// RUN: mlir-opt %s --sparse-reinterpret-map -sparsification | FileCheck %s #SV = #sparse_tensor.encoding<{ map = (d0) -> (d0 : compressed) }> #trait1 = { indexing_maps = [ affine_map<(i) -> (i)>, // a affine_map<(i) -> (i)> // x (out) ], iterator_types = ["parallel"], doc = "x(i) = OP a(i)" } #trait2 = { indexing_maps = [ affine_map<(i) -> (i)>, // a affine_map<(i) -> (i)>, // b affine_map<(i) -> (i)> // x (out) ], iterator_types = ["parallel"], doc = "x(i) = a(i) OP b(i)" } #traitc = { indexing_maps = [ affine_map<(i) -> (i)>, // a affine_map<(i) -> (i)> // x (out) ], iterator_types = ["parallel"], doc = "x(i) = a(i) OP c" } // CHECK-LABEL: func @abs( // CHECK-SAME: %[[VAL_0:.*]]: tensor<32xf64, #sparse{{[0-9]*}}>, // CHECK-SAME: %[[VAL_1:.*]]: tensor<32xf64>) -> tensor<32xf64> { // CHECK-DAG: %[[VAL_2:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_3:.*]] = arith.constant 1 : index // CHECK-DAG: %[[VAL_4:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<32xf64, #sparse{{[0-9]*}}> to memref // CHECK-DAG: %[[VAL_5:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 0 : index} : tensor<32xf64, #sparse{{[0-9]*}}> to memref // CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf64, #sparse{{[0-9]*}}> to memref // CHECK-DAG: %[[VAL_7:.*]] = bufferization.to_buffer %[[VAL_1]] : tensor<32xf64> to memref<32xf64> // CHECK: %[[VAL_8:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_2]]] : memref // CHECK: %[[VAL_9:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_3]]] : memref // CHECK: scf.for %[[VAL_10:.*]] = %[[VAL_8]] to %[[VAL_9]] step %[[VAL_3]] { // CHECK: %[[VAL_11:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_10]]] : memref // CHECK: %[[VAL_12:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_10]]] : memref // CHECK: %[[VAL_13:.*]] = math.absf %[[VAL_12]] : f64 // CHECK: memref.store %[[VAL_13]], %[[VAL_7]]{{\[}}%[[VAL_11]]] : memref<32xf64> // CHECK: } // CHECK: %[[VAL_14:.*]] = bufferization.to_tensor %[[VAL_7]] : memref<32xf64> // CHECK: return %[[VAL_14]] : tensor<32xf64> // CHECK: } func.func @abs(%arga: tensor<32xf64, #SV>, %argx: tensor<32xf64>) -> tensor<32xf64> { %0 = linalg.generic #trait1 ins(%arga: tensor<32xf64, #SV>) outs(%argx: tensor<32xf64>) { ^bb(%a: f64, %x: f64): %0 = math.absf %a : f64 linalg.yield %0 : f64 } -> tensor<32xf64> return %0 : tensor<32xf64> } // CHECK-LABEL: func @ceil( // CHECK-SAME: %[[VAL_0:.*]]: tensor<32xf64, #sparse{{[0-9]*}}>, // CHECK-SAME: %[[VAL_1:.*]]: tensor<32xf64>) -> tensor<32xf64> { // CHECK-DAG: %[[VAL_2:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_3:.*]] = arith.constant 1 : index // CHECK-DAG: %[[VAL_4:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<32xf64, #sparse{{[0-9]*}}> to memref // CHECK-DAG: %[[VAL_5:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 0 : index} : tensor<32xf64, #sparse{{[0-9]*}}> to memref // CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf64, #sparse{{[0-9]*}}> to memref // CHECK-DAG: %[[VAL_7:.*]] = bufferization.to_buffer %[[VAL_1]] : tensor<32xf64> to memref<32xf64> // CHECK: %[[VAL_8:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_2]]] : memref // CHECK: %[[VAL_9:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_3]]] : memref // CHECK: scf.for %[[VAL_10:.