//===- ScopHelper.cpp - Some Helper Functions for Scop. ------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Small functions that help with Scop and LLVM-IR. // //===----------------------------------------------------------------------===// #include "polly/Support/ScopHelper.h" #include "polly/Options.h" #include "polly/ScopInfo.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/RegionInfo.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/ScalarEvolutionExpander.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/IR/CFG.h" #include "llvm/Support/Debug.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" using namespace llvm; using namespace polly; #define DEBUG_TYPE "polly-scop-helper" Value *polly::getPointerOperand(Instruction &Inst) { if (LoadInst *load = dyn_cast(&Inst)) return load->getPointerOperand(); else if (StoreInst *store = dyn_cast(&Inst)) return store->getPointerOperand(); else if (GetElementPtrInst *gep = dyn_cast(&Inst)) return gep->getPointerOperand(); return 0; } bool polly::hasInvokeEdge(const PHINode *PN) { for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) if (InvokeInst *II = dyn_cast(PN->getIncomingValue(i))) if (II->getParent() == PN->getIncomingBlock(i)) return true; return false; } // Ensures that there is just one predecessor to the entry node from outside the // region. // The identity of the region entry node is preserved. static void simplifyRegionEntry(Region *R, DominatorTree *DT, LoopInfo *LI, RegionInfo *RI) { BasicBlock *EnteringBB = R->getEnteringBlock(); BasicBlock *Entry = R->getEntry(); // Before (one of): // // \ / // // EnteringBB // // | \------> // // \ / | // // Entry <--\ Entry <--\ // // / \ / / \ / // // .... .... // // Create single entry edge if the region has multiple entry edges. if (!EnteringBB) { SmallVector Preds; for (BasicBlock *P : predecessors(Entry)) if (!R->contains(P)) Preds.push_back(P); BasicBlock *NewEntering = SplitBlockPredecessors(Entry, Preds, ".region_entering", DT, LI); if (RI) { // The exit block of predecessing regions must be changed to NewEntering for (BasicBlock *ExitPred : predecessors(NewEntering)) { Region *RegionOfPred = RI->getRegionFor(ExitPred); if (RegionOfPred->getExit() != Entry) continue; while (!RegionOfPred->isTopLevelRegion() && RegionOfPred->getExit() == Entry) { RegionOfPred->replaceExit(NewEntering); RegionOfPred = RegionOfPred->getParent(); } } // Make all ancestors use EnteringBB as entry; there might be edges to it Region *AncestorR = R->getParent(); RI->setRegionFor(NewEntering, AncestorR); while (!AncestorR->isTopLevelRegion() && AncestorR->getEntry() == Entry) { AncestorR->replaceEntry(NewEntering); AncestorR = AncestorR->getParent(); } } EnteringBB = NewEntering; } assert(R->getEnteringBlock() == EnteringBB); // After: // // \ / // // EnteringBB // // | // // | // // Entry <--\ // // / \ / // // .... // } // Ensure that the region has a single block that branches to the exit node. static void simplifyRegionExit(Region *R, DominatorTree *DT, LoopInfo *LI, RegionInfo *RI) { BasicBlock *ExitBB = R->getExit(); BasicBlock *ExitingBB = R->getExitingBlock(); // Before: // // (Region) ______/ // // \ | / // // ExitBB // // / \ // if (!ExitingBB) { SmallVector Preds; for (BasicBlock *P : predecessors(ExitBB)) if (R->contains(P)) Preds.push_back(P); // Preds[0] Preds[1] otherBB // // \ | ________/ // // \ | / // // BB // ExitingBB = SplitBlockPredecessors(ExitBB, Preds, ".region_exiting", DT, LI); // Preds[0] Preds[1] otherBB // // \ / / // // BB.region_exiting / // // \ / // // BB // if (RI) RI->setRegionFor(ExitingBB, R); // Change