//===-- PolymorphicOpConversion.cpp ---------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "flang/Lower/BuiltinModules.h" #include "flang/Optimizer/Builder/Todo.h" #include "flang/Optimizer/Dialect/FIRDialect.h" #include "flang/Optimizer/Dialect/FIROps.h" #include "flang/Optimizer/Dialect/FIROpsSupport.h" #include "flang/Optimizer/Dialect/FIRType.h" #include "flang/Optimizer/Dialect/Support/FIRContext.h" #include "flang/Optimizer/Dialect/Support/KindMapping.h" #include "flang/Optimizer/Support/InternalNames.h" #include "flang/Optimizer/Support/TypeCode.h" #include "flang/Optimizer/Transforms/Passes.h" #include "flang/Runtime/derived-api.h" #include "flang/Semantics/runtime-type-info.h" #include "mlir/Dialect/Affine/IR/AffineOps.h" #include "mlir/Dialect/Arith/IR/Arith.h" #include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/Pass/Pass.h" #include "mlir/Transforms/DialectConversion.h" #include "llvm/ADT/SmallSet.h" #include "llvm/Support/CommandLine.h" namespace fir { #define GEN_PASS_DEF_POLYMORPHICOPCONVERSION #include "flang/Optimizer/Transforms/Passes.h.inc" } // namespace fir using namespace fir; using namespace mlir; // Reconstruct binding tables for dynamic dispatch. using BindingTable = llvm::DenseMap; using BindingTables = llvm::DenseMap; static std::string getTypeDescriptorTypeName() { llvm::SmallVector modules = { Fortran::semantics::typeInfoBuiltinModule}; return fir::NameUniquer::doType(modules, /*proc=*/{}, /*blockId=*/0, Fortran::semantics::typeDescriptorTypeName, /*kinds=*/{}); } static std::optional buildBindingTables(BindingTables &bindingTables, mlir::ModuleOp mod) { std::optional typeDescriptorType; std::string typeDescriptorTypeName = getTypeDescriptorTypeName(); // The binding tables are defined in FIR after lowering inside fir.type_info // operations. Go through each binding tables and store the procedure name and // binding index for later use by the fir.dispatch conversion pattern. for (auto typeInfo : mod.getOps()) { if (!typeDescriptorType && typeInfo.getSymName() == typeDescriptorTypeName) typeDescriptorType = typeInfo.getType(); unsigned bindingIdx = 0; BindingTable bindings; if (typeInfo.getDispatchTable().empty()) { bindingTables[typeInfo.getSymName()] = bindings; continue; } for (auto dtEntry : typeInfo.getDispatchTable().front().getOps()) { bindings[dtEntry.getMethod()] = bindingIdx; ++bindingIdx; } bindingTables[typeInfo.getSymName()] = bindings; } return typeDescriptorType; } namespace { /// SelectTypeOp converted to an if-then-else chain /// /// This lowers the test conditions to calls into the runtime. class SelectTypeConv : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; SelectTypeConv(mlir::MLIRContext *ctx) : mlir::OpConversionPattern(ctx) {} llvm::LogicalResult matchAndRewrite(fir::SelectTypeOp selectType, OpAdaptor adaptor, mlir::ConversionPatternRewriter &rewriter) const override; private: // Generate comparison of type descriptor addresses. mlir::Value genTypeDescCompare(mlir::Location loc, mlir::Value selector, mlir::Type ty, mlir::ModuleOp mod, mlir::PatternRewriter &rewriter) const; llvm::LogicalResult genTypeLadderStep(mlir::Location loc, mlir::Value selector, mlir::Attribute attr, mlir::Block *dest, std::optional destOps, mlir::ModuleOp mod, mlir::PatternRewriter &rewriter, fir::KindMapping &kindMap) const; llvm::SmallSet collectAncestors(fir::TypeInfoOp dt, mlir::ModuleOp mod) const; }; /// Lower `fir.dispatch` operation. A virtual call to a method in a dispatch /// table. struct DispatchOpConv : public OpConversionPattern { using OpConversionPattern::OpConversionPattern; DispatchOpConv(mlir::MLIRContext *ctx, const BindingTables &bindingTables, std::optional typeDescriptorType) : mlir::OpConversionPattern(ctx), bindingTables(bindingTables), typeDescriptorType{typeDescriptorType} {} llvm::LogicalResult matchAndRewrite(fir::DispatchOp dispatch, OpAdaptor adaptor, mlir::ConversionPatternRewriter &rewriter) const override { mlir::Location loc = dispatch.getLoc(); if (bindingTables.empty()) return emitError(loc) << "no binding tables found"; // Get derived type information. mlir::Type declaredType = fir::getDerivedType(dispatch.getObject().getType().getEleTy()); assert(mlir::isa(declaredType) && "expecting fir.type"); auto recordType = mlir::dyn_cast(declaredType); // Lookup for the binding table. auto bindingsIter = bindingTables.find(recordType.getName()); if (bindingsIter == bindingTables.end()) return emitError(loc) << "cannot find binding table for " << recordType.getName(); // Lookup for the binding. const BindingTable &bindingTable = bindingsIter->second; auto bindingIter = bindingTable.find(dispatch.getMethod()); if (bindingIter == bindingTable.end()) return emitError(loc) << "cannot find binding for " << dispatch.getMethod(); unsigned bindingIdx = bindingIter->second; mlir::Value passedObject = dispatch.getObject(); if (!typeDescriptorType) return emitError(loc) << "cannot find " << getTypeDescriptorTypeName() << " fir.type_info that is required to get the " "related builtin type and lower fir.dispatch"; mlir::Type typeDescTy = *typeDescriptorType; // clang-format off // Before: // fir.dispatch "proc1"(%11 : // !fir.class>>) // After: // %12 = fir.box_tdesc %11 : (!fir.class>>) -> !fir.tdesc // %13 = fir.convert %12 : (!fir.tdesc) -> !fir.ref> // %14 = fir.field_index binding, !fir.type<_QM__fortran_type_infoTderivedtype> // %15 = fir.coordinate_of %13, %14 : (!fir.ref>, !fir.field) -> !fir.ref>>>> // %bindings = fir.load %15 : !fir.ref>>>> // %16 = fir.box_addr %bindings : (!fir.box>>>) -> !fir.ptr>> // %17 = fir.coordinate_of %16, %c0 : (!fir.ptr>>, index) -> !fir.ref> // %18 = fir.field_index proc, !fir.type<_QM__fortran_type_infoTbinding> // %19 = fir.coordinate_of %17, %18 : (!fir.ref>, !fir.field) -> !fir.ref> // %20 = fir.field_index __address, !fir.type<_QM__fortran_builtinsT__builtin_c_funptr> // %21 = fir.coordinate_of %19, %20 : (!fir.ref>, !fir.field) -> !fir.ref // %22 = fir.load %21 : !fir.ref // %23 = fir.convert %22 : (i64) -> (() -> ()) // fir.call %23() : () -> () // clang-format on // Load the descriptor. mlir::Type fieldTy = fir::FieldType::get(rewriter.getContext()); mlir::Type tdescType = fir::TypeDescType::get(mlir::NoneType::get(rewriter.getContext())); mlir::Value boxDesc = fir::BoxTypeDescOp::create(rewriter, loc, tdescType, passedObject); boxDesc = fir::ConvertOp::create( rewriter, loc, fir::ReferenceType::get(typeDescTy), boxDesc); // Load the bindings descriptor. auto bindingsCompName = Fortran::semantics::bindingDescCompName; fir::RecordType typeDescRecTy = mlir::cast(typeDescTy); mlir::Value field = fir::FieldIndexOp::create(rewriter, loc, fieldTy, bindingsCompName, typeDescRecTy, mlir::ValueRange{}); mlir::Type coorTy = fir::ReferenceType::get(typeDescRecTy.getType(bindingsCompName)); mlir::Value bindingBoxAddr = fir::CoordinateOp::create(rewriter, loc, coorTy, boxDesc, field); mlir::Value bindingBox = fir::LoadOp::create(rewriter, loc, bindingBoxAddr); // Load the correct binding. mlir::Value bindings = fir::BoxAddrOp::create(rewriter, loc, bindingBox); fir::RecordType