*]] = %[[VAL_8]] to %[[VAL_9]] step %[[VAL_3]] { // CHECK: %[[VAL_11:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_10]]] : memref // CHECK: %[[VAL_12:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_10]]] : memref // CHECK: %[[VAL_13:.*]] = math.ceil %[[VAL_12]] : f64 // CHECK: memref.store %[[VAL_13]], %[[VAL_7]]{{\[}}%[[VAL_11]]] : memref<32xf64> // CHECK: } // CHECK: %[[VAL_14:.*]] = bufferization.to_tensor %[[VAL_7]] : memref<32xf64> // CHECK: return %[[VAL_14]] : tensor<32xf64> // CHECK: } func.func @ceil(%arga: tensor<32xf64, #SV>, %argx: tensor<32xf64>) -> tensor<32xf64> { %0 = linalg.generic #trait1 ins(%arga: tensor<32xf64, #SV>) outs(%argx: tensor<32xf64>) { ^bb(%a: f64, %x: f64): %0 = math.ceil %a : f64 linalg.yield %0 : f64 } -> tensor<32xf64> return %0 : tensor<32xf64> } // CHECK-LABEL: func @floor( // CHECK-SAME: %[[VAL_0:.*]]: tensor<32xf64, #sparse{{[0-9]*}}>, // CHECK-SAME: %[[VAL_1:.*]]: tensor<32xf64>) -> tensor<32xf64> { // CHECK-DAG: %[[VAL_2:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_3:.*]] = arith.constant 1 : index // CHECK-DAG: %[[VAL_4:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<32xf64, #sparse{{[0-9]*}}> to memref // CHECK-DAG: %[[VAL_5:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 0 : index} : tensor<32xf64, #sparse{{[0-9]*}}> to memref // CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf64, #sparse{{[0-9]*}}> to memref // CHECK-DAG: %[[VAL_7:.*]] = bufferization.to_buffer %[[VAL_1]] : tensor<32xf64> to memref<32xf64> // CHECK: %[[VAL_8:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_2]]] : memref // CHECK: %[[VAL_9:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_3]]] : memref // CHECK: scf.for %[[VAL_10:.*]] = %[[VAL_8]] to %[[VAL_9]] step %[[VAL_3]] { // CHECK: %[[VAL_11:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_10]]] : memref // CHECK: %[[VAL_12:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_10]]] : memref // CHECK: %[[VAL_13:.*]] = math.floor %[[VAL_12]] : f64 // CHECK: memref.store %[[VAL_13]], %[[VAL_7]]{{\[}}%[[VAL_11]]] : memref<32xf64> // CHECK: } // CHECK: %[[VAL_14:.*]] = bufferization.to_tensor %[[VAL_7]] : memref<32xf64> // CHECK: return %[[VAL_14]] : tensor<32xf64> // CHECK: } func.func @floor(%arga: tensor<32xf64, #SV>, %argx: tensor<32xf64>) -> tensor<32xf64> { %0 = linalg.generic #trait1 ins(%arga: tensor<32xf64, #SV>) outs(%argx: tensor<32xf64>) { ^bb(%a: f64, %x: f64): %0 = math.floor %a : f64 linalg.yield %0 : f64 } -> tensor<32xf64> return %0 : tensor<32xf64> } // CHECK-LABEL: func @neg( // CHECK-SAME: %[[VAL_0:.*]]: tensor<32xf64, #sparse{{[0-9]*}}>, // CHECK-SAME: %[[VAL_1:.*]]: tensor<32xf64>) -> tensor<32xf64> { // CHECK-DAG: %[[VAL_2:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_3:.*]] = arith.constant 1 : index // CHECK-DAG: %[[VAL_4:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<32xf64, #sparse{{[0-9]*}}> to memref // CHECK-DAG: %[[VAL_5:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 0 : index} : tensor<32xf64, #sparse{{[0-9]*}}> to memref // CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf64, #sparse{{[0-9]*}}> to memref // CHECK-DAG: %[[VAL_7:.