the exit of nested regions, but not the region itself, R->replaceExitRecursive(ExitingBB); R->replaceExit(ExitBB); } assert(ExitingBB == R->getExitingBlock()); // After: // // \ / // // ExitingBB _____/ // // \ / // // ExitBB // // / \ // } void polly::simplifyRegion(Region *R, DominatorTree *DT, LoopInfo *LI, RegionInfo *RI) { assert(R && !R->isTopLevelRegion()); assert(!RI || RI == R->getRegionInfo()); assert((!RI || DT) && "RegionInfo requires DominatorTree to be updated as well"); simplifyRegionEntry(R, DT, LI, RI); simplifyRegionExit(R, DT, LI, RI); assert(R->isSimple()); } // Split the block into two successive blocks. // // Like llvm::SplitBlock, but also preserves RegionInfo static BasicBlock *splitBlock(BasicBlock *Old, Instruction *SplitPt, DominatorTree *DT, llvm::LoopInfo *LI, RegionInfo *RI) { assert(Old && SplitPt); // Before: // // \ / // // Old // // / \ // BasicBlock *NewBlock = llvm::SplitBlock(Old, SplitPt, DT, LI); if (RI) { Region *R = RI->getRegionFor(Old); RI->setRegionFor(NewBlock, R); } // After: // // \ / // // Old // // | // // NewBlock // // / \ // return NewBlock; } void polly::splitEntryBlockForAlloca(BasicBlock *EntryBlock, Pass *P) { // Find first non-alloca instruction. Every basic block has a non-alloc // instruction, as every well formed basic block has a terminator. BasicBlock::iterator I = EntryBlock->begin(); while (isa(I)) ++I; auto *DTWP = P->getAnalysisIfAvailable(); auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; auto *LIWP = P->getAnalysisIfAvailable(); auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; RegionInfoPass *RIP = P->getAnalysisIfAvailable(); RegionInfo *RI = RIP ? &RIP->getRegionInfo() : nullptr; // splitBlock updates DT, LI and RI. splitBlock(EntryBlock, I, DT, LI, RI); } /// The SCEVExpander will __not__ generate any code for an existing SDiv/SRem /// instruction but just use it, if it is referenced as a SCEVUnknown. We want /// however to generate new code if the instruction is in the analyzed region /// and we generate code outside/in front of that region. Hence, we generate the /// code for the SDiv/SRem operands in front of the analyzed region and then /// create a new SDiv/SRem operation there too. struct ScopExpander : SCEVVisitor { friend struct SCEVVisitor; explicit ScopExpander(const Region &R, ScalarEvolution &SE, const DataLayout &DL, const char *Name, ValueMapT *VMap) : Expander(SCEVExpander(SE, DL, Name)), SE(SE), Name(Name), R(R), VMap(VMap) {} Value *expandCodeFor(const SCEV *E, Type *Ty, Instruction *I) { // If we generate code in the region we will immediately fall back to the // SCEVExpander, otherwise we will stop at all unknowns in the SCEV and if // needed replace them by copies computed in the entering block. if (!R.contains(I)) E = visit(E); return Expander.expandCodeFor(E, Ty, I); } private: SCEVExpander Expander; ScalarEvolution &SE; const char *Name; const Region &R; ValueMapT *VMap; const SCEV *visitUnknown(const SCEVUnknown *E) { // If a value mapping was given try if the underlying value is remapped. if (VMap) if (Value *NewVal = VMap->lookup(E->getValue())) if (NewVal != E->getValue()) return visit(SE.getSCEV(NewVal)); Instruction *Inst = dyn_cast(E->getValue()); if (!Inst || (Inst->getOpcode() != Instruction::SRem && Inst->getOpcode() != Instruction::SDiv)) return E; if (!R.contains(Inst)) return E; Instruction *StartIP = R.getEnteringBlock()->getTerminator(); const SCEV *LHSScev = visit(SE.getSCEV(Inst->getOperand(0))); const SCEV *RHSScev = visit(SE.getSCEV(Inst->getOperand(1))); Value *LHS = Expander.expandCodeFor(LHSScev, E->getType(), StartIP); Value *RHS = Expander.expandCodeFor(RHSScev, E->getType(), StartIP); Inst = BinaryOperator::Create((Instruction::BinaryOps)Inst->getOpcode(), LHS, RHS, Inst->getName() + Name, StartIP); return SE.getSCEV(Inst); } /// The following functions will just traverse the SCEV and rebuild it with /// the new operands returned by the traversal. /// ///{ const SCEV *visitConstant(const SCEVConstant *E) { return E; } const SCEV *visitTruncateExpr(const SCEVTruncateExpr *E) { return SE.getTruncateExpr(visit(E->getOperand()), E->getType()); } const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *E) { return SE.getZeroExtendExpr(visit(E->getOperand()), E->getType()); } const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *E) { return SE.getSignExtendExpr(visit(E->getOperand()), E->getType()); } const SCEV *visitUDivExpr(const SCEVUDivExpr *E) { return SE.getUDivExpr(visit(E->getLHS()), visit(E->getRHS())); } const SCEV *visitAddExpr(const SCEVAddExpr *E) { SmallVector NewOps; for (const SCEV *Op : E->operands()) NewOps.push_back(visit(Op)); return SE.getAddExpr(NewOps); } const SCEV *visitMulExpr(const SCEVMulExpr *E) { SmallVector NewOps; for (const SCEV *Op : E->operands()) NewOps.push_back(visit(Op)); return SE.getMulExpr(NewOps); } const SCEV *visitUMaxExpr(const SCEVUMaxExpr *E) { SmallVector NewOps; for (const SCEV *Op : E->operands()) NewOps.push_back(visit(Op)); return SE.getUMaxExpr(NewOps); } const SCEV *visitSMaxExpr(const SCEVSMaxExpr *E) { SmallVector NewOps; for (const SCEV *Op : E->operands()) NewOps.push_back(visit(Op)); return SE.getSMaxExpr(NewOps); } const SCEV *visitAddRecExpr(const SCEVAddRecExpr *E) { SmallVector NewOps; for (const SCEV *Op : E->operands()) NewOps.push_back(visit(Op)); return SE.getAddRecExpr(NewOps, E->getLoop(), E->getNoWrapFlags()); } ///} }; Value *polly::expandCodeFor(Scop &S, ScalarEvolution &SE, const DataLayout &DL, const char *Name, const SCEV *E, Type *Ty, Instruction *IP, ValueMapT *VMap) { ScopExpander Expander(S.getRegion(), SE, DL, Name, VMap); return Expander.expandCodeFor(E, Ty, IP); } bool polly::isErrorBlock(BasicBlock &BB, const Region &R, LoopInfo &LI, const DominatorTree &DT) { if (isa(BB.getTerminator())) return true; if (LI.isLoopHeader(&BB)) return false; if (DT.dominates(&BB, R.getExit())) return false; // FIXME: This is a simple heuristic to determine if the load is executed // in a conditional. However, we actually would need the control // condition, i.e., the post dominance frontier. Alternatively we // could walk up the dominance tree until we find a block that is // not post dominated by the load and check if it is a conditional // or a loop header. auto *DTNode = DT.getNode(&BB); auto *IDomBB = DTNode->getIDom()->getBlock(); if (LI.isLoopHeader(IDomBB)) return false; for (Instruction &Inst : BB) if (CallInst *CI = dyn_cast(&Inst)) { if (!CI->doesNotAccessMemory()) return true; if (CI->doesNotReturn()) return true; } return false; } Value *polly::getConditionFromTerminator(TerminatorInst *TI) { if (BranchInst *BR = dyn_cast(TI)) { if (BR->isUnconditional()) return ConstantInt::getTrue(Type::getInt1Ty(TI->getContext())); return BR->getCondition(); } if (SwitchInst *SI = dyn_cast(TI)) return SI->getCondition(); return nullptr; } bool polly::isHoistableLoad(LoadInst *LInst, Region &R, LoopInfo &LI, ScalarEvolution &SE) { Loop *L = LI.getLoopFor(LInst->getParent()); const SCEV *PtrSCEV = SE.getSCEVAtScope(LInst->getPointerOperand(), L); while (L && R.contains(L)) { if (!SE.isLoopInvariant(PtrSCEV, L)) return false; L = L->getParentLoop(); } return true; }