//===- Core/SymbolTable.cpp - Main Symbol Table ---------------------------===// // // The LLVM Linker // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "lld/Core/SymbolTable.h" #include "lld/Core/AbsoluteAtom.h" #include "lld/Core/Atom.h" #include "lld/Core/DefinedAtom.h" #include "lld/Core/File.h" #include "lld/Core/LLVM.h" #include "lld/Core/Resolver.h" #include "lld/Core/SharedLibraryAtom.h" #include "lld/Core/LinkingContext.h" #include "lld/Core/UndefinedAtom.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMapInfo.h" #include "llvm/ADT/Hashing.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include namespace lld { SymbolTable::SymbolTable(const LinkingContext &context) : _context(context) {} void SymbolTable::add(const UndefinedAtom &atom) { addByName(atom); } void SymbolTable::add(const SharedLibraryAtom &atom) { addByName(atom); } void SymbolTable::add(const AbsoluteAtom &atom) { addByName(atom); } void SymbolTable::add(const DefinedAtom &atom) { if (!atom.name().empty() && atom.scope() != DefinedAtom::scopeTranslationUnit) { // Named atoms cannot be merged by content. assert(atom.merge() != DefinedAtom::mergeByContent); // Track named atoms that are not scoped to file (static). addByName(atom); return; } if (atom.merge() == DefinedAtom::mergeByContent) { // Named atoms cannot be merged by content. assert(atom.name().empty()); addByContent(atom); } } const Atom *SymbolTable::findGroup(StringRef sym) { NameToAtom::iterator pos = _groupTable.find(sym); if (pos == _groupTable.end()) return nullptr; return pos->second; } bool SymbolTable::addGroup(const DefinedAtom &da) { StringRef name = da.name(); assert(!name.empty()); const Atom *existing = findGroup(name); if (existing == nullptr) { _groupTable[name] = &da; return true; } _replacedAtoms[&da] = existing; return false; } enum NameCollisionResolution { NCR_First, NCR_Second, NCR_DupDef, NCR_DupUndef, NCR_DupShLib, NCR_Error }; static NameCollisionResolution cases[4][4] = { //regular absolute undef sharedLib { // first is regular NCR_DupDef, NCR_Error, NCR_First, NCR_First }, { // first is absolute NCR_Error, NCR_Error, NCR_First, NCR_First }, { // first is undef NCR_Second, NCR_Second, NCR_DupUndef, NCR_Second }, { // first is sharedLib NCR_Second, NCR_Second, NCR_First, NCR_DupShLib } }; static NameCollisionResolution collide(Atom::Definition first, Atom::Definition second) { return cases[first][second]; } enum MergeResolution { MCR_First, MCR_Second, MCR_Largest, MCR_SameSize, MCR_Error }; static MergeResolution mergeCases[][6] = { // no tentative weak weakAddress sameNameAndSize largest {MCR_Error, MCR_First, MCR_First, MCR_First, MCR_SameSize, MCR_Largest}, // no {MCR_Second, MCR_Largest, MCR_Second, MCR_Second, MCR_SameSize, MCR_Largest}, // tentative {MCR_Second, MCR_First, MCR_First, MCR_Second, MCR_SameSize, MCR_Largest}, // weak {MCR_Second, MCR_First, MCR_First, MCR_First, MCR_SameSize, MCR_Largest}, // weakAddress {MCR_SameSize, MCR_SameSize, MCR_SameSize, MCR_SameSize, MCR_SameSize, MCR_SameSize}, // sameSize {MCR_Largest, MCR_Largest, MCR_Largest, MCR_Largest, MCR_SameSize, MCR_Largest}, // largest }; static MergeResolution mergeSelect(DefinedAtom::Merge first, DefinedAtom::Merge second) { assert(first != DefinedAtom::mergeByContent); assert(second != DefinedAtom::mergeByContent); return mergeCases[first][second]; } static uint64_t getSizeFollowReferences(const DefinedAtom *atom, uint32_t kind) { uint64_t size = 0; redo: while (atom) { for (const Reference *r : *atom) { if (r->kindNamespace() == Reference::KindNamespace::all && r->kindArch() == Reference::KindArch::all && r->kindValue() == kind) { atom = cast(r->target()); size += atom->size(); goto