*]] = bufferization.to_buffer %[[VAL_1]] : tensor<32xf64> to memref<32xf64> // CHECK: %[[VAL_8:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_2]]] : memref // CHECK: %[[VAL_9:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_3]]] : memref // CHECK: scf.for %[[VAL_10:.*]] = %[[VAL_8]] to %[[VAL_9]] step %[[VAL_3]] { // CHECK: %[[VAL_11:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_10]]] : memref // CHECK: %[[VAL_12:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_10]]] : memref // CHECK: %[[VAL_13:.*]] = arith.negf %[[VAL_12]] : f64 // CHECK: memref.store %[[VAL_13]], %[[VAL_7]]{{\[}}%[[VAL_11]]] : memref<32xf64> // CHECK: } // CHECK: %[[VAL_14:.*]] = bufferization.to_tensor %[[VAL_7]] : memref<32xf64> // CHECK: return %[[VAL_14]] : tensor<32xf64> // CHECK: } func.func @neg(%arga: tensor<32xf64, #SV>, %argx: tensor<32xf64>) -> tensor<32xf64> { %0 = linalg.generic #trait1 ins(%arga: tensor<32xf64, #SV>) outs(%argx: tensor<32xf64>) { ^bb(%a: f64, %x: f64): %0 = arith.negf %a : f64 linalg.yield %0 : f64 } -> tensor<32xf64> return %0 : tensor<32xf64> } // CHECK-LABEL: func @add( // CHECK-SAME: %[[VAL_0:.*]]: tensor<32xf64, #sparse{{[0-9]*}}>, // CHECK-SAME: %[[VAL_1:.*]]: tensor<32xf64>, // CHECK-SAME: %[[VAL_2:.*]]: tensor<32xf64>) -> tensor<32xf64> { // CHECK-DAG: %[[VAL_3:.*]] = arith.constant 32 : index // CHECK-DAG: %[[VAL_4:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_5:.*]] = arith.constant true // CHECK-DAG: %[[VAL_6:.*]] = arith.constant 1 : index // CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<32xf64, #sparse{{[0-9]*}}> // CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 0 : index} : tensor<32xf64, #sparse{{[0-9]*}}> // CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf64, #sparse{{[0-9]*}}> // CHECK-DAG: %[[VAL_10:.*]] = bufferization.to_buffer %[[VAL_1]] : tensor<32xf64> to memref<32xf64> // CHECK-DAG: %[[VAL_11:.*]] = bufferization.to_buffer %[[VAL_2]] : tensor<32xf64> to memref<32xf64> // CHECK: %[[VAL_12:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_4]]] : memref // CHECK: %[[VAL_13:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_6]]] : memref // CHECK: %[[VAL_14:.*]]:2 = scf.while (%[[VAL_15:.*]] = %[[VAL_12]], %[[VAL_16:.*]] = %[[VAL_4]]) : (index, index) -> (index, index) { // CHECK: %[[VAL_17:.*]] = arith.cmpi ult, %[[VAL_15]], %[[VAL_13]] : index // CHECK: scf.condition(%[[VAL_17]]) %[[VAL_15]], %[[VAL_16]] : index, index // CHECK: } do { // CHECK: ^bb0(%[[VAL_18:.*]]: index, %[[VAL_19:.*]]: index): // CHECK: %[[VAL_20:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_18]]] : memref // CHECK: %[[VAL_21:.*]] = arith.cmpi eq, %[[VAL_20]], %[[VAL_19]] : index // CHECK: scf.if %[[VAL_21]] { // CHECK: %[[VAL_22:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_18]]] : memref // CHECK: %[[VAL_23:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_19]]] : memref<32xf64> // CHECK: %[[VAL_24:.*]] = arith.addf %[[VAL_22]], %[[VAL_23]] : f64 // CHECK: memref.store %[[VAL_24]], %[[VAL_11]]{{\[}}%[[VAL_19]]] : memref<32xf64> // CHECK: } else { // CHECK: scf.if %[[VAL_5]] { // CHECK: %[[VAL_25:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_19]]] : memref<32xf64> // CHECK: memref.store %[[VAL_25]], %[[VAL_11]]{{\[}}%[[VAL_19]]] : memref<32xf64> // CHECK: } else { // CHECK: } // CHECK: } // CHECK: %[[VAL_26:.