//===- MemRefUtils.cpp - Utilities to support the MemRef dialect ----------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements utilities for the MemRef dialect. // //===----------------------------------------------------------------------===// #include "mlir/Dialect/MemRef/Utils/MemRefUtils.h" #include "mlir/Dialect/Affine/IR/AffineOps.h" #include "mlir/Dialect/Arith/Utils/Utils.h" #include "mlir/Dialect/MemRef/IR/MemRef.h" #include "mlir/Interfaces/ViewLikeInterface.h" #include "llvm/ADT/STLExtras.h" namespace mlir { namespace memref { bool isStaticShapeAndContiguousRowMajor(MemRefType type) { if (!type.hasStaticShape()) return false; SmallVector strides; int64_t offset; if (failed(type.getStridesAndOffset(strides, offset))) return false; // MemRef is contiguous if outer dimensions are size-1 and inner // dimensions have unit strides. int64_t runningStride = 1; int64_t curDim = strides.size() - 1; // Finds all inner dimensions with unit strides. while (curDim >= 0 && strides[curDim] == runningStride) { runningStride *= type.getDimSize(curDim); --curDim; } // Check if other dimensions are size-1. while (curDim >= 0 && type.getDimSize(curDim) == 1) { --curDim; } // All dims are unit-strided or size-1. return curDim < 0; } std::pair getLinearizedMemRefOffsetAndSize( OpBuilder &builder, Location loc, int srcBits, int dstBits, OpFoldResult offset, ArrayRef sizes, ArrayRef strides, ArrayRef indices) { unsigned sourceRank = sizes.size(); assert(sizes.size() == strides.size() && "expected as many sizes as strides for a memref"); SmallVector indicesVec = llvm::to_vector(indices); if (indices.empty()) indicesVec.resize(sourceRank, builder.getIndexAttr(0)); assert(indicesVec.size() == strides.size() && "expected as many indices as rank of memref"); // Create the affine symbols and values for linearization. SmallVector symbols(2 * sourceRank); bindSymbolsList(builder.getContext(), MutableArrayRef{symbols}); AffineExpr addMulMap = builder.getAffineConstantExpr(0); SmallVector offsetValues(2 * sourceRank); for (unsigned i = 0; i < sourceRank; ++i) { unsigned offsetIdx = 2 * i; addMulMap = addMulMap + symbols[offsetIdx] * symbols[offsetIdx + 1]; offsetValues[offsetIdx] = indicesVec[i]; offsetValues[offsetIdx + 1] = strides[i]; } // Adjust linearizedIndices and size by the scale factor (dstBits / srcBits). int64_t scaler = dstBits / srcBits; OpFoldResult linearizedIndices = affine::makeComposedFoldedAffineApply( builder, loc, addMulMap.floorDiv(scaler), offsetValues); size_t symbolIndex = 0; SmallVector values; SmallVector productExpressions; for (unsigned i = 0; i < sourceRank; ++i) { AffineExpr strideExpr = symbols[symbolIndex++]; values.push_back(strides[i]); AffineExpr sizeExpr = symbols[symbolIndex++]; values.push_back(sizes[i]); productExpressions.push_back((strideExpr * sizeExpr).floorDiv(scaler)); } AffineMap maxMap = AffineMap::get( /*dimCount=*/0, /*symbolCount=*/symbolIndex, productExpressions, builder.getContext()); OpFoldResult linearizedSize = affine::makeComposedFoldedAffineMax(builder, loc, maxMap, values); // Adjust baseOffset by the scale factor (dstBits / srcBits). AffineExpr s0; bindSymbols(builder.getContext(), s0); OpFoldResult adjustBaseOffset = affine::makeComposedFoldedAffineApply( builder, loc, s0.floorDiv(scaler), {offset}); OpFoldResult intraVectorOffset = affine::makeComposedFoldedAffineApply( builder, loc, addMulMap % scaler, offsetValues); return {{adjustBaseOffset, linearizedSize, intraVectorOffset}, linearizedIndices}; } LinearizedMemRefInfo getLinearizedMemRefOffsetAndSize(OpBuilder &builder, Location loc, int srcBits, int dstBits, OpFoldResult offset, ArrayRef sizes) { SmallVector strides(sizes.size()); if (!sizes.empty()) { strides.back() = builder.getIndexAttr(1); AffineExpr s0, s1; bindSymbols(builder.getContext(), s0, s1); for (int index = sizes.size() - 1; index > 0; --index) { strides[index - 1] = affine::makeComposedFoldedAffineApply( builder, loc, s0 * s1, ArrayRef{strides[index], sizes[index]}); } } LinearizedMemRefInfo linearizedMemRefInfo; std::tie(linearizedMemRefInfo, std::ignore) = getLinearizedMemRefOffsetAndSize(builder, loc, srcBits, dstBits, offset, sizes, strides); return linearizedMemRefInfo; } /// Returns true if all the uses of op are not read/load. /// There can be SubviewOp users as long as all its users are also /// StoreOp/transfer_write. If return true it also fills out the uses, if it /// returns false uses is unchanged. static bool resultIsNotRead(Operation *op, std::vector &uses) { std::vector opUses; for (OpOperand &use : op->getUses()) { Operation *useOp = use.getOwner(); if (isa(useOp) || (useOp->getNumResults() == 0 && useOp->getNumRegions() == 0 && !mlir::hasEffect(useOp)) || (isa(useOp) && resultIsNotRead(useOp, opUses))) { opUses.push_back(useOp); continue; } return false; } llvm::append_range(uses, opUses); return true; } void eraseDeadAllocAndStores(RewriterBase &rewriter, Operation *parentOp) { std::vector opToErase; parentOp->walk([&](Operation *op) { std::vector candidates; if (isa(op) && resultIsNotRead(op, candidates)) { llvm::append_range(opToErase, candidates); opToErase.push_back(op); } }); for (Operation *op : opToErase) rewriter.eraseOp(op); } static SmallVector computeSuffixProductIRBlockImpl(Location loc, OpBuilder &builder, ArrayRef sizes, OpFoldResult unit) { SmallVector strides(sizes.size(), unit); AffineExpr s0, s1; bindSymbols(builder.getContext(), s0, s1); for (int64_t r = strides.size() - 1; r > 0; --r) { strides[r - 1] = affine::makeComposedFoldedAffineApply( builder, loc, s0 * s1, {strides[r], sizes[r]}); } return strides; } SmallVector computeSuffixProductIRBlock(Location loc, OpBuilder &builder, ArrayRef sizes) { OpFoldResult unit = builder.getIndexAttr(1); return computeSuffixProductIRBlockImpl(loc, builder, sizes, unit); } MemrefValue skipFullyAliasingOperations(MemrefValue source) { while (auto op = source.getDefiningOp()) { if (auto subViewOp = dyn_cast(op); subViewOp && subViewOp.hasZeroOffset() && subViewOp.hasUnitStride()) { // A `memref.subview` with an all zero offset, and all unit strides, still // points to the same memory. source = cast(subViewOp.getSource()); } else if (auto castOp = dyn_cast(op)) { // A `memref.cast` still points to the same memory. source = castOp.getSource(); } else { return source; } } return source; } MemrefValue skipViewLikeOps(MemrefValue source) { while (auto op = source.getDefiningOp()) { if (auto viewLike = dyn_cast(op)) { source = cast(viewLike.getViewSource()); continue; } return source; } return source; } LogicalResult resolveSourceIndicesExpandShape( Location loc, PatternRewriter &rewriter, memref::ExpandShapeOp expandShapeOp, ValueRange indices, SmallVectorImpl &sourceIndices, bool startsInbounds) { SmallVector destShape = expandShapeOp.getMixedOutputShape(); // Traverse all reassociation groups to determine the appropriate indices // corresponding to each one of them post op folding. for (ArrayRef group : expandShapeOp.getReassociationIndices()) { assert(!group.empty() && "association indices groups cannot be empty"); int64_t groupSize = group.size(); if (groupSize == 1) { sourceIndices.push_back(indices[group[0]]); continue; } SmallVector groupBasis = llvm::map_to_vector(group, [&](int64_t d) { return destShape[d]; }); SmallVector groupIndices = llvm::map_to_vector(group, [&](int64_t d) { return indices[d]; }); Value collapsedIndex = affine::AffineLinearizeIndexOp::create( rewriter, loc, groupIndices, groupBasis, /*disjoint=*/startsInbounds); sourceIndices.push_back(collapsedIndex); } return success(); } LogicalResult resolveSourceIndicesCollapseShape(Location loc, PatternRewriter &rewriter, memref::CollapseShapeOp collapseShapeOp, ValueRange indices, SmallVectorImpl &sourceIndices) { // Note: collapse_shape requires a strided memref, we can do this. auto metadata = memref::ExtractStridedMetadataOp::create( rewriter, loc, collapseShapeOp.getSrc()); SmallVector sourceSizes = metadata.getConstifiedMixedSizes(); for (auto [index, group] : llvm::zip(indices, collapseShapeOp.getReassociationIndices())) { assert(!group.empty() && "association indices groups cannot be empty"); int64_t groupSize = group.size(); if (groupSize == 1) { sourceIndices.push_back(index); continue; } SmallVector basis = llvm::map_to_vector(group, [&](int64_t d) { return sourceSizes[d]; }); auto delinearize = affine::AffineDelinearizeIndexOp::create( rewriter, loc, index, basis, /*hasOuterBound=*/true); llvm::append_range(sourceIndices, delinearize.getResults()); } if (collapseShapeOp.getReassociationIndices().empty()) { auto zeroAffineMap = rewriter.getConstantAffineMap(0); int64_t srcRank = cast(collapseShapeOp.getViewSource().getType()).getRank(); OpFoldResult ofr = affine::makeComposedFoldedAffineApply( rewriter, loc, zeroAffineMap, ArrayRef{}); for (int64_t i = 0; i < srcRank; i++) { sourceIndices.push_back( getValueOrCreateConstantIndexOp(rewriter, loc, ofr)); } } return success(); } } // namespace memref } // namespace mlir