//===- LoopFusion.cpp - Code to perform loop fusion -----------------------===// // // Copyright 2019 The MLIR Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // ============================================================================= // // This file implements loop fusion. // //===----------------------------------------------------------------------===// #include "mlir/Analysis/AffineAnalysis.h" #include "mlir/Analysis/AffineStructures.h" #include "mlir/Analysis/LoopAnalysis.h" #include "mlir/Analysis/Utils.h" #include "mlir/IR/AffineExpr.h" #include "mlir/IR/AffineMap.h" #include "mlir/IR/Builders.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/InstVisitor.h" #include "mlir/Pass.h" #include "mlir/StandardOps/StandardOps.h" #include "mlir/Transforms/LoopUtils.h" #include "mlir/Transforms/Passes.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/SetVector.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #define DEBUG_TYPE "loop-fusion" using llvm::SetVector; using namespace mlir; namespace { /// Loop fusion pass. This pass currently supports a greedy fusion policy, /// which fuses loop nests with single-writer/single-reader memref dependences /// with the goal of improving locality. // TODO(andydavis) Support fusion of source loop nests which write to multiple // memrefs, where each memref can have multiple users (if profitable). // TODO(andydavis) Extend this pass to check for fusion preventing dependences, // and add support for more general loop fusion algorithms. struct LoopFusion : public FunctionPass { LoopFusion() : FunctionPass(&LoopFusion::passID) {} PassResult runOnFunction(Function *f) override; static char passID; }; } // end anonymous namespace char LoopFusion::passID = 0; FunctionPass *mlir::createLoopFusionPass() { return new LoopFusion; } // FusionCandidate encapsulates source and destination memref access within // loop nests which are candidates for loop fusion. struct FusionCandidate { // Load or store access within src loop nest to be fused into dst loop nest. MemRefAccess srcAccess; // Load or store access within dst loop nest. MemRefAccess dstAccess; explicit FusionCandidate(OperationInst *src, OperationInst *dst) : srcAccess(MemRefAccess(src)), dstAccess(MemRefAccess(dst)) {} }; static FusionCandidate buildFusionCandidate(OperationInst *srcStoreOpInst, OperationInst *dstLoadOpInst) { return FusionCandidate(srcStoreOpInst, dstLoadOpInst); } namespace { // LoopNestStateCollector walks loop nests and collects load and store // operations, and whether or not an IfInst was encountered in the loop nest. class LoopNestStateCollector : public InstWalker { public: SmallVector forInsts; SmallVector loadOpInsts; SmallVector storeOpInsts; bool hasIfInst = false; void visitForInst(ForInst *forInst) { forInsts.push_back(forInst); } void visitIfInst(IfInst *ifInst) { hasIfInst = true; } void visitOperationInst(OperationInst *opInst) { if (opInst->isa()) loadOpInsts.push_back(opInst); if (opInst->isa()) storeOpInsts.push_back(opInst); } }; // MemRefDependenceGraph is a graph data structure where graph nodes are // top-level instructions in a Function which contain load/store ops, and edges // are memref dependences between the nodes. // TODO(andydavis) Add a depth parameter to dependence graph construction. struct MemRefDependenceGraph { public: // Node represents a node in the graph. A Node is either an entire loop nest // rooted at the top level which contains loads/stores, or a top level // load/store. struct Node { // The unique identifier of this node in the graph. unsigned id; // The top-level statment which is (or contains) loads/stores. Instruction *inst; // List of load operations. SmallVector loads; // List of store op insts. SmallVector