*]] = arith.cmpi eq, %[[VAL_20]], %[[VAL_19]] : index // CHECK: %[[VAL_27:.*]] = arith.addi %[[VAL_18]], %[[VAL_6]] : index // CHECK: %[[VAL_28:.*]] = arith.select %[[VAL_26]], %[[VAL_27]], %[[VAL_18]] : index // CHECK: %[[VAL_29:.*]] = arith.addi %[[VAL_19]], %[[VAL_6]] : index // CHECK: scf.yield %[[VAL_28]], %[[VAL_29]] : index, index // CHECK: } // CHECK: scf.for %[[VAL_30:.*]] = %[[VAL_31:.*]]#1 to %[[VAL_3]] step %[[VAL_6]] { // CHECK: %[[VAL_32:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_30]]] : memref<32xf64> // CHECK: memref.store %[[VAL_32]], %[[VAL_11]]{{\[}}%[[VAL_30]]] : memref<32xf64> // CHECK: } // CHECK: %[[VAL_33:.*]] = bufferization.to_tensor %[[VAL_11]] : memref<32xf64> // CHECK: return %[[VAL_33]] : tensor<32xf64> // CHECK: } func.func @add(%arga: tensor<32xf64, #SV>, %argb: tensor<32xf64>, %argx: tensor<32xf64>) -> tensor<32xf64> { %0 = linalg.generic #trait2 ins(%arga, %argb: tensor<32xf64, #SV>, tensor<32xf64>) outs(%argx: tensor<32xf64>) { ^bb(%a: f64, %b: f64, %x: f64): %0 = arith.addf %a, %b : f64 linalg.yield %0 : f64 } -> tensor<32xf64> return %0 : tensor<32xf64> } // CHECK-LABEL: func @sub( // CHECK-SAME: %[[VAL_0:.*]]: tensor<32xf64, #sparse{{[0-9]*}}>, // CHECK-SAME: %[[VAL_1:.*]]: tensor<32xf64>, // CHECK-SAME: %[[VAL_2:.*]]: tensor<32xf64>) -> tensor<32xf64> { // CHECK-DAG: %[[VAL_3:.*]] = arith.constant 32 : index // CHECK-DAG: %[[VAL_4:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_5:.*]] = arith.constant true // CHECK-DAG: %[[VAL_6:.*]] = arith.constant 1 : index // CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<32xf64, #sparse{{[0-9]*}}> to memref // CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 0 : index} : tensor<32xf64, #sparse{{[0-9]*}}> to memref // CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf64, #sparse{{[0-9]*}}> to memref // CHECK-DAG: %[[VAL_10:.*]] = bufferization.to_buffer %[[VAL_1]] : tensor<32xf64> to memref<32xf64> // CHECK-DAG: %[[VAL_11:.*]] = bufferization.to_buffer %[[VAL_2]] : tensor<32xf64> to memref<32xf64> // CHECK: %[[VAL_12:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_4]]] : memref // CHECK: %[[VAL_13:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_6]]] : memref // CHECK: %[[VAL_14:.*]]:2 = scf.while (%[[VAL_15:.*]] = %[[VAL_12]], %[[VAL_16:.*]] = %[[VAL_4]]) : (index, index) -> (index, index) { // CHECK: %[[VAL_17:.*]] = arith.cmpi ult, %[[VAL_15]], %[[VAL_13]] : index // CHECK: scf.condition(%[[VAL_17]]) %[[VAL_15]], %[[VAL_16]] : index, index // CHECK: } do { // CHECK: ^bb0(%[[VAL_18:.*]]: index, %[[VAL_19:.*]]: index): // CHECK: %[[VAL_20:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_18]]] : memref // CHECK: %[[VAL_21:.*]] = arith.cmpi eq, %[[VAL_20]], %[[VAL_19]] : index // CHECK: scf.if %[[VAL_21]] { // CHECK: %[[VAL_22:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_18]]] : memref // CHECK: %[[VAL_23:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_19]]] : memref<32xf64> // CHECK: %[[VAL_24:.*]] = arith.subf %[[VAL_22]], %[[VAL_23]] : f64 // CHECK: memref.store %[[VAL_24]], %[[VAL_11]]{{\[}}%[[VAL_19]]] : memref<32xf64> // CHECK: } else { // CHECK: scf.if %[[VAL_5]] { // CHECK: %[[VAL_25:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_19]]] : memref<32xf64> // CHECK: %[[VAL_26:.