//===- LoopVersioning.cpp -------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// /// \file /// This pass looks for loops iterating over assumed-shape arrays, that can /// be optimized by "guessing" that the stride is element-sized. /// /// This is done by createing two versions of the same loop: one which assumes /// that the elements are contiguous (stride == size of element), and one that /// is the original generic loop. /// /// As a side-effect of the assumed element size stride, the array is also /// flattened to make it a 1D array - this is because the internal array /// structure must be either 1D or have known sizes in all dimensions - and at /// least one of the dimensions here is already unknown. /// /// There are two distinct benefits here: /// 1. The loop that iterates over the elements is somewhat simplified by the /// constant stride calculation. /// 2. Since the compiler can understand the size of the stride, it can use /// vector instructions, where an unknown (at compile time) stride does often /// prevent vector operations from being used. /// /// A known drawback is that the code-size is increased, in some cases that can /// be quite substantial - 3-4x is quite plausible (this includes that the loop /// gets vectorized, which in itself often more than doubles the size of the /// code, because unless the loop size is known, there will be a modulo /// vector-size remainder to deal with. /// /// TODO: Do we need some size limit where loops no longer get duplicated? // Maybe some sort of cost analysis. /// TODO: Should some loop content - for example calls to functions and /// subroutines inhibit the versioning of the loops. Plausibly, this /// could be part of the cost analysis above. //===----------------------------------------------------------------------===// #include "flang/ISO_Fortran_binding.h" #include "flang/Optimizer/Builder/BoxValue.h" #include "flang/Optimizer/Builder/FIRBuilder.h" #include "flang/Optimizer/Builder/Runtime/Inquiry.h" #include "flang/Optimizer/Dialect/FIRDialect.h" #include "flang/Optimizer/Dialect/FIROps.h" #include "flang/Optimizer/Dialect/FIRType.h" #include "flang/Optimizer/Dialect/Support/FIRContext.h" #include "flang/Optimizer/Dialect/Support/KindMapping.h" #include "flang/Optimizer/Transforms/Passes.h" #include "mlir/Dialect/LLVMIR/LLVMDialect.h" #include "mlir/IR/Matchers.h" #include "mlir/IR/TypeUtilities.h" #include "mlir/Pass/Pass.h" #include "mlir/Transforms/DialectConversion.h" #include "mlir/Transforms/GreedyPatternRewriteDriver.h" #include "mlir/Transforms/RegionUtils.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include namespace fir { #define GEN_PASS_DEF_LOOPVERSIONING #include "flang/Optimizer/Transforms/Passes.h.inc" } // namespace fir #define DEBUG_TYPE "flang-loop-versioning" namespace { class LoopVersioningPass : public fir::impl::LoopVersioningBase { public: void runOnOperation() override; }; } // namespace /// @c replaceOuterUses - replace uses outside of @c op with result of @c /// outerOp static void replaceOuterUses(mlir::Operation *op, mlir::Operation *outerOp) { const mlir::Operation *outerParent = outerOp->getParentOp(); op->replaceUsesWithIf(outerOp, [&](mlir::OpOperand &operand) { mlir::Operation *owner = operand.getOwner(); return outerParent == owner->getParentOp(); }); } static fir::SequenceType getAsSequenceType(mlir::Value *v) { mlir::Type argTy = fir::unwrapPassByRefType(fir::unwrapRefType(v->getType())); return argTy.dyn_cast(); } /// if a value comes from a fir.declare, follow it to the original source, /// otherwise return the value static mlir::Value unwrapFirDeclare(mlir::Value val) { // fir.declare is for source code