redo; } } break; } return size; } // Returns the size of the section containing the given atom. Atoms in the same // section are connected by layout-before and layout-after edges, so this // function traverses them to get the total size of atoms in the same section. static uint64_t sectionSize(const DefinedAtom *atom) { return atom->size() + getSizeFollowReferences(atom, lld::Reference::kindLayoutBefore) + getSizeFollowReferences(atom, lld::Reference::kindLayoutAfter); } void SymbolTable::addByName(const Atom &newAtom) { StringRef name = newAtom.name(); assert(!name.empty()); const Atom *existing = findByName(name); if (existing == nullptr) { // Name is not in symbol table yet, add it associate with this atom. _nameTable[name] = &newAtom; return; } // Name is already in symbol table and associated with another atom. bool useNew = true; switch (collide(existing->definition(), newAtom.definition())) { case NCR_First: useNew = false; break; case NCR_Second: useNew = true; break; case NCR_DupDef: assert(existing->definition() == Atom::definitionRegular); assert(newAtom.definition() == Atom::definitionRegular); switch (mergeSelect(((DefinedAtom*)existing)->merge(), ((DefinedAtom*)&newAtom)->merge())) { case MCR_First: useNew = false; break; case MCR_Second: useNew = true; break; case MCR_Largest: { uint64_t existingSize = sectionSize((DefinedAtom*)existing); uint64_t newSize = sectionSize((DefinedAtom*)&newAtom); useNew = (newSize >= existingSize); break; } case MCR_SameSize: { uint64_t existingSize = sectionSize((DefinedAtom*)existing); uint64_t newSize = sectionSize((DefinedAtom*)&newAtom); if (existingSize == newSize) { useNew = true; break; } llvm::errs() << "Size mismatch: " << existing->name() << " (" << existingSize << ") " << newAtom.name() << " (" << newSize << ")\n"; // fallthrough } case MCR_Error: if (!_context.getAllowDuplicates()) { llvm::errs() << "Duplicate symbols: " << existing->name() << ":" << existing->file().path() << " and " << newAtom.name() << ":" << newAtom.file().path() << "\n"; llvm::report_fatal_error("duplicate symbol error"); } useNew = false; break; } break; case NCR_DupUndef: { const UndefinedAtom* existingUndef = cast(existing); const UndefinedAtom* newUndef = cast(&newAtom); bool sameCanBeNull = (existingUndef->canBeNull() == newUndef->canBeNull()); if (!sameCanBeNull && _context.warnIfCoalesableAtomsHaveDifferentCanBeNull()) { llvm::errs() << "lld warning: undefined symbol " << existingUndef->name() << " has different weakness in " << existingUndef->file().path() << " and in " << newUndef->file().path() << "\n"; } const UndefinedAtom *existingFallback = existingUndef->fallback(); const UndefinedAtom *newFallback = newUndef->fallback(); bool hasDifferentFallback = (existingFallback && newFallback && existingFallback->name() != newFallback->name()); if (hasDifferentFallback) { llvm::errs() << "lld warning: undefined symbol " << existingUndef->name() << " has different fallback: " << existingFallback->name() << " in " << existingUndef->file().path() << " and " << newFallback->name() << " in " << newUndef->file().path() << "\n"; } bool hasNewFallback = newUndef->fallback(); if (sameCanBeNull) useNew = hasNewFallback; else useNew = (newUndef->canBeNull() < existingUndef->canBeNull()); break; } case NCR_DupShLib: { const SharedLibraryAtom *curShLib = cast(existing); const SharedLibraryAtom *newShLib = cast(&newAtom); bool sameNullness = (curShLib->canBeNullAtRuntime() == newShLib->canBeNullAtRuntime()); bool sameName = curShLib->loadName().equals(newShLib->loadName()); if (!sameName) { useNew = false; if (_context.warnIfCoalesableAtomsHaveDifferentLoadName()) { // FIXME: need diagonstics interface for writing