*]] = arith.negf %[[VAL_25]] : f64 // CHECK: memref.store %[[VAL_26]], %[[VAL_11]]{{\[}}%[[VAL_19]]] : memref<32xf64> // CHECK: } else { // CHECK: } // CHECK: } // CHECK: %[[VAL_27:.*]] = arith.cmpi eq, %[[VAL_20]], %[[VAL_19]] : index // CHECK: %[[VAL_28:.*]] = arith.addi %[[VAL_18]], %[[VAL_6]] : index // CHECK: %[[VAL_29:.*]] = arith.select %[[VAL_27]], %[[VAL_28]], %[[VAL_18]] : index // CHECK: %[[VAL_30:.*]] = arith.addi %[[VAL_19]], %[[VAL_6]] : index // CHECK: scf.yield %[[VAL_29]], %[[VAL_30]] : index, index // CHECK: } // CHECK: scf.for %[[VAL_31:.*]] = %[[VAL_32:.*]]#1 to %[[VAL_3]] step %[[VAL_6]] { // CHECK: %[[VAL_33:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_31]]] : memref<32xf64> // CHECK: %[[VAL_34:.*]] = arith.negf %[[VAL_33]] : f64 // CHECK: memref.store %[[VAL_34]], %[[VAL_11]]{{\[}}%[[VAL_31]]] : memref<32xf64> // CHECK: } // CHECK: %[[VAL_35:.*]] = bufferization.to_tensor %[[VAL_11]] : memref<32xf64> // CHECK: return %[[VAL_35]] : tensor<32xf64> // CHECK: } func.func @sub(%arga: tensor<32xf64, #SV>, %argb: tensor<32xf64>, %argx: tensor<32xf64>) -> tensor<32xf64> { %0 = linalg.generic #trait2 ins(%arga, %argb: tensor<32xf64, #SV>, tensor<32xf64>) outs(%argx: tensor<32xf64>) { ^bb(%a: f64, %b: f64, %x: f64): %0 = arith.subf %a, %b : f64 linalg.yield %0 : f64 } -> tensor<32xf64> return %0 : tensor<32xf64> } // CHECK-LABEL: func @mul( // CHECK-SAME: %[[VAL_0:.*]]: tensor<32xf64, #sparse{{[0-9]*}}>, // CHECK-SAME: %[[VAL_1:.*]]: tensor<32xf64>, // CHECK-SAME: %[[VAL_2:.*]]: tensor<32xf64>) -> tensor<32xf64> { // CHECK-DAG: %[[VAL_3:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_4:.*]] = arith.constant 1 : index // CHECK-DAG: %[[VAL_5:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<32xf64, #sparse{{[0-9]*}}> // CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 0 : index} : tensor<32xf64, #sparse{{[0-9]*}}> // CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf64, #sparse{{[0-9]*}}> // CHECK-DAG: %[[VAL_8:.*]] = bufferization.to_buffer %[[VAL_1]] : tensor<32xf64> to memref<32xf64> // CHECK-DAG: %[[VAL_9:.*]] = bufferization.to_buffer %[[VAL_2]] : tensor<32xf64> to memref<32xf64> // CHECK: %[[VAL_10:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_3]]] : memref // CHECK: %[[VAL_11:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_4]]] : memref // CHECK: scf.for %[[VAL_12:.*]] = %[[VAL_10]] to %[[VAL_11]] step %[[VAL_4]] { // CHECK: %[[VAL_13:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_12]]] : memref // CHECK: %[[VAL_14:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_12]]] : memref // CHECK: %[[VAL_15:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_13]]] : memref<32xf64> // CHECK: %[[VAL_16:.*]] = arith.mulf %[[VAL_14]], %[[VAL_15]] : f64 // CHECK: memref.store %[[VAL_16]], %[[VAL_9]]{{\[}}%[[VAL_13]]] : memref<32xf64> // CHECK: } // CHECK: %[[VAL_17:.