variables. We don't have declares of // declares if (fir::DeclareOp declare = val.getDefiningOp()) return declare.getMemref(); return val; } void LoopVersioningPass::runOnOperation() { LLVM_DEBUG(llvm::dbgs() << "=== Begin " DEBUG_TYPE " ===\n"); mlir::func::FuncOp func = getOperation(); /// @c ArgInfo /// A structure to hold an argument, the size of the argument and dimension /// information. struct ArgInfo { mlir::Value *arg; size_t size; unsigned rank; fir::BoxDimsOp dims[CFI_MAX_RANK]; }; // First look for arguments with assumed shape = unknown extent in the lowest // dimension. LLVM_DEBUG(llvm::dbgs() << "Func-name:" << func.getSymName() << "\n"); mlir::Block::BlockArgListType args = func.getArguments(); mlir::ModuleOp module = func->getParentOfType(); fir::KindMapping kindMap = fir::getKindMapping(module); mlir::SmallVector argsOfInterest; for (auto &arg : args) { if (auto seqTy = getAsSequenceType(&arg)) { unsigned rank = seqTy.getDimension(); if (rank > 0 && seqTy.getShape()[0] == fir::SequenceType::getUnknownExtent()) { size_t typeSize = 0; mlir::Type elementType = fir::unwrapSeqOrBoxedSeqType(arg.getType()); if (elementType.isa() || elementType.isa()) typeSize = elementType.getIntOrFloatBitWidth() / 8; else if (auto cty = elementType.dyn_cast()) typeSize = 2 * cty.getEleType(kindMap).getIntOrFloatBitWidth() / 8; if (typeSize) argsOfInterest.push_back({&arg, typeSize, rank, {}}); else LLVM_DEBUG(llvm::dbgs() << "Type not supported\n"); } } } if (argsOfInterest.empty()) return; struct OpsWithArgs { mlir::Operation *op; mlir::SmallVector argsAndDims; }; // Now see if those arguments are used inside any loop. mlir::SmallVector loopsOfInterest; func.walk([&](fir::DoLoopOp loop) { mlir::Block &body = *loop.getBody(); mlir::SmallVector argsInLoop; body.walk([&](fir::CoordinateOp op) { // The current operation could be inside another loop than // the one we're currently processing. Skip it, we'll get // to it later. if (op->getParentOfType() != loop) return; mlir::Value operand = op->getOperand(0); for (auto a : argsOfInterest) { if (*a.arg == unwrapFirDeclare(operand)) { // Only add if it's not already in the list. if (std::find_if(argsInLoop.begin(), argsInLoop.end(), [&](auto it) { return it.arg == a.arg; }) == argsInLoop.end()) { argsInLoop.push_back(a); break; } } } }); if (!argsInLoop.empty()) { OpsWithArgs ops = {loop, argsInLoop}; loopsOfInterest.push_back(ops); } }); if (loopsOfInterest.empty()) return; // If we get here, there are loops to process. fir::FirOpBuilder builder{module, std::move(kindMap)}; mlir::Location loc = builder.getUnknownLoc(); mlir::IndexType idxTy = builder.getIndexType(); LLVM_DEBUG(llvm::dbgs() << "Module Before transformation:"); LLVM_DEBUG(module->dump()); LLVM_DEBUG(llvm::dbgs() << "loopsOfInterest: " << loopsOfInterest.size() << "\n"); for (auto op : loopsOfInterest) { LLVM_DEBUG(op.op->dump()); builder.setInsertionPoint(op.op); mlir::Value allCompares = nullptr; // Ensure all of the arrays are unit-stride. for (auto &arg : op.argsAndDims) { // Fetch all the dimensions of the array, except the last dimension. // Always fetch the first dimension, however, so set ndims = 1 if // we have one dim unsigned ndims = arg.rank; for (unsigned i = 0; i < ndims; i++) { mlir::Value dimIdx = builder.createIntegerConstant(loc, idxTy, i); arg.dims[i] = builder.create(loc, idxTy, idxTy, idxTy, *arg.arg, dimIdx); } // We only care about lowest order dimension, here. mlir::Value elemSize = builder.createIntegerConstant(loc, idxTy, arg.size); mlir::Value cmp = builder.create( loc, mlir::arith::CmpIPredicate::eq, arg.dims[0].getResult(2), elemSize); if (!allCompares) { allCompares = cmp; } else { allCompares = builder.create(loc, cmp, allCompares); } } auto ifOp = builder.create(loc, op.op->getResultTypes(), allCompares, /*withElse=*/true); builder.setInsertionPointToStart(&ifOp.getThenRegion().front()); LLVM_DEBUG(llvm::dbgs() << "Creating cloned loop\n"); mlir::Operation *clonedLoop = op.op->clone(); bool changed = false; for (auto &arg : op.argsAndDims) { fir::SequenceType::Shape newShape; newShape.push_back(fir::SequenceType::getUnknownExtent()); auto elementType = fir::unwrapSeqOrBoxedSeqType(arg.arg->getType()); mlir::Type arrTy = fir::SequenceType::get(newShape, elementType); mlir::Type boxArrTy = fir::BoxType::get(arrTy); mlir::Type refArrTy = builder.getRefType(arrTy); auto carg = builder.create(loc, boxArrTy, *arg.arg); auto caddr = builder.create(loc, refArrTy, carg); auto insPt = builder.saveInsertionPoint(); // Use caddr instead of arg. clonedLoop->walk([&](fir::CoordinateOp coop) { // Reduce the multi-dimensioned index to a single index. // This is required becase fir arrays do not support multiple dimensions // with unknown dimensions at compile time. // We then calculate the multidimensional array like this: // arr(x, y, z) bedcomes arr(z * stride(2) + y * stride(1) + x) // where stride is the distance between elements in the dimensions // 0, 1 and 2 or x, y and z. if (unwrapFirDeclare(coop->getOperand(0)) == *arg.arg && coop->getOperands().size() >= 2) { builder.setInsertionPoint(coop); mlir::Value totalIndex; for (unsigned i = arg.rank - 1; i > 0; i--) { // Operand(1) = array; Operand(2) = index1; Operand(3) = index2 mlir::Value curIndex = builder.createConvert(loc, idxTy, coop->getOperand(i + 1)); // Multiply by the stride of this array. Later we'll divide by the // element size. mlir::Value scale = builder.createConvert(loc, idxTy, arg.dims[i].getResult(2)); curIndex = builder.create(loc, scale, curIndex); totalIndex = (totalIndex) ? builder.create( loc, curIndex, totalIndex) : curIndex; } // This is the lowest dimension - which doesn't need scaling mlir::Value finalIndex = builder.createConvert(loc, idxTy, coop->getOperand(1)); if (totalIndex) { assert(llvm::isPowerOf2_32(arg.size) && "Expected power of two here"); unsigned bits = llvm::Log2_32(arg.size); mlir::Value elemShift = builder.createIntegerConstant(loc, idxTy, bits); totalIndex = builder.create( loc, builder.create(loc, totalIndex, elemShift), finalIndex); } else { totalIndex = finalIndex; } auto newOp = builder.create( loc, builder.getRefType(elementType), caddr, mlir::ValueRange{totalIndex}); LLVM_DEBUG(newOp->dump()); coop->getResult(0).replaceAllUsesWith(newOp->getResult(0)); coop->erase(); changed = true; } }); builder.restoreInsertionPoint(insPt); } assert(changed && "Expected operations to have changed"); builder.insert(clonedLoop); // Forward the result(s), if any, from the loop operation to the // mlir::ResultRange results = clonedLoop->getResults(); bool hasResults = (results.size() > 0); if (hasResults) builder.create(loc, results); // Add the original loop in the else-side of the if operation. builder.setInsertionPointToStart(&ifOp.getElseRegion().front()); replaceOuterUses(op.op, ifOp); op.op->remove(); builder.insert(op.op); // Rely on "cloned loop has results, so original loop also has results". if (hasResults) { builder.create(loc, op.op->getResults()); } else { // Use an assert to check this. assert(op.op->getResults().size() == 0 && "Weird, the cloned loop doesn't have results, but the original " "does?"); } } LLVM_DEBUG(llvm::dbgs() << "After transform:\n"); LLVM_DEBUG(module->dump()); LLVM_DEBUG(llvm::dbgs() << "=== End " DEBUG_TYPE " ===\n"); } std::unique_ptr fir::createLoopVersioningPass() { return std::make_unique(); }