warning messages llvm::errs() << "lld warning: shared library symbol " << curShLib->name() << " has different load path in " << curShLib->file().path() << " and in " << newShLib->file().path(); } } else if (!sameNullness) { useNew = false; if (_context.warnIfCoalesableAtomsHaveDifferentCanBeNull()) { // FIXME: need diagonstics interface for writing warning messages llvm::errs() << "lld warning: shared library symbol " << curShLib->name() << " has different weakness in " << curShLib->file().path() << " and in " << newShLib->file().path(); } } else { // Both shlib atoms are identical and can be coalesced. useNew = false; } break; } case NCR_Error: llvm::errs() << "SymbolTable: error while merging " << name << "\n"; llvm::report_fatal_error("duplicate symbol error"); break; } if (useNew) { // Update name table to use new atom. _nameTable[name] = &newAtom; // Add existing atom to replacement table. _replacedAtoms[existing] = &newAtom; } else { // New atom is not being used. Add it to replacement table. _replacedAtoms[&newAtom] = existing; } } unsigned SymbolTable::AtomMappingInfo::getHashValue(const DefinedAtom *atom) { auto content = atom->rawContent(); return llvm::hash_combine(atom->size(), atom->contentType(), llvm::hash_combine_range(content.begin(), content.end())); } bool SymbolTable::AtomMappingInfo::isEqual(const DefinedAtom * const l, const DefinedAtom * const r) { if (l == r) return true; if (l == getEmptyKey()) return false; if (r == getEmptyKey()) return false; if (l == getTombstoneKey()) return false; if (r == getTombstoneKey()) return false; if (l->contentType() != r->contentType()) return false; if (l->size() != r->size()) return false; ArrayRef lc = l->rawContent(); ArrayRef rc = r->rawContent(); return memcmp(lc.data(), rc.data(), lc.size()) == 0; } void SymbolTable::addByContent(const DefinedAtom & newAtom) { // Currently only read-only constants can be merged. assert(newAtom.permissions() == DefinedAtom::permR__); AtomContentSet::iterator pos = _contentTable.find(&newAtom); if (pos == _contentTable.end()) { _contentTable.insert(&newAtom); return; } const Atom* existing = *pos; // New atom is not being used. Add it to replacement table. _replacedAtoms[&newAtom] = existing; } const Atom *SymbolTable::findByName(StringRef sym) { NameToAtom::iterator pos = _nameTable.find(sym); if (pos == _nameTable.end()) return nullptr; return pos->second; } bool SymbolTable::isDefined(StringRef sym) { if (const Atom *atom = findByName(sym)) return atom->definition() != Atom::definitionUndefined; return false; } void SymbolTable::addReplacement(const Atom *replaced, const Atom *replacement) { _replacedAtoms[replaced] = replacement; } const Atom *SymbolTable::replacement(const Atom *atom) { // Find the replacement for a given atom. Atoms in _replacedAtoms // may be chained, so find the last one. for (;;) { AtomToAtom::iterator pos = _replacedAtoms.find(atom); if (pos == _replacedAtoms.end()) return atom; atom = pos->second; } } unsigned int SymbolTable::size() { return _nameTable.size(); } std::vector SymbolTable::undefines() { std::vector ret; for (auto it : _nameTable) { const Atom *atom = it.second; assert(atom != nullptr); if (const auto undef = dyn_cast(atom)) { AtomToAtom::iterator pos = _replacedAtoms.find(undef); if (pos != _replacedAtoms.end()) continue; ret.push_back(undef); } } return ret; } std::vector SymbolTable::tentativeDefinitions() { std::vector ret; for (auto entry : _nameTable) { const Atom *atom = entry.second; StringRef name = entry.first; assert(atom != nullptr); if (const DefinedAtom *defAtom = dyn_cast(atom)) if (defAtom->merge() == DefinedAtom::mergeAsTentative) ret.push_back(name); } return ret; } } // namespace lld