*]] = bufferization.to_tensor %[[VAL_9]] : memref<32xf64> // CHECK: return %[[VAL_17]] : tensor<32xf64> // CHECK: } func.func @mul(%arga: tensor<32xf64, #SV>, %argb: tensor<32xf64>, %argx: tensor<32xf64>) -> tensor<32xf64> { %0 = linalg.generic #trait2 ins(%arga, %argb: tensor<32xf64, #SV>, tensor<32xf64>) outs(%argx: tensor<32xf64>) { ^bb(%a: f64, %b: f64, %x: f64): %0 = arith.mulf %a, %b : f64 linalg.yield %0 : f64 } -> tensor<32xf64> return %0 : tensor<32xf64> } // CHECK-LABEL: func @divbyc( // CHECK-SAME: %[[VAL_0:.*]]: tensor<32xf64, #sparse{{[0-9]*}}>, // CHECK-SAME: %[[VAL_1:.*]]: tensor<32xf64>) -> tensor<32xf64> { // CHECK-DAG: %[[VAL_2:.*]] = arith.constant 2.000000e+00 : f64 // CHECK-DAG: %[[VAL_3:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_4:.*]] = arith.constant 1 : index // CHECK-DAG: %[[VAL_5:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<32xf64, #sparse{{[0-9]*}}> // CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 0 : index} : tensor<32xf64, #sparse{{[0-9]*}}> // CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf64, #sparse{{[0-9]*}}> // CHECK-DAG: %[[VAL_8:.*]] = bufferization.to_buffer %[[VAL_1]] : tensor<32xf64> to memref<32xf64> // CHECK: %[[VAL_9:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_3]]] : memref // CHECK: %[[VAL_10:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_4]]] : memref // CHECK: scf.for %[[VAL_11:.*]] = %[[VAL_9]] to %[[VAL_10]] step %[[VAL_4]] { // CHECK: %[[VAL_12:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_11]]] : memref // CHECK: %[[VAL_13:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_11]]] : memref // CHECK: %[[VAL_14:.*]] = arith.divf %[[VAL_13]], %[[VAL_2]] : f64 // CHECK: memref.store %[[VAL_14]], %[[VAL_8]]{{\[}}%[[VAL_12]]] : memref<32xf64> // CHECK: } // CHECK: %[[VAL_15:.*]] = bufferization.to_tensor %[[VAL_8]] : memref<32xf64> // CHECK: return %[[VAL_15]] : tensor<32xf64> // CHECK: } func.func @divbyc(%arga: tensor<32xf64, #SV>, %argx: tensor<32xf64>) -> tensor<32xf64> { %c = arith.constant 2.0 : f64 %0 = linalg.generic #traitc ins(%arga: tensor<32xf64, #SV>) outs(%argx: tensor<32xf64>) { ^bb(%a: f64, %x: f64): %0 = arith.divf %a, %c : f64 linalg.yield %0 : f64 } -> tensor<32xf64> return %0 : tensor<32xf64> } // CHECK-LABEL: func.func @zero_preserving_math( // CHECK-SAME: %[[VAL_0:.*]]: tensor<32xf64, #sparse{{[0-9]*}}>) -> tensor<32xf64, #sparse{{[0-9]*}}> { // CHECK-DAG: %[[VAL_1:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_2:.*]] = arith.constant 1 : index // CHECK-DAG: %[[VAL_3:.*]] = tensor.empty() : tensor<32xf64, #sparse{{[0-9]*}}> // CHECK-DAG: %[[VAL_4:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<32xf64, #sparse{{[0-9]*}}> to memref // CHECK-DAG: %[[VAL_5:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 0 : index} : tensor<32xf64, #sparse{{[0-9]*}}> to memref // CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf64, #sparse{{[0-9]*}}> to memref // CHECK: %[[VAL_7:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_1]]] : memref // CHECK: %[[VAL_8:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_2]]] : memref // CHECK: %[[T:.*]] = scf.for %[[VAL_9:.*]] = %[[VAL_7]] to %[[VAL_8]] step %[[VAL_2]] {{.*}} { // CHECK: %[[VAL_10:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_9]]] : memref // CHECK: %[[VAL_11:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_9]]] : memref // CHECK: %[[VAL_12:.*]] = math.absf %[[VAL_11]] : f64 // CHECK: %[[VAL_13:.*]] = math.ceil %[[VAL_12]] : f64 // CHECK: %[[VAL_14:.