stores; Node(unsigned id, Instruction *inst) : id(id), inst(inst) {} // Returns the load op count for 'memref'. unsigned getLoadOpCount(Value *memref) { unsigned loadOpCount = 0; for (auto *loadOpInst : loads) { if (memref == loadOpInst->cast()->getMemRef()) ++loadOpCount; } return loadOpCount; } // Returns the store op count for 'memref'. unsigned getStoreOpCount(Value *memref) { unsigned storeOpCount = 0; for (auto *storeOpInst : stores) { if (memref == storeOpInst->cast()->getMemRef()) ++storeOpCount; } return storeOpCount; } }; // Edge represents a memref data dependece between nodes in the graph. struct Edge { // The id of the node at the other end of the edge. unsigned id; // The memref on which this edge represents a dependence. Value *memref; }; // Map from node id to Node. DenseMap nodes; // Map from node id to list of input edges. DenseMap> inEdges; // Map from node id to list of output edges. DenseMap> outEdges; MemRefDependenceGraph() {} // Initializes the dependence graph based on operations in 'f'. // Returns true on success, false otherwise. bool init(Function *f); // Returns the graph node for 'id'. Node *getNode(unsigned id) { auto it = nodes.find(id); assert(it != nodes.end()); return &it->second; } // Adds an edge from node 'srcId' to node 'dstId' for 'memref'. void addEdge(unsigned srcId, unsigned dstId, Value *memref) { outEdges[srcId].push_back({dstId, memref}); inEdges[dstId].push_back({srcId, memref}); } // Removes an edge from node 'srcId' to node 'dstId' for 'memref'. void removeEdge(unsigned srcId, unsigned dstId, Value *memref) { assert(inEdges.count(dstId) > 0); assert(outEdges.count(srcId) > 0); // Remove 'srcId' from 'inEdges[dstId]'. for (auto it = inEdges[dstId].begin(); it != inEdges[dstId].end(); ++it) { if ((*it).id == srcId && (*it).memref == memref) { inEdges[dstId].erase(it); break; } } // Remove 'dstId' from 'outEdges[srcId]'. for (auto it = outEdges[srcId].begin(); it != outEdges[srcId].end(); ++it) { if ((*it).id == dstId && (*it).memref == memref) { outEdges[srcId].erase(it); break; } } } // Returns the input edge count for node 'id' and 'memref'. unsigned getInEdgeCount(unsigned id, Value *memref) { unsigned inEdgeCount = 0; if (inEdges.count(id) > 0) for (auto &inEdge : inEdges[id]) if (inEdge.memref == memref) ++inEdgeCount; return inEdgeCount; } // Returns the output edge count for node 'id' and 'memref'. unsigned getOutEdgeCount(unsigned id, Value *memref) { unsigned outEdgeCount = 0; if (outEdges.count(id) > 0) for (auto &outEdge : outEdges[id]) if (outEdge.memref == memref) ++outEdgeCount; return outEdgeCount; } // Returns the min node id of all output edges from node 'id'. unsigned getMinOutEdgeNodeId(unsigned id) { unsigned minId = std::numeric_limits::max(); if (outEdges.count(id) > 0) for (auto &outEdge : outEdges[id]) minId = std::min(minId, outEdge.id); return minId; } // Updates edge mappings from node 'srcId' to node 'dstId' and removes // state associated with node 'srcId'. void updateEdgesAndRemoveSrcNode(unsigned srcId, unsigned dstId) { // For each edge in 'inEdges[srcId]': add new edge remaping to 'dstId'. if (inEdges.count(srcId) > 0) { SmallVector oldInEdges = inEdges[srcId]; for (auto &inEdge : oldInEdges) { // Remove edge from 'inEdge.id' to 'srcId'. removeEdge(inEdge.id, srcId, inEdge.memref); // Add edge from 'inEdge.id' to 'dstId'. addEdge(inEdge.id, dstId, inEdge.memref); } } // For each edge in 'outEdges[srcId]': add new edge remaping to 'dstId'. if (outEdges.count(srcId) > 0) { SmallVector oldOutEdges = outEdges[srcId]; for (auto &outEdge : oldOutEdges) { // Remove edge from 'srcId' to 'outEdge.id'. removeEdge(srcId, outEdge.id, outEdge.memref); // Add edge from 'dstId' to 'outEdge.id' (if 'outEdge.id' != 'dstId'). if (outEdge.id != dstId) addEdge(dstId, outEdge.id, outEdge.memref); } } // Remove 'srcId' from graph state. inEdges.erase(srcId); outEdges.erase(srcId); nodes.erase(srcId); } // Adds ops in 'loads' and 'stores' to node at 'id'. void addToNode(unsigned id, const SmallVectorImpl &loads, const SmallVectorImpl &stores) { Node *node = getNode(id); for (auto *loadOpInst : loads) node->loads.push_back(loadOpInst); for (auto *storeOpInst : stores) node->stores.push_back(storeOpInst); } void print(raw_ostream &os) const { os << "\nMemRefDependenceGraph\n"; os << "\nNodes:\n"; for (auto &idAndNode : nodes) { os << "Node: " << idAndNode.first << "\n"; auto it = inEdges.find(idAndNode.first); if (it != inEdges.end()) { for (const auto &e : it->second) os << " InEdge: " << e.id << " " << e.memref << "\n"; } it = outEdges.find(idAndNode.first); if (it != outEdges.end()) { for (const auto &e : it->second) os << " OutEdge: " << e.id << " " << e.memref << "\n"; } } } void dump() const { print(llvm::errs()); } }; // Intializes the data dependence graph by walking instructions in 'f'. // Assigns each node in the graph a node id based on program order in 'f'. // TODO(andydavis) Add support for taking a Block arg to construct the // dependence graph at a different depth. bool MemRefDependenceGraph::init(Function *f) { unsigned id = 0; DenseMap> memrefAccesses; // TODO: support multi-block functions. if (f->getBlocks().size() != 1) return false; for (auto &inst : f->front()) { if (auto *forInst = dyn_cast(&inst)) { // Create graph node 'id' to represent top-level 'forInst' and record // all loads and store accesses it contains. LoopNestStateCollector collector; collector.walkForInst(forInst); // Return false if IfInsts are found (not currently supported). if (collector.hasIfInst) return false; Node node(id++, &inst); for (auto *opInst : collector.loadOpInsts) { node.loads.push_back(opInst); auto *memref = opInst->cast()->getMemRef(); memrefAccesses[memref].insert(node.id); } for (auto *opInst : collector.storeOpInsts) { node.stores.push_back(opInst); auto *memref = opInst->cast()->getMemRef(); memrefAccesses[memref].insert(node.id); } nodes.insert({node.id, node}); } if (auto *opInst = dyn_cast(&inst)) { if (auto loadOp = opInst->dyn_cast()) { // Create graph node for top-level load op. Node node(id++, &inst); node.loads.push_back(opInst); auto *memref = opInst->cast()->getMemRef(); memrefAccesses[memref].insert(node.id); nodes.insert({node.id, node}); } if (auto storeOp = opInst->dyn_cast()) { // Create graph node for top-level store op. Node node(id++, &inst); node.stores.push_back(opInst); auto *memref = opInst->cast()->getMemRef(); memrefAccesses[memref].insert(node.id); nodes.insert({node.id, node}); } } // Return false if IfInsts are found (not currently supported). if (isa(&inst)) return false; } // Walk memref access lists and add graph edges between dependent nodes. for (auto &memrefAndList : memrefAccesses) { unsigned n = memrefAndList.second.size(); for (unsigned i = 0; i < n; ++i) { unsigned srcId = memrefAndList.second[i]; bool srcHasStore = getNode(srcId)->getStoreOpCount(memrefAndList.first) > 0; for (unsigned j = i + 1; j < n; ++j) { unsigned dstId = memrefAndList.second[j]; bool dstHasStore = getNode(dstId)->getStoreOpCount(memrefAndList.first) > 0; if (srcHasStore || dstHasStore) addEdge(srcId, dstId, memrefAndList.first); } } } return true; } namespace { // LoopNestStats aggregates various per-loop statistics (eg. loop trip count // and operation count) for a loop nest up until the innermost loop body. struct LoopNestStats { // Map from ForInst to immediate child ForInsts in its loop body. DenseMap> loopMap; // Map from ForInst to count of operations in its loop body. DenseMap