// RUN: mlir-opt %s -split-input-file -verify-diagnostics // expected-error@+1 {{expected '(' in dimension-specifier list}} #a = #sparse_tensor.encoding<{map = []}> func.func private @scalar(%arg0: tensor) -> () // ----- // expected-error@+1 {{expected '->'}} #a = #sparse_tensor.encoding<{map = ()}> func.func private @scalar(%arg0: tensor) -> () // ----- // expected-error@+1 {{expected ')' in dimension-specifier list}} #a = #sparse_tensor.encoding<{map = (d0 -> d0)}> func.func private @scalar(%arg0: tensor) -> () // ----- // expected-error@+1 {{expected '(' in dimension-specifier list}} #a = #sparse_tensor.encoding<{map = d0 -> d0}> func.func private @scalar(%arg0: tensor) -> () // ----- // expected-error@+1 {{expected '(' in level-specifier list}} #a = #sparse_tensor.encoding<{map = (d0) -> d0}> func.func private @scalar(%arg0: tensor) -> () // ----- // expected-error@+1 {{expected ':'}} #a = #sparse_tensor.encoding<{map = (d0) -> (d0)}> func.func private @scalar(%arg0: tensor) -> () // ----- // expected-error@+1 {{expected valid level format (e.g. dense, compressed or singleton)}} #a = #sparse_tensor.encoding<{map = (d0) -> (d0:)}> func.func private @scalar(%arg0: tensor) -> () // ----- // expected-error@+1 {{expected valid level format (e.g. dense, compressed or singleton)}} #a = #sparse_tensor.encoding<{map = (d0) -> (d0 : (compressed))}> func.func private @scalar(%arg0: tensor) -> () // ----- // expected-error@+2 {{dimension-rank mismatch between encoding and tensor shape: 2 != 1}} #a = #sparse_tensor.encoding<{map = (d0, d1) -> (d0 : dense, d1 : compressed)}> func.func private @tensor_dimlevel_size_mismatch(%arg0: tensor<8xi32, #a>) -> () // ----- // expected-error@+1 {{Batch lvlType can only be leading levels}} #a = #sparse_tensor.encoding<{map = (d0, d1, d2) -> (d0 : batch, d1 : compressed, d2: batch)}> func.func private @non_leading_batch(%arg0: tensor) -> () // ----- // expected-error@+1 {{use of undeclared identifier}} #a = #sparse_tensor.encoding<{map = (d0) -> (d0 : dense, d1 : compressed)}> func.func private @tensor_sizes_mismatch(%arg0: tensor<8xi32, #a>) -> () // ----- // expected-error@+1 {{failed to infer lvlToDim from dimToLvl}} #a = #sparse_tensor.encoding<{map = (d0, d1) -> (d0 : dense)}> func.func private @tensor_sizes_mismatch(%arg0: tensor<8xi32, #a>) -> () // ----- // expected-error@+1 {{expected bare identifier}} #a = #sparse_tensor.encoding<{map = (1)}> func.func private @tensor_type_mismatch(%arg0: tensor<8xi32, #a>) -> () // ----- // expected-error@+1 {{unexpected key: nap}} #a = #sparse_tensor.encoding<{nap = (d0) -> (d0 : dense)}> func.func private @tensor_type_mismatch(%arg0: tensor<8xi32, #a>) -> () // ----- // expected-error@+1 {{expected '(' in dimension-specifier list}} #a = #sparse_tensor.encoding<{map = -> (d0 : dense)}> func.func private @tensor_type_mismatch(%arg0: tensor<8xi32, #a>) -> () // ----- // expected-error@+1 {{unknown level format: strange}} #a = #sparse_tensor.encoding<{map = (d0) -> (d0 : strange)}> func.func private @tensor_value_mismatch(%arg0: tensor<8xi32, #a>) -> () // ----- // expected-error@+1 {{expected valid level format (e.g. dense, compressed or singleton)}} #a = #sparse_tensor.encoding<{map = (d0) -> (d0 : "wrong")}> func.func private @tensor_dimtolvl_mismatch(%arg0: tensor<8xi32, #a>) -> () // ----- // expected-error@+1 {{expected valid level property (e.g. nonordered, nonunique or high)}} #a = #sparse_tensor.encoding<{map = (d0) -> (d0 : compressed("wrong"))}> func.func private @tensor_dimtolvl_mismatch(%arg0: tensor<8xi32, #a>) -> () // ----- // expected-error@+1 {{expected ')' in level-specifier list}} #a = #sparse_tensor.encoding<{map = (d0) -> (d0 : compressed[high])}> func.func private @tensor_dimtolvl_mismatch(%arg0: tensor<8xi32, #a>) -> () // ----- // expected-error@+1 {{unknown level property: wrong}} #a = #sparse_tensor.encoding<{map = (d0) -> (d0 : compressed(wrong))}> func.func private @tensor_dimtolvl_mismatch(%arg0: tensor<8xi32, #a>) -> () // ----- // expected-error@+1 {{use of undeclared identifier}} #a = #sparse_tensor.encoding<{map = (d0) -> (d0 : compressed, dense)}> func.func private @tensor_dimtolvl_mismatch(%arg0: tensor<8xi32, #a>) -> () // ----- // expected-error@+1 {{failed to infer lvlToDim from dimToLvl}} #a = #sparse_tensor.encoding<{map = (d0, d1) -> (d0 : dense, d0 : compressed)}> func.func private @tensor_no_permutation(%arg0: tensor<16x32xf32, #a>) -> () // ----- // expected-error@+1 {{unexpected character}} #a = #sparse_tensor.encoding<{map = (d0, d1) -> (d0 : compressed; d1 : dense)}> func.func private @tensor_dimtolvl_mismatch(%arg0: tensor<16x32xi32, #a>) -> () // ----- // expected-error@+1 {{expected attribute value}} #a = #sparse_tensor.encoding<{map = (d0: d1) -> (d0 : compressed, d1 : dense)}> func.func private @tensor_dimtolvl_mismatch(%arg0: tensor<16x32xi32, #a>) -> () // ----- // expected-error@+1 {{expected ':'}} #a = #sparse_tensor.encoding<{map = (d0, d1) -> (d0 = compressed, d1 = dense)}> func.func private @tensor_dimtolvl_mismatch(%arg0: tensor<16x32xi32, #a>) -> () // ----- // expected-error@+1 {{expected attribute value}} #a = #sparse_tensor.encoding<{map = (d0 : compressed, d1 : compressed)}> func.func private @tensor_dimtolvl_mismatch(%arg0: tensor<16x32xi32, #a>) -> () // ----- // expected-error@+1 {{use of undeclared identifier}} #a = #sparse_tensor.encoding<{map = (d0 = compressed, d1 = compressed)}> func.func private @tensor_dimtolvl_mismatch(%arg0: tensor<16x32xi32, #a>) -> () // ----- // expected-error@+1 {{use of undeclared identifier}} #a = #sparse_tensor.encoding<{map = (d0 = l0, d1 = l1) {l0, l1} -> (l0 = d0 : dense, l1 = d1 : compressed)}> func.func private @tensor_dimtolvl_mismatch(%arg0: tensor<16x32xi32, #a>) -> () // ----- // expected-error@+1 {{expected '='}} #a = #sparse_tensor.encoding<{map = {l0, l1} (d0 = l0, d1 = l1) -> (l0 : d0 = dense, l1 : d1 = compressed)}> func.func private @tensor_dimtolvl_mismatch(%arg0: tensor<16x32xi32, #a>) -> () // ----- // expected-error@+1 {{use of undeclared identifier 'd0'}} #a = #sparse_tensor.encoding<{map = {l0, l1} (d0 = l0, d1 = l1) -> (d0 : l0 = dense, d1 : l1 = compressed)}> func.func private @tensor_dimtolvl_mismatch(%arg0: tensor<16x32xi32, #a>) -> () // ----- // expected-error@+1 {{use of undeclared identifier 'd0'}} #a = #sparse_tensor.encoding<{map = {l0, l1} (d0 = l0, d1 = l1) -> (d0 : dense, d1 : compressed)}> func.func private @tensor_dimtolvl_mismatch(%arg0: tensor<16x32xi32, #a>) -> () // ----- // expected-error@+1 {{expected '='}} #a = #sparse_tensor.encoding<{map = {l0, l1} (d0 = l0, d1 = l1) -> (l0 : dense, l1 : compressed)}> func.func private @tensor_dimtolvl_mismatch(%arg0: tensor<16x32xi32, #a>) -> () // ----- // expected-error@+1 {{use of undeclared identifier}} #a = #sparse_tensor.encoding<{map = {l0, l1} (d0 = l0, d1 = l1) -> (l0 = dense, l1 = compressed)}> func.func private @tensor_dimtolvl_mismatch(%arg0: tensor<16x32xi32, #a>) -> () // ----- // expected-error@+1 {{use of undeclared identifier 'd0'}} #a = #sparse_tensor.encoding<{map = {l0, l1} (d0 = l0, d1 = l1) -> (d0 = l0 : dense, d1 = l1 : compressed)}> func.func private @tensor_dimtolvl_mismatch(%arg0: tensor<16x32xi32, #a>) -> () // ----- #a = #sparse_tensor.encoding<{posWidth = "x"}> // expected-error {{expected an integral position bitwidth}} func.func private @tensor_no_int_ptr(%arg0: tensor<16x32xf32, #a>) -> () // ----- #a = #sparse_tensor.encoding<{posWidth = 42}> // expected-error {{unexpected position bitwidth: 42}} func.func private @tensor_invalid_int_ptr(%arg0: tensor<16x32xf32, #a>) -> () // ----- #a = #sparse_tensor.encoding<{crdWidth = "not really"}> // expected-error {{expected an integral index bitwidth}} func.func private @tensor_no_int_index(%arg0: tensor<16x32xf32, #a>) -> () // ----- #a = #sparse_tensor.encoding<{crdWidth = 128}> // expected-error {{unexpected coordinate bitwidth: 128}} func.func private @tensor_invalid_int_index(%arg0: tensor<16x32xf32, #a>) -> () // ----- #a = #sparse_tensor.encoding<{key = 1}> // expected-error {{unexpected key: key}} func.func private @tensor_invalid_key(%arg0: tensor<16x32xf32, #a>) -> () // ----- #CSR_SLICE = #sparse_tensor.encoding<{ map = (d0 : #sparse_tensor, d1 : #sparse_tensor) -> (d0 : dense, d1 : compressed)// expected-error{{expect positive value or ? for slice offset/size/stride}} }> func.func private @sparse_slice(tensor) // ----- // expected-error@+2 {{Level-rank mismatch between forward-declarations and specifiers. Declared 3 level-variables; but got 2 level-specifiers.}} #TooManyLvlDecl = #sparse_tensor.encoding<{ map = {l0, l1, l2} (d0, d1) -> (l0 = d0 : dense, l1 = d1 : compressed) }> func.func private @too_many_lvl_decl(%arg0: tensor) { return } // ----- // expected-error@+1{{expected all singleton lvlTypes stored in the same memory layout (SoA vs AoS).}} #COO_SoA = #sparse_tensor.encoding<{ map = (d0, d1, d2) -> (d0 : compressed(nonunique), d1 : singleton(soa, nonunique), d2 : singleton) }> func.func private @sparse_coo(tensor) // ----- // expected-error@+1{{SoA is only applicable to singleton lvlTypes.}} #COO_SoA = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : compressed(nonunique, soa), d1 : singleton(soa)) }> func.func private @sparse_coo(tensor) // ----- // expected-error@+2 {{use of undeclared identifier 'l1'}} #TooFewLvlDecl = #sparse_tensor.encoding<{ map = {l0} (d0, d1) -> (l0 = d0 : dense, l1 = d1 : compressed) }> func.func private @too_few_lvl_decl(%arg0: tensor) { return } // ----- // expected-error@+2 {{Level-variable ordering mismatch. The variable 'l0' was forward-declared as the 1st level; but is bound by the 0th specification.}} #WrongOrderLvlDecl = #sparse_tensor.encoding<{ map = {l1, l0} (d0, d1) -> (l0 = d0 : dense, l1 = d1 : compressed) }> func.func private @wrong_order_lvl_decl(%arg0: tensor) { return } // ----- // expected-error@+1 {{failed to infer lvlToDim from dimToLvl}} #BSR = #sparse_tensor.encoding<{ map = ( i, j ) -> ( i floordiv 2 : dense, j floordiv 3 : compressed, i : dense, j mod 3 : dense ) }> func.func private @BSR(%arg0: tensor) { return } // ----- // expected-error@+1 {{failed to infer lvlToDim from dimToLvl}} #BSR = #sparse_tensor.encoding<{ map = ( i, j ) -> ( i : dense, j floordiv 3 : compressed, i floordiv 3 : dense, j mod 3 : dense ) }> func.func private @BSR(%arg0: tensor) { return } // ----- // expected-error@+1 {{failed to infer lvlToDim from dimToLvl}} #BSR = #sparse_tensor.encoding<{ map = ( i, j ) -> ( i floordiv -3 : dense, j floordiv -3 : compressed, i mod 3 : dense, j mod 3 : dense ) }> func.func private @BSR(%arg0: tensor) { return } // ----- // expected-error@+1 {{expected lvlToDim to be an inverse of dimToLvl}} #BSR_explicit = #sparse_tensor.encoding<{ map = {il, jl, ii, jj} ( i = il * 3 + ii, j = jl * 2 + jj ) -> ( il = i floordiv 2 : dense, jl = j floordiv 3 : compressed, ii = i mod 2 : dense, jj = j mod 3 : dense ) }> func.func private @BSR_explicit(%arg0: tensor) { return } // ----- // expected-error@+6 {{expected structured size to be >= 0}} #NOutOfM = #sparse_tensor.encoding<{ map = ( i, j, k ) -> ( i : dense, k floordiv 4 : dense, j : dense, k mod 4 : structured[-2, 4] ) }> func.func private @NOutOfM(%arg0: tensor) { return } // ----- // expected-error@+6 {{expected n <= m in n_out_of_m}} #NOutOfM = #sparse_tensor.encoding<{ map = ( i, j, k ) -> ( i : dense, k floordiv 4 : dense, j : dense, k mod 4 : structured[5, 4] ) }> func.func private @NOutOfM(%arg0: tensor) { return } // ----- // expected-error@+1 {{expected all dense lvlTypes before a n_out_of_m level}} #NOutOfM = #sparse_tensor.encoding<{ map = ( i, j, k ) -> ( i : dense, k floordiv 4 : compressed, j : dense, k mod 4 : structured[2, 4] ) }> func.func private @NOutOfM(%arg0: tensor) { return } // ----- // expected-error@+1 {{expected n_out_of_m to be the last level type}} #NOutOfM = #sparse_tensor.encoding<{ map = ( i, j, k ) -> ( i : dense, k floordiv 4 : structured[2, 4], j : dense, k mod 4 : compressed ) }> func.func private @NOutOfM(%arg0: tensor) { return } // ----- // expected-error@+1 {{expected 1xm block structure for n_out_of_m level}} #NOutOfM = #sparse_tensor.encoding<{ map = ( i, j, k ) -> ( i : dense, k floordiv 2 : dense, j : dense, k mod 4 : structured[2, 4] ) }> func.func private @NOutOfM(%arg0: tensor) { return } // ----- // expected-error@+1 {{expected coeffiencts of Affine expressions to be equal to m of n_out_of_m level}} #NOutOfM = #sparse_tensor.encoding<{ map = ( i, j, k ) -> ( i : dense, k floordiv 2 : dense, j : dense, k mod 2 : structured[2, 4] ) }> func.func private @NOutOfM(%arg0: tensor) { return } // ----- // expected-error@+1 {{expected only one blocked level with the same coefficients}} #NOutOfM = #sparse_tensor.encoding<{ map = ( i, j, k ) -> ( i floordiv 2 : dense, i mod 2 : dense, j : dense, k floordiv 4 : dense, k mod 4 : structured[2, 4] ) }> func.func private @NOutOfM(%arg0: tensor) { return } // ----- #CSR_ExpType = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : dense, d1 : compressed), posWidth = 32, crdWidth = 32, explicitVal = 1 : i32, implicitVal = 0.0 : f32 }> // expected-error@+1 {{explicit value type mismatch between encoding and tensor element type: 'i32' != 'f32'}} func.func private @sparse_csr(tensor) // ----- #CSR_ImpType = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : dense, d1 : compressed), posWidth = 32, crdWidth = 32, explicitVal = 1 : i32, implicitVal = 0.0 : f32 }> // expected-error@+1 {{implicit value type mismatch between encoding and tensor element type: 'f32' != 'i32'}} func.func private @sparse_csr(tensor) // ----- // expected-error@+1 {{expected a numeric value for explicitVal}} #CSR_ExpType = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : dense, d1 : compressed), posWidth = 32, crdWidth = 32, explicitVal = "str" }> func.func private @sparse_csr(tensor) // ----- // expected-error@+1 {{expected a numeric value for implicitVal}} #CSR_ImpType = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : dense, d1 : compressed), posWidth = 32, crdWidth = 32, implicitVal = "str" }> func.func private @sparse_csr(tensor) // ----- #CSR_ImpVal = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : dense, d1 : compressed), posWidth = 32, crdWidth = 32, implicitVal = 1 : i32 }> // expected-error@+1 {{implicit value must be zero}} func.func private @sparse_csr(tensor) // ----- #CSR_ImpVal = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : dense, d1 : compressed), posWidth = 32, crdWidth = 32, implicitVal = 1.0 : f32 }> // expected-error@+1 {{implicit value must be zero}} func.func private @sparse_csr(tensor) // ----- #CSR_OnlyOnes = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : dense, d1 : compressed), posWidth = 64, crdWidth = 64, explicitVal = #complex.number<:f32 1.0, 0.0>, implicitVal = #complex.number<:f32 1.0, 0.0> }> // expected-error@+1 {{implicit value must be zero}} func.func private @sparse_csr(tensor, #CSR_OnlyOnes>)