; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py UTC_ARGS: --version 5 ; RUN: llc < %s -mtriple=nvptx64 -mcpu=sm_20 -verify-machineinstrs | FileCheck %s ; RUN: %if ptxas %{ llc < %s -mtriple=nvptx64 -mcpu=sm_20 -verify-machineinstrs | %ptxas-verify %} target datalayout = "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:64-v128:128:128-n16:32:64" declare i16 @llvm.ctlz.i16(i16, i1) readnone declare i32 @llvm.ctlz.i32(i32, i1) readnone declare i64 @llvm.ctlz.i64(i64, i1) readnone ; There should be no difference between llvm.ctlz.i32(%a, true) and ; llvm.ctlz.i32(%a, false), as ptx's clz(0) is defined to return 0. define i32 @myctlz(i32 %a) { ; CHECK-LABEL: myctlz( ; CHECK: { ; CHECK-NEXT: .reg .b32 %r<3>; ; CHECK-EMPTY: ; CHECK-NEXT: // %bb.0: ; CHECK-NEXT: ld.param.b32 %r1, [myctlz_param_0]; ; CHECK-NEXT: clz.b32 %r2, %r1; ; CHECK-NEXT: st.param.b32 [func_retval0], %r2; ; CHECK-NEXT: ret; %val = call i32 @llvm.ctlz.i32(i32 %a, i1 false) readnone ret i32 %val } define i32 @myctlz_2(i32 %a) { ; CHECK-LABEL: myctlz_2( ; CHECK: { ; CHECK-NEXT: .reg .b32 %r<3>; ; CHECK-EMPTY: ; CHECK-NEXT: // %bb.0: ; CHECK-NEXT: ld.param.b32 %r1, [myctlz_2_param_0]; ; CHECK-NEXT: clz.b32 %r2, %r1; ; CHECK-NEXT: st.param.b32 [func_retval0], %r2; ; CHECK-NEXT: ret; %val = call i32 @llvm.ctlz.i32(i32 %a, i1 true) readnone ret i32 %val } ; PTX's clz.b64 returns a 32-bit value, but LLVM's intrinsic returns a 64-bit ; value, so here we have to zero-extend it. define i64 @myctlz64(i64 %a) { ; CHECK-LABEL: myctlz64( ; CHECK: { ; CHECK-NEXT: .reg .b32 %r<2>; ; CHECK-NEXT: .reg .b64 %rd<3>; ; CHECK-EMPTY: ; CHECK-NEXT: // %bb.0: ; CHECK-NEXT: ld.param.b64 %rd1, [myctlz64_param_0]; ; CHECK-NEXT: clz.b64 %r1, %rd1; ; CHECK-NEXT: cvt.u64.u32 %rd2, %r1; ; CHECK-NEXT: st.param.b64 [func_retval0], %rd2; ; CHECK-NEXT: ret; %val = call i64 @llvm.ctlz.i64(i64 %a, i1 false) readnone ret i64 %val } define i64 @myctlz64_2(i64 %a) { ; CHECK-LABEL: myctlz64_2( ; CHECK: { ; CHECK-NEXT: .reg .b32 %r<2>; ; CHECK-NEXT: .reg .b64 %rd<3>; ; CHECK-EMPTY: ; CHECK-NEXT: // %bb.0: ; CHECK-NEXT: ld.param.b64 %rd1, [myctlz64_2_param_0]; ; CHECK-NEXT: clz.b64 %r1, %rd1; ; CHECK-NEXT: cvt.u64.u32 %rd2, %r1; ; CHECK-NEXT: st.param.b64 [func_retval0], %rd2; ; CHECK-NEXT: ret; %val = call i64 @llvm.ctlz.i64(i64 %a, i1 true) readnone ret i64 %val } ; Here we truncate the 64-bit value of LLVM's ctlz intrinsic to 32 bits, the ; natural return width of ptx's clz.b64 instruction. No conversions should be ; necessary in the PTX. define i32 @myctlz64_as_32(i64 %a) { ; CHECK-LABEL: myctlz64_as_32( ; CHECK: { ; CHECK-NEXT: .reg .b32 %r<2>; ; CHECK-NEXT: .reg .b64 %rd<2>; ; CHECK-EMPTY: ; CHECK-NEXT: // %bb.0: ; CHECK-NEXT: ld.param.b64 %rd1, [myctlz64_as_32_param_0]; ; CHECK-NEXT: clz.b64 %r1, %rd1; ; CHECK-NEXT: st.param.b32 [func_retval0], %r1; ; CHECK-NEXT: ret; %val = call i64 @llvm.ctlz.i64(i64 %a, i1 false) readnone %trunc = trunc i64 %val to i32 ret i32 %trunc } define i32 @myctlz64_as_32_2(i64 %a) { ; CHECK-LABEL: myctlz64_as_32_2( ; CHECK: { ; CHECK-NEXT: .reg .b32 %r<2>; ; CHECK-NEXT: .reg .b64 %rd<2>; ; CHECK-EMPTY: ; CHECK-NEXT: // %bb.0: ; CHECK-NEXT: ld.param.b64 %rd1, [myctlz64_as_32_2_param_0]; ; CHECK-NEXT: clz.b64 %r1, %rd1; ; CHECK-NEXT: st.param.b32 [func_retval0], %r1; ; CHECK-NEXT: ret; %val = call i64 @llvm.ctlz.i64(i64 %a, i1 false) readnone %trunc = trunc i64 %val to i32 ret i32 %trunc } ; ctlz.i16 is implemented by extending the input to i32, computing the result, ; and then truncating the result back down to i16. But the NVPTX ABI ; zero-extends i16 return values to i32, so the final truncation doesn't appear ; in this function. define i16 @myctlz_ret16(i16 %a) { ; CHECK-LABEL: myctlz_ret16( ; CHECK: { ; CHECK-NEXT: .reg .b32 %r<4>; ; CHECK-EMPTY: ; CHECK-NEXT: // %bb.0: ; CHECK-NEXT: ld.param.b16 %r1, [myctlz_ret16_param_0]; ; CHECK-NEXT: clz.b32 %r2, %r1; ; CHECK-NEXT: add.s32 %r3, %r2, -16; ; CHECK-NEXT: st.param.b32 [func_retval0], %r3; ; CHECK-NEXT: ret; %val = call i16 @llvm.ctlz.i16(i16 %a, i1 false) readnone ret i16 %val } define i16 @myctlz_ret16_2(i16 %a) { ; CHECK-LABEL: myctlz_ret16_2( ; CHECK: { ; CHECK-NEXT: .reg .b32 %r<4>; ; CHECK-EMPTY: ; CHECK-NEXT: // %bb.0: ; CHECK-NEXT: ld.param.b16 %r1, [myctlz_ret16_2_param_0]; ; CHECK-NEXT: shl.b32 %r2, %r1, 16; ; CHECK-NEXT: clz.b32 %r3, %r2; ; CHECK-NEXT: st.param.b32 [func_retval0], %r3; ; CHECK-NEXT: ret; %val = call i16 @llvm.ctlz.i16(i16 %a, i1 true) readnone ret i16 %val } ; Here we store the result of ctlz.16 into an i16 pointer, so the trunc should ; remain. define void @myctlz_store16(i16 %a, ptr %b) { ; CHECK-LABEL: myctlz_store16( ; CHECK: { ; CHECK-NEXT: .reg .b32 %r<4>; ; CHECK-NEXT: .reg .b64 %rd<2>; ; CHECK-EMPTY: ; CHECK-NEXT: // %bb.0: ; CHECK-NEXT: ld.param.b16 %r1, [myctlz_store16_param_0]; ; CHECK-NEXT: clz.b32 %r2, %r1; ; CHECK-NEXT: add.s32 %r3, %r2, -16; ; CHECK-NEXT: ld.param.b64 %rd1, [myctlz_store16_param_1]; ; CHECK-NEXT: st.b16 [%rd1], %r3; ; CHECK-NEXT: ret; %val = call i16 @llvm.ctlz.i16(i16 %a, i1 false) readnone store i16 %val, ptr %b ret void } define void @myctlz_store16_2(i16 %a, ptr %b) { ; CHECK-LABEL: myctlz_store16_2( ; CHECK: { ; CHECK-NEXT: .reg .b32 %r<4>; ; CHECK-NEXT: .reg .b64 %rd<2>; ; CHECK-EMPTY: ; CHECK-NEXT: // %bb.0: ; CHECK-NEXT: ld.param.b16 %r1, [myctlz_store16_2_param_0]; ; CHECK-NEXT: clz.b32 %r2, %r1; ; CHECK-NEXT: add.s32 %r3, %r2, -16; ; CHECK-NEXT: ld.param.b64 %rd1, [myctlz_store16_2_param_1]; ; CHECK-NEXT: st.b16 [%rd1], %r3; ; CHECK-NEXT: ret; %val = call i16 @llvm.ctlz.i16(i16 %a, i1 false) readnone store i16 %val, ptr %b ret void }