opCountMap; // Map from ForInst to its constant trip count. DenseMap tripCountMap; }; // LoopNestStatsCollector walks a single loop nest and gathers per-loop // trip count and operation count statistics and records them in 'stats'. class LoopNestStatsCollector : public InstWalker { public: LoopNestStats *stats; bool hasLoopWithNonConstTripCount = false; LoopNestStatsCollector(LoopNestStats *stats) : stats(stats) {} void visitForInst(ForInst *forInst) { auto *parentInst = forInst->getParentInst(); if (parentInst != nullptr) { assert(isa(parentInst) && "Expected parent ForInst"); // Add mapping to 'forInst' from its parent ForInst. stats->loopMap[cast(parentInst)].push_back(forInst); } // Record the number of op instructions in the body of 'forInst'. unsigned count = 0; stats->opCountMap[forInst] = 0; for (auto &inst : *forInst->getBody()) { if (isa(&inst)) ++count; } stats->opCountMap[forInst] = count; // Record trip count for 'forInst'. Set flag if trip count is not constant. Optional maybeConstTripCount = getConstantTripCount(*forInst); if (!maybeConstTripCount.hasValue()) { hasLoopWithNonConstTripCount = true; return; } stats->tripCountMap[forInst] = maybeConstTripCount.getValue(); } }; // Computes the total cost of the loop nest rooted at 'forInst'. // Currently, the total cost is computed by counting the total operation // instance count (i.e. total number of operations in the loop bodyloop // operation count * loop trip count) for the entire loop nest. // If 'tripCountOverrideMap' is non-null, overrides the trip count for loops // specified in the map when computing the total op instance count. // NOTE: this is used to compute the cost of computation slices, which are // sliced along the iteration dimension, and thus reduce the trip count. // If 'computeCostMap' is non-null, the total op count for forInsts specified // in the map is increased (not overridden) by adding the op count from the // map to the existing op count for the for loop. This is done before // multiplying by the loop's trip count, and is used to model the cost of // inserting a sliced loop nest of known cost into the loop's body. // NOTE: this is used to compute the cost of fusing a slice of some loop nest // within another loop. static uint64_t getComputeCost(ForInst *forInst, LoopNestStats *stats, DenseMap *tripCountOverrideMap, DenseMap *computeCostMap) { // 'opCount' is the total number operations in one iteration of 'forInst' body uint64_t opCount = stats->opCountMap[forInst]; if (stats->loopMap.count(forInst) > 0) { for (auto *childForInst : stats->loopMap[forInst]) { opCount += getComputeCost(childForInst, stats, tripCountOverrideMap, computeCostMap); } } // Add in additional op instances from slice (if specified in map). if (computeCostMap != nullptr) { auto it = computeCostMap->find(forInst); if (it != computeCostMap->end()) { opCount += it->second; } } // Override trip count (if specified in map). uint64_t tripCount = stats->tripCountMap[forInst]; if (tripCountOverrideMap != nullptr) { auto it = tripCountOverrideMap->find(forInst); if (it != tripCountOverrideMap->end()) { tripCount = it->second; } } // Returns the total number of dynamic instances of operations in loop body. return tripCount * opCount; } } // end anonymous namespace // Builds a map 'tripCountMap' from ForInst to constant trip count for loop // nest surrounding 'srcAccess' utilizing slice loop bounds in 'sliceState'. // Returns true on success, false otherwise (if a non-constant trip count // was encountered). // TODO(andydavis) Make this work with non-unit step loops. static bool buildSliceTripCountMap(MemRefAccess *srcAccess, ComputationSliceState *sliceState, DenseMap *tripCountMap) { SmallVector srcLoopIVs; getLoopIVs(*srcAccess->opInst, &srcLoopIVs); unsigned