bindingTy = fir::unwrapIfDerived( mlir::cast(bindingBox.getType())); mlir::Type bindingAddrTy = fir::ReferenceType::get(bindingTy); mlir::Value bindingIdxVal = mlir::arith::ConstantOp::create(rewriter, loc, rewriter.getIndexType(), rewriter.getIndexAttr(bindingIdx)); mlir::Value bindingAddr = fir::CoordinateOp::create( rewriter, loc, bindingAddrTy, bindings, bindingIdxVal); // Get the function pointer. auto procCompName = Fortran::semantics::procCompName; mlir::Value procField = fir::FieldIndexOp::create( rewriter, loc, fieldTy, procCompName, bindingTy, mlir::ValueRange{}); fir::RecordType procTy = mlir::cast(bindingTy.getType(procCompName)); mlir::Type procRefTy = fir::ReferenceType::get(procTy); mlir::Value procRef = fir::CoordinateOp::create(rewriter, loc, procRefTy, bindingAddr, procField); auto addressFieldName = Fortran::lower::builtin::cptrFieldName; mlir::Value addressField = fir::FieldIndexOp::create( rewriter, loc, fieldTy, addressFieldName, procTy, mlir::ValueRange{}); mlir::Type addressTy = procTy.getType(addressFieldName); mlir::Type addressRefTy = fir::ReferenceType::get(addressTy); mlir::Value addressRef = fir::CoordinateOp::create( rewriter, loc, addressRefTy, procRef, addressField); mlir::Value address = fir::LoadOp::create(rewriter, loc, addressRef); // Get the function type. llvm::SmallVector argTypes; for (mlir::Value operand : dispatch.getArgs()) argTypes.push_back(operand.getType()); llvm::SmallVector resTypes; if (!dispatch.getResults().empty()) resTypes.push_back(dispatch.getResults()[0].getType()); mlir::Type funTy = mlir::FunctionType::get(rewriter.getContext(), argTypes, resTypes); mlir::Value funcPtr = fir::ConvertOp::create(rewriter, loc, funTy, address); // Make the call. llvm::SmallVector args{funcPtr}; args.append(dispatch.getArgs().begin(), dispatch.getArgs().end()); rewriter.replaceOpWithNewOp( dispatch, resTypes, nullptr, args, dispatch.getArgAttrsAttr(), dispatch.getResAttrsAttr(), dispatch.getProcedureAttrsAttr()); return mlir::success(); } private: BindingTables bindingTables; std::optional typeDescriptorType; }; /// Convert FIR structured control flow ops to CFG ops. class PolymorphicOpConversion : public fir::impl::PolymorphicOpConversionBase { public: llvm::LogicalResult initialize(mlir::MLIRContext *ctx) override { return mlir::success(); } void runOnOperation() override { auto *context = &getContext(); mlir::ModuleOp mod = getOperation(); mlir::RewritePatternSet patterns(context); BindingTables bindingTables; std::optional typeDescriptorType = buildBindingTables(bindingTables, mod); patterns.insert(context); patterns.insert(context, bindingTables, typeDescriptorType); mlir::ConversionTarget target(*context); target.addLegalDialect(); // apply the patterns target.addIllegalOp(); target.addIllegalOp(); target.markUnknownOpDynamicallyLegal([](Operation *) { return true; }); if (mlir::failed(mlir::applyPartialConversion(getOperation(), target, std::move(patterns)))) { mlir::emitError(mlir::UnknownLoc::get(context), "error in converting to CFG\n"); signalPassFailure(); } } }; } // namespace llvm::LogicalResult SelectTypeConv::matchAndRewrite( fir::SelectTypeOp selectType, OpAdaptor adaptor, mlir::ConversionPatternRewriter &rewriter) const { auto operands = adaptor.getOperands(); auto typeGuards = selectType.getCases(); unsigned typeGuardNum = typeGuards.size(); auto selector = selectType.getSelector(); auto loc = selectType.getLoc(); auto mod = selectType.getOperation()->getParentOfType(); fir::KindMapping kindMap = fir::getKindMapping(mod); // Order type guards