//===------- VectorCombine.cpp - Optimize partial vector operations -------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This pass optimizes scalar/vector interactions using target cost models. The // transforms implemented here may not fit in traditional loop-based or SLP // vectorization passes. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Vectorize/VectorCombine.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/BasicAliasAnalysis.h" #include "llvm/Analysis/GlobalsModRef.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/Analysis/VectorUtils.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/PatternMatch.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/Support/CommandLine.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Vectorize.h" using namespace llvm; using namespace llvm::PatternMatch; #define DEBUG_TYPE "vector-combine" STATISTIC(NumVecCmp, "Number of vector compares formed"); STATISTIC(NumVecBO, "Number of vector binops formed"); STATISTIC(NumScalarBO, "Number of scalar binops formed"); static cl::opt DisableVectorCombine( "disable-vector-combine", cl::init(false), cl::Hidden, cl::desc("Disable all vector combine transforms")); static cl::opt DisableBinopExtractShuffle( "disable-binop-extract-shuffle", cl::init(false), cl::Hidden, cl::desc("Disable binop extract to shuffle transforms")); /// Compare the relative costs of 2 extracts followed by scalar operation vs. /// vector operation(s) followed by extract. Return true if the existing /// instructions are cheaper than a vector alternative. Otherwise, return false /// and if one of the extracts should be transformed to a shufflevector, set /// \p ConvertToShuffle to that extract instruction. static bool isExtractExtractCheap(Instruction *Ext0, Instruction *Ext1, unsigned Opcode, const TargetTransformInfo &TTI, Instruction *&ConvertToShuffle, unsigned PreferredExtractIndex) { assert(isa(Ext0->getOperand(1)) && isa(Ext1->getOperand(1)) && "Expected constant extract indexes"); Type *ScalarTy = Ext0->getType(); auto *VecTy = cast(Ext0->getOperand(0)->getType()); int ScalarOpCost, VectorOpCost; // Get cost estimates for scalar and vector versions of the operation. bool IsBinOp = Instruction::isBinaryOp(Opcode); if (IsBinOp) { ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy); VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy); } else { assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && "Expected a compare"); ScalarOpCost = TTI.getCmpSelInstrCost(Opcode, ScalarTy, CmpInst::makeCmpResultType(ScalarTy)); VectorOpCost = TTI.getCmpSelInstrCost(Opcode, VecTy, CmpInst::makeCmpResultType(VecTy)); } // Get cost estimates for the extract elements. These costs will factor into // both sequences. unsigned Ext0Index = cast(Ext0->getOperand(1))->getZExtValue(); unsigned Ext1Index = cast(Ext1->getOperand(1))->getZExtValue(); int Extract0Cost = TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext0Index); int Extract1Cost = TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext1Index); // A more expensive extract will always be replaced by a splat shuffle. // For example, if Ext0 is more expensive: // opcode (extelt V0, Ext0), (ext V1, Ext1) --> // extelt (opcode (splat V0, Ext0), V1), Ext1 // TODO: Evaluate whether that always results in lowest cost. Alternatively, // check the cost of creating a broadcast shuffle and shuffling both // operands to element 0. int CheapExtractCost = std::min(Extract0Cost, Extract1Cost); // Extra uses of the extracts mean that we include those costs in the // vector total because those instructions will not be eliminated. int OldCost, NewCost; if (Ext0->getOperand(0) == Ext1->getOperand(0) && Ext0Index == Ext1Index) { // Handle a special case. If the 2 extracts are identical, adjust the // formulas to account for that. The extra use charge allows for either the // CSE'd pattern or an unoptimized form with identical values: // opcode (extelt V, C), (extelt V, C) --> extelt (opcode V, V), C bool HasUseTax = Ext0 == Ext1 ? !Ext0->hasNUses(2) : !Ext0->hasOneUse() || !Ext1->hasOneUse(); OldCost = CheapExtractCost + ScalarOpCost; NewCost = VectorOpCost + CheapExtractCost + HasUseTax * CheapExtractCost; } else { // Handle the general case. Each extract is actually a different value: // opcode (extelt V0, C0), (extelt V1, C1) --> extelt (opcode V0, V1), C OldCost = Extract0Cost + Extract1Cost + ScalarOpCost; NewCost = VectorOpCost + CheapExtractCost + !Ext0->hasOneUse() * Extract0Cost + !Ext1->hasOneUse() * Extract1Cost; } if (Ext0Index == Ext1Index) { // If the extract indexes are identical, no shuffle is needed. ConvertToShuffle = nullptr; } else { if (IsBinOp && DisableBinopExtractShuffle) return true; // If we are extracting from 2 different indexes, then one operand must be // shuffled before performing the vector operation. The shuffle mask is // undefined except for 1 lane that is being translated to the remaining // extraction lane. Therefore, it is a splat shuffle. Ex: // ShufMask = { undef, undef, 0, undef } // TODO: The cost model has an option for a "broadcast" shuffle // (splat-from-element-0), but no option for a more general splat. NewCost += TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); // The more expensive extract will be replaced by a shuffle. If the costs // are equal and there is a preferred extract index, shuffle the opposite // operand. Otherwise, replace the extract with the higher index. if (Extract0Cost > Extract1Cost) ConvertToShuffle = Ext0; else if (Extract1Cost > Extract0Cost) ConvertToShuffle = Ext1; else if (PreferredExtractIndex == Ext0Index) ConvertToShuffle = Ext1; else if (PreferredExtractIndex == Ext1Index) ConvertToShuffle = Ext0; else ConvertToShuffle = Ext0Index > Ext1Index ? Ext0 : Ext1; } // Aggressively form a vector op if the cost is equal because the transform // may enable further optimization. // Codegen can reverse this transform (scalarize) if it was not profitable. return OldCost < NewCost; } /// Try to reduce extract element costs by converting scalar compares to vector /// compares followed by extract. /// cmp (ext0 V0, C), (ext1 V1, C) static void foldExtExtCmp(Instruction *Ext0, Instruction *Ext1, Instruction &I) { assert(isa(&I) && "Expected a compare"); // cmp Pred (extelt V0, C), (extelt V1, C) --> extelt (cmp Pred V0, V1), C ++NumVecCmp; IRBuilder<> Builder(&I); CmpInst::Predicate Pred = cast(&I)->getPredicate(); Value *V0 = Ext0->getOperand(0), *V1 = Ext1->getOperand(0); Value *VecCmp = Ext0->getType()->isFloatingPointTy() ? Builder.CreateFCmp(Pred, V0, V1) : Builder.CreateICmp(Pred, V0, V1); Value *Extract = Builder.CreateExtractElement(VecCmp, Ext0->getOperand(1)); I.replaceAllUsesWith(Extract); } /// Try to reduce extract element costs by converting scalar binops to vector /// binops followed by extract. /// bo (ext0 V0, C), (ext1 V1, C) static void foldExtExtBinop(Instruction *Ext0, Instruction *Ext1, Instruction &I) { assert(isa(&I) && "Expected a binary operator"); // bo (extelt V0, C), (extelt V1, C) --> extelt (bo V0, V1), C ++NumVecBO; IRBuilder<> Builder(&I); Value *V0 = Ext0->getOperand(0), *V1 = Ext1->getOperand(0); Value *VecBO = Builder.CreateBinOp(cast(&I)->getOpcode(), V0, V1); // All IR flags are safe to back-propagate because any potential poison // created in unused vector elements is discarded by the extract. if (auto *VecBOInst = dyn_cast(VecBO)) VecBOInst->copyIRFlags(&I); Value *Extract = Builder.CreateExtractElement(VecBO, Ext0->getOperand(1)); I.replaceAllUsesWith(Extract); } /// Match an instruction with extracted vector operands. static bool foldExtractExtract(Instruction &I, const TargetTransformInfo &TTI) { // It is not safe to transform things like div, urem, etc. because we may // create undefined behavior when executing those on unknown vector elements. if (!isSafeToSpeculativelyExecute(&I)) return false; Instruction *Ext0, *Ext1; CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; if (!match(&I, m_Cmp(Pred, m_Instruction(Ext0), m_Instruction(Ext1))) && !match(&I, m_BinOp(m_Instruction(Ext0), m_Instruction(Ext1)))) return false; Value *V0, *V1; uint64_t C0, C1; if (!match(Ext0, m_ExtractElt(m_Value(V0), m_ConstantInt(C0))) || !match(Ext1, m_ExtractElt(m_Value(V1), m_ConstantInt(C1))) || V0->getType() != V1->getType()) return false; // If the scalar value 'I' is going to be re-inserted into a vector, then try // to create an extract to that same element. The extract/insert can be // reduced to a "select shuffle". // TODO: If we add a larger pattern match that starts from an insert, this // probably becomes unnecessary. uint64_t InsertIndex = std::numeric_limits::max(); if (I.hasOneUse()) match(I.user_back(), m_InsertElt(m_Value(), m_Value(), m_ConstantInt(InsertIndex))); Instruction *ConvertToShuffle; if (isExtractExtractCheap(Ext0, Ext1, I.getOpcode(), TTI, ConvertToShuffle, InsertIndex)) return false; if (ConvertToShuffle) { // The shuffle mask is undefined except for 1 lane that is being translated // to the cheap extraction lane. Example: // ShufMask = { 2, undef, undef, undef } uint64_t SplatIndex = ConvertToShuffle == Ext0 ? C0 : C1; uint64_t CheapExtIndex = ConvertToShuffle == Ext0 ? C1 : C0; auto *VecTy = cast(V0->getType()); SmallVector ShufMask(VecTy->getNumElements(), -1); ShufMask[CheapExtIndex] = SplatIndex; IRBuilder<> Builder(ConvertToShuffle); // extelt X, C --> extelt (splat X), C' Value *Shuf = Builder.CreateShuffleVector(ConvertToShuffle->getOperand(0), UndefValue::get(VecTy), ShufMask); Value *NewExt = Builder.CreateExtractElement(Shuf, CheapExtIndex); if (ConvertToShuffle == Ext0) Ext0 = cast(NewExt); else Ext1 = cast(NewExt); } if (Pred != CmpInst::BAD_ICMP_PREDICATE) foldExtExtCmp(Ext0, Ext1, I); else foldExtExtBinop(Ext0, Ext1, I); return true; } /// If this is a bitcast of a shuffle, try to bitcast the source vector to the /// destination type followed by shuffle. This can enable further transforms by /// moving bitcasts or shuffles together. static bool foldBitcastShuf(Instruction &I, const TargetTransformInfo &TTI) { Value *V; ArrayRef Mask; if (!match(&I, m_BitCast( m_OneUse(m_Shuffle(m_Value(V), m_Undef(), m_Mask(Mask)))))) return false; // Disallow non-vector casts and length-changing shuffles. // TODO: We could allow any shuffle. auto *DestTy = dyn_cast(I.getType()); auto *SrcTy = cast(V->getType()); if (!DestTy || I.getOperand(0)->getType() != SrcTy) return false; // The new shuffle must not cost more than the old shuffle. The bitcast is // moved ahead of the shuffle, so assume that it has the same cost as before. if (TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, DestTy) > TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, SrcTy)) return false; unsigned DestNumElts = DestTy->getNumElements(); unsigned SrcNumElts = SrcTy->getNumElements(); SmallVector NewMask; if (SrcNumElts <= DestNumElts) { // The bitcast is from wide to narrow/equal elements. The shuffle mask can // always be expanded to the equivalent form choosing narrower elements. assert(DestNumElts % SrcNumElts == 0 && "Unexpected shuffle mask"); unsigned ScaleFactor = DestNumElts / SrcNumElts; narrowShuffleMaskElts(ScaleFactor, Mask, NewMask); } else { // The bitcast is from narrow elements to wide elements. The shuffle mask // must choose consecutive elements to allow casting first. assert(SrcNumElts % DestNumElts == 0 && "Unexpected shuffle mask"); unsigned ScaleFactor = SrcNumElts / DestNumElts; if (!widenShuffleMaskElts(ScaleFactor, Mask, NewMask)) return false; } // bitcast (shuf V, MaskC) --> shuf (bitcast V), MaskC' IRBuilder<> Builder(&I); Value *CastV = Builder.CreateBitCast(V, DestTy); Value *Shuf = Builder.CreateShuffleVector(CastV, UndefValue::get(DestTy), NewMask); I.replaceAllUsesWith(Shuf); return true; } /// Match a vector binop instruction with inserted scalar operands and convert /// to scalar binop followed by insertelement. static bool scalarizeBinop(Instruction &I, const TargetTransformInfo &TTI) { Value *Ins0, *Ins1; if (!match(&I, m_BinOp(m_Value(Ins0), m_Value(Ins1)))) return false; // Match against one or both scalar values being inserted into constant // vectors: // vec_bo VecC0, (inselt VecC1, V1, Index) // vec_bo (inselt VecC0, V0, Index), VecC1 // vec_bo (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) // TODO: Deal with mismatched index constants and variable indexes? Constant *VecC0 = nullptr, *VecC1 = nullptr; Value *V0 = nullptr, *V1 = nullptr; uint64_t Index0 = 0, Index1 = 0; if (!match(Ins0, m_InsertElt(m_Constant(VecC0), m_Value(V0), m_ConstantInt(Index0))) && !match(Ins0, m_Constant(VecC0))) return false; if (!match(Ins1, m_InsertElt(m_Constant(VecC1), m_Value(V1), m_ConstantInt(Index1))) && !match(Ins1, m_Constant(VecC1))) return false; bool IsConst0 = !V0; bool IsConst1 = !V1; if (IsConst0 && IsConst1) return false; if (!IsConst0 && !IsConst1 && Index0 != Index1) return false; // Bail for single insertion if it is a load. // TODO: Handle this once getVectorInstrCost can cost for load/stores. auto *I0 = dyn_cast_or_null(V0); auto *I1 = dyn_cast_or_null(V1); if ((IsConst0 && I1 && I1->mayReadFromMemory()) || (IsConst1 && I0 && I0->mayReadFromMemory())) return false; uint64_t Index = IsConst0 ? Index1 : Index0; Type *ScalarTy = IsConst0 ? V1->getType() : V0->getType(); Type *VecTy = I.getType(); assert(VecTy->isVectorTy() && (IsConst0 || IsConst1 || V0->getType() == V1->getType()) && (ScalarTy->isIntegerTy() || ScalarTy->isFloatingPointTy()) && "Unexpected types for insert into binop"); Instruction::BinaryOps Opcode = cast(&I)->getOpcode(); int ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy); int VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy); // Get cost estimate for the insert element. This cost will factor into // both sequences. int InsertCost = TTI.getVectorInstrCost(Instruction::InsertElement, VecTy, Index); int OldCost = (IsConst0 ? 0 : InsertCost) + (IsConst1 ? 0 : InsertCost) + VectorOpCost; int NewCost = ScalarOpCost + InsertCost + (IsConst0 ? 0 : !Ins0->hasOneUse() * InsertCost) + (IsConst1 ? 0 : !Ins1->hasOneUse() * InsertCost); // We want to scalarize unless the vector variant actually has lower cost. if (OldCost < NewCost) return false; // vec_bo (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) --> // inselt NewVecC, (scalar_bo V0, V1), Index ++NumScalarBO; IRBuilder<> Builder(&I); // For constant cases, extract the scalar element, this should constant fold. if (IsConst0) V0 = ConstantExpr::getExtractElement(VecC0, Builder.getInt64(Index)); if (IsConst1) V1 = ConstantExpr::getExtractElement(VecC1, Builder.getInt64(Index)); Value *Scalar = Builder.CreateBinOp(Opcode, V0, V1, I.getName() + ".scalar"); // All IR flags are safe to back-propagate. There is no potential for extra // poison to be created by the scalar instruction. if (auto *ScalarInst = dyn_cast(Scalar)) ScalarInst->copyIRFlags(&I); // Fold the vector constants in the original vectors into a new base vector. Constant *NewVecC = ConstantExpr::get(Opcode, VecC0, VecC1); Value *Insert = Builder.CreateInsertElement(NewVecC, Scalar, Index); I.replaceAllUsesWith(Insert); Insert->takeName(&I); return true; } /// This is the entry point for all transforms. Pass manager differences are /// handled in the callers of this function. static bool runImpl(Function &F, const TargetTransformInfo &TTI, const DominatorTree &DT) { if (DisableVectorCombine) return false; bool MadeChange = false; for (BasicBlock &BB : F) { // Ignore unreachable basic blocks. if (!DT.isReachableFromEntry(&BB)) continue; // Do not delete instructions under here and invalidate the iterator. // Walk the block forwards to enable simple iterative chains of transforms. // TODO: It could be more efficient to remove dead instructions // iteratively in this loop rather than waiting until the end. for (Instruction &I : BB) { if (isa(I)) continue; MadeChange |= foldExtractExtract(I, TTI); MadeChange |= foldBitcastShuf(I, TTI); MadeChange |= scalarizeBinop(I, TTI); } } // We're done with transforms, so remove dead instructions. if (MadeChange) for (BasicBlock &BB : F) SimplifyInstructionsInBlock(&BB); return MadeChange; } // Pass manager boilerplate below here. namespace { class VectorCombineLegacyPass : public FunctionPass { public: static char ID; VectorCombineLegacyPass() : FunctionPass(ID) { initializeVectorCombineLegacyPassPass(*PassRegistry::getPassRegistry()); } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.addRequired(); AU.setPreservesCFG(); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); FunctionPass::getAnalysisUsage(AU); } bool runOnFunction(Function &F) override { if (skipFunction(F)) return false; auto &TTI = getAnalysis().getTTI(F); auto &DT = getAnalysis().getDomTree(); return runImpl(F, TTI, DT); } }; } // namespace char VectorCombineLegacyPass::ID = 0; INITIALIZE_PASS_BEGIN(VectorCombineLegacyPass, "vector-combine", "Optimize scalar/vector ops", false, false) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_END(VectorCombineLegacyPass, "vector-combine", "Optimize scalar/vector ops", false, false) Pass *llvm::createVectorCombinePass() { return new VectorCombineLegacyPass(); } PreservedAnalyses VectorCombinePass::run(Function &F, FunctionAnalysisManager &FAM) { TargetTransformInfo &TTI = FAM.getResult(F); DominatorTree &DT = FAM.getResult(F); if (!runImpl(F, TTI, DT)) return PreservedAnalyses::all(); PreservedAnalyses PA; PA.preserveSet(); PA.preserve(); PA.preserve(); PA.preserve(); return PA; }