numSrcLoopIVs = srcLoopIVs.size(); // Populate map from ForInst -> trip count for (unsigned i = 0; i < numSrcLoopIVs; ++i) { AffineMap lbMap = sliceState->lbs[i]; AffineMap ubMap = sliceState->ubs[i]; if (lbMap == AffineMap::Null() || ubMap == AffineMap::Null()) { // The iteration of src loop IV 'i' was not sliced. Use full loop bounds. if (srcLoopIVs[i]->hasConstantLowerBound() && srcLoopIVs[i]->hasConstantUpperBound()) { (*tripCountMap)[srcLoopIVs[i]] = srcLoopIVs[i]->getConstantUpperBound() - srcLoopIVs[i]->getConstantLowerBound(); continue; } return false; } // TODO(andydavis) Merge this code with 'mlir::getTripCountExpr'. // ub_expr - lb_expr AffineExpr lbExpr(lbMap.getResult(0)); AffineExpr ubExpr(ubMap.getResult(0)); auto loopSpanExpr = simplifyAffineExpr( ubExpr - lbExpr, std::max(lbMap.getNumDims(), ubMap.getNumDims()), std::max(lbMap.getNumSymbols(), ubMap.getNumSymbols())); auto cExpr = loopSpanExpr.dyn_cast(); if (!cExpr) return false; (*tripCountMap)[srcLoopIVs[i]] = cExpr.getValue(); } return true; } // Returns the maximum loop depth within the source loop nest at which a // sliced loop bound is detected in 'sliceState'. static unsigned getMaxSrcLoopDepth(unsigned srcLoopDepthLimit, ComputationSliceState *sliceState) { unsigned maxSrcPos = 0; for (unsigned i = 0; i < srcLoopDepthLimit; ++i) { if (sliceState->lbs[i] != AffineMap::Null() && sliceState->ubs[i] != AffineMap::Null()) { maxSrcPos = std::max(maxSrcPos, i); } } return maxSrcPos + 1; } // Returns the minimum loop depth within the destination loop nest at which the // computation slice can be inserted (based on the destination loop IVs that // the source slice actually depends on / is a function of). static unsigned getMinDstLoopDepth(unsigned srcLoopDepth, ComputationSliceState *sliceState) { // Record in 'maxDstLoopDepth' the largest position (+1) of a dst loop nest // IV, which is used in a sliced loop bound in the src loop nest. unsigned maxDstLoopDepth = 0; for (unsigned i = 0; i < srcLoopDepth; ++i) { if (AffineMap lbMap = sliceState->lbs[i]) { lbMap.walkExprs([&](AffineExpr expr) { if (auto dimExpr = expr.dyn_cast()) { maxDstLoopDepth = std::max(maxDstLoopDepth, dimExpr.getPosition() + 1); } }); } if (AffineMap ubMap = sliceState->ubs[i]) { ubMap.walkExprs([&](AffineExpr expr) { if (auto dimExpr = expr.dyn_cast()) { maxDstLoopDepth = std::max(maxDstLoopDepth, dimExpr.getPosition() + 1); } }); } } return maxDstLoopDepth; } // Checks the profitability of fusion candidate 'candidate'. Returns true if it // profitable to fuse the candidate loop nests. Returns false otherwise. // The profitability model executes the following steps: // *) Computes the backward computation slice at 'candidate.srcAccess'. This // computation slice of the loop nest surrounding 'candidate.srcAccess' is // represented by modified src loop bounds in 'sliceState', which are // functions of loop IVs in the loop nest surrounding 'candidate.dstAccess'. // *) Computes the cost of unfused src/dst loop nests (currently the cost of a // loop nest is the total number of dynamic operation instances in the loop // nest). // *) Computes the cost of fusing a slice of the src loop nest into the dst // loop nest at various values of src/dst loop depth, attempting to fuse // the biggest compution slice (max src loop depth) at the maximal dst loop // depth (closest to the load) to minimize reuse distance and opportunity for // subsequent load/store forwarding. // NOTE: 'srcLoopDepth' refers to the loop depth within the source loop nest // at which we slice the loops bounds (all src loops below this depth will // utilize full loop bounds). // NOTE: 'dstLoopDepth' refers the loop depth within the destination loop // nest, at