so the condition and branches are done to respect the // Execution of SELECT TYPE construct as described in the Fortran 2018 // standard 11.1.11.2 point 4. // 1. If a TYPE IS type guard statement matches the selector, the block // following that statement is executed. // 2. Otherwise, if exactly one CLASS IS type guard statement matches the // selector, the block following that statement is executed. // 3. Otherwise, if several CLASS IS type guard statements match the // selector, one of these statements will inevitably specify a type that // is an extension of all the types specified in the others; the block // following that statement is executed. // 4. Otherwise, if there is a CLASS DEFAULT type guard statement, the block // following that statement is executed. // 5. Otherwise, no block is executed. llvm::SmallVector orderedTypeGuards; llvm::SmallVector orderedClassIsGuards; unsigned defaultGuard = typeGuardNum - 1; // The following loop go through the type guards in the fir.select_type // operation and sort them into two lists. // - All the TYPE IS type guard are added in order to the orderedTypeGuards // list. This list is used at the end to generate the if-then-else ladder. // - CLASS IS type guard are added in a separate list. If a CLASS IS type // guard type extends a type already present, the type guard is inserted // before in the list to respect point 3. above. Otherwise it is just // added in order at the end. for (unsigned t = 0; t < typeGuardNum; ++t) { if (auto a = mlir::dyn_cast(typeGuards[t])) { orderedTypeGuards.push_back(t); continue; } if (auto a = mlir::dyn_cast(typeGuards[t])) { if (auto recTy = mlir::dyn_cast(a.getType())) { auto dt = mod.lookupSymbol(recTy.getName()); assert(dt && "dispatch table not found"); llvm::SmallSet ancestors = collectAncestors(dt, mod); if (!ancestors.empty()) { auto it = orderedClassIsGuards.begin(); while (it != orderedClassIsGuards.end()) { fir::SubclassAttr sAttr = mlir::dyn_cast(typeGuards[*it]); if (auto ty = mlir::dyn_cast(sAttr.getType())) { if (ancestors.contains(ty.getName())) break; } ++it; } if (it != orderedClassIsGuards.end()) { // Parent type is present so place it before. orderedClassIsGuards.insert(it, t); continue; } } } orderedClassIsGuards.push_back(t); } } orderedTypeGuards.append(orderedClassIsGuards); orderedTypeGuards.push_back(defaultGuard); assert(orderedTypeGuards.size() == typeGuardNum && "ordered type guard size doesn't match number of type guards"); for (unsigned idx : orderedTypeGuards) { auto *dest = selectType.getSuccessor(idx); std::optional destOps = selectType.getSuccessorOperands(operands, idx); if (mlir::dyn_cast(typeGuards[idx])) rewriter.replaceOpWithNewOp( selectType, dest, destOps.value_or(mlir::ValueRange{})); else if (mlir::failed(genTypeLadderStep(loc, selector, typeGuards[idx], dest, destOps, mod, rewriter, kindMap))) return mlir::failure(); } return mlir::success(); } llvm::LogicalResult SelectTypeConv::genTypeLadderStep( mlir::Location loc, mlir::Value selector, mlir::Attribute attr, mlir::Block *dest, std::optional destOps, mlir::ModuleOp mod, mlir::PatternRewriter &rewriter, fir::KindMapping &kindMap) const { mlir::Value cmp; // TYPE IS type guard comparison are all done inlined. if (auto a = mlir::dyn_cast(attr)) { if (fir::isa_trivial(a.getType()) || mlir::isa(a.getType())) { // For type guard statement with Intrinsic type spec the type code of // the descriptor is compared. int code = fir::getTypeCode(a.getType(), kindMap); if (code == 0) return mlir::emitError(loc) << "type code unavailable