*]] = math.floor %[[VAL_13]] : f64 // CHECK: %[[VAL_15:.*]] = math.sqrt %[[VAL_14]] : f64 // CHECK: %[[VAL_16:.*]] = math.expm1 %[[VAL_15]] : f64 // CHECK: %[[VAL_17:.*]] = math.log1p %[[VAL_16]] : f64 // CHECK: %[[VAL_18:.*]] = math.sin %[[VAL_17]] : f64 // CHECK: %[[VAL_19:.*]] = math.tanh %[[VAL_18]] : f64 // CHECK: %[[Y:.*]] = tensor.insert %[[VAL_19]] into %{{.*}}[%[[VAL_10]]] : tensor<32xf64, #sparse{{[0-9]*}}> // CHECK: scf.yield %[[Y]] // CHECK: } // CHECK: %[[VAL_20:.*]] = sparse_tensor.load %[[T]] hasInserts : tensor<32xf64, #sparse{{[0-9]*}}> // CHECK: return %[[VAL_20]] : tensor<32xf64, #sparse{{[0-9]*}}> // CHECK: } func.func @zero_preserving_math(%arga: tensor<32xf64, #SV>) -> tensor<32xf64, #SV> { %c32 = arith.constant 32 : index %xinp = tensor.empty() : tensor<32xf64, #SV> %0 = linalg.generic #trait1 ins(%arga: tensor<32xf64, #SV>) outs(%xinp: tensor<32xf64, #SV>) { ^bb(%a: f64, %x: f64): %0 = math.absf %a : f64 %1 = math.ceil %0 : f64 %2 = math.floor %1 : f64 %3 = math.sqrt %2 : f64 %4 = math.expm1 %3 : f64 %5 = math.log1p %4 : f64 %6 = math.sin %5 : f64 %7 = math.tanh %6 : f64 linalg.yield %7 : f64 } -> tensor<32xf64, #SV> return %0 : tensor<32xf64, #SV> } // CHECK-LABEL: func.func @complex_divbyc( // CHECK-SAME: %[[VAL_0:.*]]: tensor<32xcomplex, #sparse{{.*}}> { // CHECK-DAG: %[[VAL_1:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_2:.*]] = arith.constant 1 : index // CHECK-DAG: %[[VAL_3:.*]] = complex.constant [0.000000e+00, 1.000000e+00] : complex // CHECK-DAG: %[[VAL_4:.*]] = tensor.empty() : tensor<32xcomplex, #sparse{{[0-9]*}}> // CHECK-DAG: %[[VAL_5:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<32xcomplex, #sparse{{[0-9]*}}> to memref // CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 0 : index} : tensor<32xcomplex, #sparse{{[0-9]*}}> to memref // CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xcomplex, #sparse{{[0-9]*}}> to memref> // CHECK: %[[VAL_8:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_1]]] : memref // CHECK: %[[VAL_9:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_2]]] : memref // CHECK: %[[T:.*]] = scf.for %[[VAL_10:.*]] = %[[VAL_8]] to %[[VAL_9]] step %[[VAL_2]] {{.*}} { // CHECK: %[[VAL_11:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_10]]] : memref // CHECK: %[[VAL_12:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_10]]] : memref> // CHECK: %[[VAL_13:.*]] = complex.div %[[VAL_12]], %[[VAL_3]] : complex // CHECK: %[[Y:.*]] = tensor.insert %[[VAL_13]] into %{{.*}}[%[[VAL_11]]] : tensor<32xcomplex, #sparse{{[0-9]*}}> // CHECK: scf.yield %[[Y]] // CHECK: } // CHECK: %[[VAL_14:.*]] = sparse_tensor.load %[[T]] hasInserts : tensor<32xcomplex, #sparse{{[0-9]*}}> // CHECK: return %[[VAL_14]] : tensor<32xcomplex, #sparse{{[0-9]*}}> // CHECK: } func.func @complex_divbyc(%arg0: tensor<32xcomplex, #SV>) -> tensor<32xcomplex, #SV> { %c = complex.constant [0.0, 1.0] : complex %init = tensor.empty() : tensor<32xcomplex, #SV> %0 = linalg.generic #traitc ins(%arg0: tensor<32xcomplex, #SV>) outs(%init: tensor<32xcomplex, #SV>) { ^bb(%a: complex, %x: complex): %0 = complex.div %a, %c : complex linalg.yield %0 : complex } -> tensor<32xcomplex, #SV> return %0 : tensor<32xcomplex, #SV> }