which the src computation slice is inserted/fused. // NOTE: We attempt to maximize the source loop depth, but there are cases // where a particular setting for 'dstLoopNest' might fused an unsliced // loop (within the src computation slice) at a depth which results in // execessive recomputation (see unit tests for examples). // *) Compares the total cost of the unfused loop nests to the min cost fused // loop nest computed in the previous step, and returns true if the latter // is lower. static bool isFusionProfitable(FusionCandidate *candidate, ComputationSliceState *sliceState, unsigned *srcLoopDepth, unsigned *dstLoopDepth) { // Compute backward computation slice state: src IV bounds w.r.t dst IVs, etc. if (!mlir::getBackwardComputationSliceState( candidate->srcAccess, candidate->dstAccess, sliceState)) { return false; } // Build trip count map for src loops with sliced loop bounds in 'sliceState'. DenseMap sliceTripCountMap; if (!buildSliceTripCountMap(&candidate->srcAccess, sliceState, &sliceTripCountMap)) return false; // Compute cost of sliced and unsliced src loop nest. SmallVector srcLoopIVs; getLoopIVs(*candidate->srcAccess.opInst, &srcLoopIVs); unsigned numSrcLoopIVs = srcLoopIVs.size(); // Walk src loop nest and collect stats. LoopNestStats srcLoopNestStats; LoopNestStatsCollector srcStatsCollector(&srcLoopNestStats); srcStatsCollector.walk(srcLoopIVs[0]); // Currently only constant trip count loop nests are supported. if (srcStatsCollector.hasLoopWithNonConstTripCount) return false; // Compute cost of dst loop nest. SmallVector dstLoopIVs; getLoopIVs(*candidate->dstAccess.opInst, &dstLoopIVs); unsigned numDstLoopIVs = dstLoopIVs.size(); LoopNestStats dstLoopNestStats; LoopNestStatsCollector dstStatsCollector(&dstLoopNestStats); dstStatsCollector.walk(dstLoopIVs[0]); // Currently only constant trip count loop nests are supported. if (dstStatsCollector.hasLoopWithNonConstTripCount) return false; // Search for min cost values for 'srcLoopDepth' and 'dstLoopDepth'. // This search is O(n^2) where 'n' is very small (eg. six). // TODO(andydavis) Consider a solution where we just iteration through // dstLoopDepth possibilities and project out IVs we do not need (remove // dependence on 'srcLoopDepth'. DenseMap tripCountMap; DenseMap computeCostMap; unsigned maxSrcLoopDepth = getMaxSrcLoopDepth(numSrcLoopIVs, sliceState); unsigned minFusedLoopNestComputeCost = std::numeric_limits::max(); unsigned bestSrcLoopDepth; unsigned bestDstLoopDepth; for (unsigned i = maxSrcLoopDepth; i >= 1; --i) { // Compute minDstLoopDepth based on dst loop IVs used in slice loop bounds. unsigned minDstLoopDepth = getMinDstLoopDepth(i, sliceState); assert(minDstLoopDepth <= numDstLoopIVs); if (minDstLoopDepth == 0) { // TODO(andydavis) Support inserting computation slices at top-level. continue; } // Copy elements from slice trip count map up to src loop depth 'i'. tripCountMap.clear(); for (unsigned k = 0; k < i; ++k) { auto *forInst = srcLoopIVs[k]; auto it = sliceTripCountMap.find(forInst); if (it != sliceTripCountMap.end()) { tripCountMap[forInst] = it->second; } } // Compute op instance count for the src loop nest with iteration slicing. uint64_t sliceComputeCost = getComputeCost(srcLoopIVs[0], &srcLoopNestStats, &tripCountMap, /*computeCostMap=*/nullptr); for (unsigned j = numDstLoopIVs; j >= minDstLoopDepth; --j) { // Compute cost of fusion for these values of 'i' and 'j'. computeCostMap.clear(); computeCostMap[dstLoopIVs[j - 1]] = sliceComputeCost; uint64_t fusedLoopNestComputeCost = getComputeCost(dstLoopIVs[0], &dstLoopNestStats, /*tripCountOverrideMap=*/nullptr, &computeCostMap); if (fusedLoopNestComputeCost < minFusedLoopNestComputeCost) { minFusedLoopNestComputeCost = fusedLoopNestComputeCost; bestSrcLoopDepth = i; bestDstLoopDepth = j; } } } // Compute op instance count for the src loop nest without iteration slicing. uint64_t srcLoopNestCost = getComputeCost(srcLoopIVs[0], &srcLoopNestStats, /*tripCountOverrideMap=*/nullptr, /*computeCostMap=*/nullptr); // Compute op instance count for the src loop nest. uint64_t dstLoopNestCost = getComputeCost(dstLoopIVs[0], &dstLoopNestStats, /*tripCountOverrideMap=*/nullptr, /*computeCostMap=*/nullptr); LLVM_DEBUG(llvm::dbgs() << "LoopFusion statistics " << " bestSrcLoopDepth: " << bestSrcLoopDepth << " bestDstLoopDepth: " << bestDstLoopDepth << " srcLoopNestCost: " << srcLoopNestCost << " dstLoopNestCost: " << dstLoopNestCost << " minFusedLoopNestComputeCost: " << minFusedLoopNestComputeCost << "\n"); // Do not fuse if fused loop would increase the total cost of the computation. // TODO(andydavis) Use locality/reduction in slice memref size/opportunity // for load/store forwarding in cost model. if (minFusedLoopNestComputeCost > srcLoopNestCost + dstLoopNestCost) return false; // Set src/dstLoopDepth based on best values from search. *srcLoopDepth = bestSrcLoopDepth; *dstLoopDepth = bestDstLoopDepth; // Update 'sliceState' bounds based on computed 'srcLoopDepth': // *) Canonicalize affine map now that 'srcLoopDepth' has been chosen. // *) Replace slice bound maps at depth > 'srcLoopDepth' withAffineMap::Null() for (unsigned i = 0; i < numSrcLoopIVs; ++i) { if (i < bestSrcLoopDepth) { if (sliceState->lbs[i] != AffineMap::Null()) { canonicalizeMapAndOperands(&sliceState->lbs[i], &sliceState->lbOperands[i]); } if (sliceState->ubs[i] != AffineMap::Null()) { canonicalizeMapAndOperands(&sliceState->ubs[i], &sliceState->ubOperands[i]); } } else { sliceState->lbs[i] = AffineMap::Null(); sliceState->ubs[i] = AffineMap::Null(); } } return true; } // GreedyFusion greedily fuses loop nests which have a producer/consumer // relationship on a memref, with the goal of improving locality. Currently, // this the producer/consumer relationship is required to be unique in the // Function (there are TODOs to relax this constraint in the future). // // The steps of the algorithm are as follows: // // *) A worklist is initialized with node ids from the dependence graph. // *) For each node id in the worklist: // *) Pop a ForInst of the worklist. This 'dstForInst' will be a candidate // destination ForInst into which fusion will be attempted. // *) Add each LoadOp currently in 'dstForInst' into list 'dstLoadOps'. // *) For each LoadOp in 'dstLoadOps' do: // *) Lookup dependent loop nests at earlier positions in the Function // which have a single store op to the same memref. // *) Check if dependences would be violated by the fusion. For example, // the src loop nest may load from memrefs which are different than // the producer-consumer memref between src and dest loop nests. // *) Get a computation slice of 'srcLoopNest', which adjusts its loop // bounds to be functions of 'dstLoopNest' IVs and symbols. // *) Fuse the 'srcLoopNest' computation slice into the 'dstLoopNest', // just before the dst load op user. // *) Add the newly fused load/store operation instructions to the state, // and also add newly fuse load ops to 'dstLoopOps' to be considered // as fusion dst load ops in another iteration. // *) Remove old src loop nest and its associated state. // // Given a graph where top-level instructions are vertices in the set 'V' and // edges in the set 'E' are dependences between vertices, this algorithm // takes O(V) time for initialization, and has runtime O(V + E). // // This greedy algorithm is not 'maximal' due to the current restriction of // fusing along single producer consumer edges, but there is a TODO to fix