for " << a.getType(); mlir::Value typeCode = mlir::arith::ConstantOp::create( rewriter, loc, rewriter.getI8IntegerAttr(code)); mlir::Value selectorTypeCode = fir::BoxTypeCodeOp::create( rewriter, loc, rewriter.getI8Type(), selector); cmp = mlir::arith::CmpIOp::create(rewriter, loc, mlir::arith::CmpIPredicate::eq, selectorTypeCode, typeCode); } else { // Flang inline the kind parameter in the type descriptor so we can // directly check if the type descriptor addresses are identical for // the TYPE IS type guard statement. mlir::Value res = genTypeDescCompare(loc, selector, a.getType(), mod, rewriter); if (!res) return mlir::failure(); cmp = res; } // CLASS IS type guard statement is done with a runtime call. } else if (auto a = mlir::dyn_cast(attr)) { // Retrieve the type descriptor from the type guard statement record type. assert(mlir::isa(a.getType()) && "expect fir.record type"); mlir::Value typeDescAddr = fir::TypeDescOp::create( rewriter, loc, mlir::TypeAttr::get(a.getType())); mlir::Type refNoneType = ReferenceType::get(rewriter.getNoneType()); mlir::Value typeDesc = ConvertOp::create(rewriter, loc, refNoneType, typeDescAddr); // Prepare the selector descriptor for the runtime call. mlir::Type descNoneTy = fir::BoxType::get(rewriter.getNoneType()); mlir::Value descSelector = ConvertOp::create(rewriter, loc, descNoneTy, selector); // Generate runtime call. llvm::StringRef fctName = RTNAME_STRING(ClassIs); mlir::func::FuncOp callee; { // Since conversion is done in parallel for each fir.select_type // operation, the runtime function insertion must be threadsafe. auto runtimeAttr = mlir::NamedAttribute(fir::FIROpsDialect::getFirRuntimeAttrName(), mlir::UnitAttr::get(rewriter.getContext())); callee = fir::createFuncOp(rewriter.getUnknownLoc(), mod, fctName, rewriter.getFunctionType({descNoneTy, refNoneType}, rewriter.getI1Type()), {runtimeAttr}); } cmp = fir::CallOp::create(rewriter, loc, callee, mlir::ValueRange{descSelector, typeDesc}) .getResult(0); } auto *thisBlock = rewriter.getInsertionBlock(); auto *newBlock = rewriter.createBlock(dest->getParent(), mlir::Region::iterator(dest)); rewriter.setInsertionPointToEnd(thisBlock); if (destOps.has_value()) mlir::cf::CondBranchOp::create(rewriter, loc, cmp, dest, destOps.value(), newBlock, mlir::ValueRange{}); else mlir::cf::CondBranchOp::create(rewriter, loc, cmp, dest, newBlock); rewriter.setInsertionPointToEnd(newBlock); return mlir::success(); } // Generate comparison of type descriptor addresses. mlir::Value SelectTypeConv::genTypeDescCompare(mlir::Location loc, mlir::Value selector, mlir::Type ty, mlir::ModuleOp mod, mlir::PatternRewriter &rewriter) const { assert(mlir::isa(ty) && "expect fir.record type"); mlir::Value typeDescAddr = fir::TypeDescOp::create(rewriter, loc, mlir::TypeAttr::get(ty)); mlir::Value selectorTdescAddr = fir::BoxTypeDescOp::create( rewriter, loc, typeDescAddr.getType(), selector); auto intPtrTy = rewriter.getIndexType(); auto typeDescInt = fir::ConvertOp::create(rewriter, loc, intPtrTy, typeDescAddr); auto selectorTdescInt = fir::ConvertOp::create(rewriter, loc, intPtrTy, selectorTdescAddr); return mlir::arith::CmpIOp::create(rewriter, loc, mlir::arith::CmpIPredicate::eq, typeDescInt, selectorTdescInt); } llvm::SmallSet SelectTypeConv::collectAncestors(fir::TypeInfoOp dt, mlir::ModuleOp mod) const { llvm::SmallSet ancestors; while (auto parentName = dt.getIfParentName()) { ancestors.insert(*parentName); dt = mod.lookupSymbol(*parentName); assert(dt && "parent type info not generated"); } return ancestors; }