!D->hasDefinition() || !D->hasFriends()) return; for (const FriendDecl *FD : D->friends()) { if (FD->isUnsupportedFriend()) continue; FriendInfo F(InfoType::IT_friend, getUSRForDecl(FD)); const auto *ActualDecl = FD->getFriendDecl(); if (!ActualDecl) { const auto *FriendTypeInfo = FD->getFriendType(); if (!FriendTypeInfo) continue; ActualDecl = FriendTypeInfo->getType()->getAsCXXRecordDecl(); if (!ActualDecl) continue; F.IsClass = true; } if (const auto *ActualTD = dyn_cast_or_null(ActualDecl)) { if (isa(ActualTD->getTemplatedDecl())) F.IsClass = true; F.Template.emplace(); for (const auto *Param : ActualTD->getTemplateParameters()->asArray()) F.Template->Params.emplace_back( getSourceCode(Param, Param->getSourceRange())); ActualDecl = ActualTD->getTemplatedDecl(); } if (auto *FuncDecl = dyn_cast_or_null(ActualDecl)) { FunctionInfo TempInfo; parseParameters(TempInfo, FuncDecl); F.Params.emplace(); F.Params = std::move(TempInfo.Params); F.ReturnType = getTypeInfoForType(FuncDecl->getReturnType(), FuncDecl->getLangOpts()); } F.Ref = Reference(getUSRForDecl(ActualDecl), ActualDecl->getNameAsString(), InfoType::IT_default, ActualDecl->getQualifiedNameAsString(), getInfoRelativePath(ActualDecl)); RI.Friends.push_back(std::move(F)); } } std::pair, std::unique_ptr> emitInfo(const RecordDecl *D, const FullComment *FC, Location Loc, bool PublicOnly) { auto RI = std::make_unique(); bool IsInAnonymousNamespace = false; populateSymbolInfo(*RI, D, FC, Loc, IsInAnonymousNamespace); if (!shouldSerializeInfo(PublicOnly, IsInAnonymousNamespace, D)) return {}; RI->TagType = D->getTagKind(); parseFields(*RI, D, PublicOnly); if (const auto *C = dyn_cast(D)) { RI->FullName = getRecordPrototype(C); if (const TypedefNameDecl *TD = C->getTypedefNameForAnonDecl()) { RI->Name = TD->getNameAsString(); RI->IsTypeDef = true; } // TODO: remove first call to parseBases, that function should be deleted parseBases(*RI, C); parseBases(*RI, C, /*IsFileInRootDir=*/true, PublicOnly, /*IsParent=*/true); parseFriends(*RI, C); } RI->Path = getInfoRelativePath(RI->Namespace); populateTemplateParameters(RI->Template, D); if (RI->Template) populateConstraints(RI->Template.value(), D->getDescribedTemplate()); // Full and partial specializations. if (auto *CTSD = dyn_cast(D)) { if (!RI->Template) RI->Template.emplace(); RI->Template->Specialization.emplace(); auto &Specialization = *RI->Template->Specialization; // What this is a specialization of. auto SpecOf = CTSD->getSpecializedTemplateOrPartial(); if (auto *SpecTD = dyn_cast(SpecOf)) Specialization.SpecializationOf = getUSRForDecl(SpecTD); else if (auto *SpecTD = dyn_cast(SpecOf)) Specialization.SpecializationOf = getUSRForDecl(SpecTD); // Parameters to the specialization. For partial specializations, get the // parameters "as written" from the ClassTemplatePartialSpecializationDecl // because the non-explicit template parameters will have generated internal // placeholder names rather than the names the user typed that match the // template parameters. if (const ClassTemplatePartialSpecializationDecl *CTPSD = dyn_cast(D)) { if (const ASTTemplateArgumentListInfo *AsWritten = CTPSD->getTemplateArgsAsWritten()) { for (unsigned Idx = 0; Idx < AsWritten->getNumTemplateArgs(); Idx++) { Specialization.Params.emplace_back( getSourceCode(D, (*AsWritten)[Idx].getSourceRange())); } } } else { for (const TemplateArgument &Arg : CTSD->getTemplateArgs().asArray()) { Specialization.Params.push_back(convertTemplateArgToInfo(D, Arg)); } } } // Records are inserted into the parent by reference, so we need to return // both the parent and the record itself. auto Parent = makeAndInsertIntoParent(*RI); return {std::move(RI), std::move(Parent)}; } std::pair, std::unique_ptr> emitInfo(const FunctionDecl *D, const FullComment *FC, Location Loc, bool PublicOnly) { FunctionInfo Func; bool IsInAnonymousNamespace = false; populateFunctionInfo(Func, D, FC, Loc, IsInAnonymousNamespace); Func.Access = clang::AccessSpecifier::AS_none; if (!shouldSerializeInfo(PublicOnly, IsInAnonymousNamespace, D)) return {}; // Info is wrapped in its parent scope so is returned in the second position. return {nullptr, makeAndInsertIntoParent(std::move(Func))}; } std::pair, std::unique_ptr> emitInfo(const CXXMethodDecl *D, const FullComment *FC, Location Loc, bool PublicOnly) { FunctionInfo Func; bool IsInAnonymousNamespace = false; populateFunctionInfo(Func, D, FC, Loc, IsInAnonymousNamespace); if (!shouldSerializeInfo(PublicOnly, IsInAnonymousNamespace, D)) return {}; Func.IsMethod = true; Func.IsStatic = D->isStatic(); const NamedDecl *Parent = nullptr; if (const auto *SD = dyn_cast(D->getParent())) Parent = SD->getSpecializedTemplate(); else Parent = D->getParent(); SymbolID ParentUSR = getUSRForDecl(Parent); Func.Parent = Reference{ParentUSR, Parent->getNameAsString(), InfoType::IT_record, Parent->getQualifiedNameAsString()}; Func.Access = D->getAccess(); // Info is wrapped in its parent scope so is returned in the second position. return {nullptr, makeAndInsertIntoParent(std::move(Func))}; } static void extractCommentFromDecl(const Decl *D, TypedefInfo &Info) { assert(D && "Invalid Decl when extracting comment"); ASTContext &Context = D->getASTContext(); RawComment *Comment = Context.getRawCommentForDeclNoCache(D); if (!Comment) return; Comment->setAttached(); if (comments::FullComment *Fc = Comment->parse(Context, nullptr, D)) { Info.Description.emplace_back(); parseFullComment(Fc, Info.Description.back()); } } std::pair, std::unique_ptr> emitInfo(const TypedefDecl *D, const FullComment *FC, Location Loc, bool PublicOnly) { TypedefInfo Info; bool IsInAnonymousNamespace = false; populateInfo(Info, D, FC, IsInAnonymousNamespace); if (!shouldSerializeInfo(PublicOnly, IsInAnonymousNamespace, D)) return {}; Info.DefLoc = Loc; auto &LO = D->getLangOpts(); Info.Underlying = getTypeInfoForType(D->getUnderlyingType(), LO); if (Info.Underlying.Type.Name.empty()) { // Typedef for an unnamed type. This is like "typedef struct { } Foo;" // The record serializer explicitly checks for this syntax and constructs // a record with that name, so we don't want to emit a duplicate here. return {}; } Info.IsUsing = false; extractCommentFromDecl(D, Info); // Info is wrapped in its parent scope so is returned in the second position. return {nullptr, makeAndInsertIntoParent(std::move(Info))}; } // A type alias is a C++ "using" declaration for a type. It gets mapped to a // TypedefInfo with the IsUsing flag set. std::pair, std::unique_ptr> emitInfo(const TypeAliasDecl *D, const FullComment *FC, Location Loc, bool PublicOnly) { TypedefInfo Info; bool IsInAnonymousNamespace = false; populateInfo(Info, D, FC, IsInAnonymousNamespace); if (!shouldSerializeInfo(PublicOnly, IsInAnonymousNamespace, D)) return {}; Info.DefLoc = Loc; const LangOptions &LO = D->getLangOpts(); Info.Underlying = getTypeInfoForType(D->getUnderlyingType(), LO); Info.TypeDeclaration = getTypeAlias(D); Info.IsUsing = true; extractCommentFromDecl(D, Info); // Info is wrapped in its parent scope so is returned in the second position. return {nullptr, makeAndInsertIntoParent(std::move(Info))}; } std::pair, std::unique_ptr> emitInfo(const EnumDecl *D, const FullComment *FC, Location Loc, bool PublicOnly) { EnumInfo Enum; bool IsInAnonymousNamespace = false; populateSymbolInfo(Enum, D, FC, Loc, IsInAnonymousNamespace); if (!shouldSerializeInfo(PublicOnly, IsInAnonymousNamespace, D)) return {}; Enum.Scoped = D->isScoped(); if (D->isFixed()) { auto Name = D->getIntegerType().getAsString(); Enum.BaseType = TypeInfo(Name, Name); } parseEnumerators(Enum, D); // Info is wrapped in its parent scope so is returned in the second position. return {nullptr, makeAndInsertIntoParent(std::move(Enum))}; } std::pair, std::unique_ptr> emitInfo(const ConceptDecl *D, const FullComment *FC, const Location &Loc, bool PublicOnly) { ConceptInfo Concept; bool IsInAnonymousNamespace = false; populateInfo(Concept, D, FC, IsInAnonymousNamespace); Concept.IsType = D->isTypeConcept(); Concept.DefLoc = Loc; Concept.ConstraintExpression = exprToString(D->getConstraintExpr()); if (auto *ConceptParams = D->getTemplateParameters()) { for (const auto *Param : ConceptParams->asArray()) { Concept.Template.Params.emplace_back( getSourceCode(Param, Param->getSourceRange())); } } if (!shouldSerializeInfo(PublicOnly, IsInAnonymousNamespace, D)) return {}; return {nullptr, makeAndInsertIntoParent(std::move(Concept))}; } std::pair, std::unique_ptr> emitInfo(const VarDecl *D, const FullComment *FC, const Location &Loc, bool PublicOnly) { VarInfo Var; bool IsInAnonymousNamespace = false; populateSymbolInfo(Var, D, FC, Loc, IsInAnonymousNamespace); if (!shouldSerializeInfo(PublicOnly, IsInAnonymousNamespace, D)) return {}; if (D->getStorageClass() == StorageClass::SC_Static) Var.IsStatic = true; Var.Type = getTypeInfoForType(D->getType(), D->getASTContext().getPrintingPolicy()); if (!shouldSerializeInfo(PublicOnly, IsInAnonymousNamespace, D)) return {}; return {nullptr, makeAndInsertIntoParent(std::move(Var))}; } } // namespace serialize } // namespace doc } // namespace clang