this. // // TODO(andydavis) Experiment with other fusion policies. // TODO(andydavis) Add support for fusing for input reuse (perhaps by // constructing a graph with edges which represent loads from the same memref // in two different loop nestst. struct GreedyFusion { public: MemRefDependenceGraph *mdg; SmallVector worklist; GreedyFusion(MemRefDependenceGraph *mdg) : mdg(mdg) { // Initialize worklist with nodes from 'mdg'. worklist.resize(mdg->nodes.size()); std::iota(worklist.begin(), worklist.end(), 0); } void run() { while (!worklist.empty()) { unsigned dstId = worklist.back(); worklist.pop_back(); // Skip if this node was removed (fused into another node). if (mdg->nodes.count(dstId) == 0) continue; // Get 'dstNode' into which to attempt fusion. auto *dstNode = mdg->getNode(dstId); // Skip if 'dstNode' is not a loop nest. if (!isa(dstNode->inst)) continue; SmallVector loads = dstNode->loads; while (!loads.empty()) { auto *dstLoadOpInst = loads.pop_back_val(); auto *memref = dstLoadOpInst->cast()->getMemRef(); // Skip 'dstLoadOpInst' if multiple loads to 'memref' in 'dstNode'. if (dstNode->getLoadOpCount(memref) != 1) continue; // Skip if no input edges along which to fuse. if (mdg->inEdges.count(dstId) == 0) continue; // Iterate through in edges for 'dstId'. for (auto &srcEdge : mdg->inEdges[dstId]) { // Skip 'srcEdge' if not for 'memref'. if (srcEdge.memref != memref) continue; auto *srcNode = mdg->getNode(srcEdge.id); // Skip if 'srcNode' is not a loop nest. if (!isa(srcNode->inst)) continue; // Skip if 'srcNode' has more than one store to 'memref'. if (srcNode->getStoreOpCount(memref) != 1) continue; // Skip 'srcNode' if it has out edges on 'memref' other than 'dstId'. if (mdg->getOutEdgeCount(srcNode->id, memref) != 1) continue; // Skip 'srcNode' if it has in dependence edges. NOTE: This is overly // TODO(andydavis) Track dependence type with edges, and just check // for WAW dependence edge here. if (mdg->getInEdgeCount(srcNode->id, memref) != 0) continue; // Skip if 'srcNode' has out edges to other memrefs after 'dstId'. if (mdg->getMinOutEdgeNodeId(srcNode->id) != dstId) continue; // Get unique 'srcNode' store op. auto *srcStoreOpInst = srcNode->stores.front(); // Build fusion candidate out of 'srcStoreOpInst' and 'dstLoadOpInst'. FusionCandidate candidate = buildFusionCandidate(srcStoreOpInst, dstLoadOpInst); // Check if fusion would be profitable. unsigned srcLoopDepth; unsigned dstLoopDepth; mlir::ComputationSliceState sliceState; if (!isFusionProfitable(&candidate, &sliceState, &srcLoopDepth, &dstLoopDepth)) continue; // Fuse computation slice of 'srcLoopNest' into 'dstLoopNest'. auto *sliceLoopNest = mlir::insertBackwardComputationSlice( &candidate.srcAccess, &candidate.dstAccess, &sliceState, srcLoopDepth, dstLoopDepth); if (sliceLoopNest != nullptr) { // Remove edges between 'srcNode' and 'dstNode' and remove 'srcNode' mdg->updateEdgesAndRemoveSrcNode(srcNode->id, dstNode->id); // Record all load/store accesses in 'sliceLoopNest' at 'dstPos'. LoopNestStateCollector collector; collector.walkForInst(sliceLoopNest); mdg->addToNode(dstId, collector.loadOpInsts, collector.storeOpInsts); // Add new load ops to current Node load op list 'loads' to // continue fusing based on new operands. for (auto *loadOpInst : collector.loadOpInsts) loads.push_back(loadOpInst); // Promote single iteration loops to single IV value. for (auto *forInst : collector.forInsts) { promoteIfSingleIteration(forInst); } // Remove old src loop nest. cast(srcNode->inst)->erase(); } } } } } }; } // end anonymous namespace PassResult LoopFusion::runOnFunction(Function *f) { MemRefDependenceGraph g; if (g.init(f)) GreedyFusion(&g).run(); return success(); } static PassRegistration pass("loop-fusion", "Fuse loop nests");