//===------ CodeGeneration.cpp - Code generate the Scops. -----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // The CodeGeneration pass takes a Scop created by ScopInfo and translates it // back to LLVM-IR using Cloog. // // The Scop describes the high level memory behaviour of a control flow region. // Transformation passes can update the schedule (execution order) of statements // in the Scop. Cloog is used to generate an abstract syntax tree (clast) that // reflects the updated execution order. This clast is used to create new // LLVM-IR that is computational equivalent to the original control flow region, // but executes its code in the new execution order defined by the changed // scattering. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "polly-codegen" #include "polly/Cloog.h" #include "polly/CodeGeneration.h" #include "polly/Dependences.h" #include "polly/LinkAllPasses.h" #include "polly/ScopInfo.h" #include "polly/TempScopInfo.h" #include "polly/Support/GICHelper.h" #include "polly/LoopGenerators.h" #include "llvm/Module.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/ScalarEvolutionExpander.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/IRBuilder.h" #include "llvm/Target/TargetData.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #define CLOOG_INT_GMP 1 #include "cloog/cloog.h" #include "cloog/isl/cloog.h" #include "isl/aff.h" #include #include using namespace polly; using namespace llvm; struct isl_set; namespace polly { bool EnablePollyVector; static cl::opt Vector("enable-polly-vector", cl::desc("Enable polly vector code generation"), cl::Hidden, cl::location(EnablePollyVector), cl::init(false), cl::ZeroOrMore); static cl::opt OpenMP("enable-polly-openmp", cl::desc("Generate OpenMP parallel code"), cl::Hidden, cl::value_desc("OpenMP code generation enabled if true"), cl::init(false), cl::ZeroOrMore); static cl::opt AtLeastOnce("enable-polly-atLeastOnce", cl::desc("Give polly the hint, that every loop is executed at least" "once"), cl::Hidden, cl::value_desc("OpenMP code generation enabled if true"), cl::init(false), cl::ZeroOrMore); static cl::opt Aligned("enable-polly-aligned", cl::desc("Assumed aligned memory accesses."), cl::Hidden, cl::value_desc("OpenMP code generation enabled if true"), cl::init(false), cl::ZeroOrMore); typedef DenseMap ValueMapT; typedef DenseMap CharMapT; typedef std::vector VectorValueMapT; class IslGenerator; class IslGenerator { public: IslGenerator(IRBuilder<> &Builder, std::vector &IVS) : Builder(Builder), IVS(IVS) {} Value *generateIslInt(__isl_take isl_int Int); Value *generateIslAff(__isl_take isl_aff *Aff); Value *generateIslPwAff(__isl_take isl_pw_aff *PwAff); private: typedef struct { Value *Result; class IslGenerator *Generator; } IslGenInfo; IRBuilder<> &Builder; std::vector &IVS; static int mergeIslAffValues(__isl_take isl_set *Set, __isl_take isl_aff *Aff, void *User); }; Value *IslGenerator::generateIslInt(isl_int Int) { mpz_t IntMPZ; mpz_init(IntMPZ); isl_int_get_gmp(Int, IntMPZ); Value *IntValue = Builder.getInt(APInt_from_MPZ(IntMPZ)); mpz_clear(IntMPZ); return IntValue; } Value *IslGenerator::generateIslAff(__isl_take isl_aff *Aff) { Value *Result; Value *ConstValue; isl_int ConstIsl; isl_int_init(ConstIsl); isl_aff_get_constant(Aff, &ConstIsl); ConstValue = generateIslInt(ConstIsl); Type *Ty = Builder.getInt64Ty(); // FIXME: We should give the constant and coefficients the right type. Here // we force it into i64. Result = Builder.CreateSExtOrBitCast(ConstValue, Ty); unsigned int NbInputDims = isl_aff_dim(Aff, isl_dim_in); assert((IVS.size() == NbInputDims) && "The Dimension of Induction Variables" "must match the dimension of the affine space."); isl_int CoefficientIsl; isl_int_init(CoefficientIsl); for (unsigned int i = 0; i < NbInputDims; ++i) { Value *CoefficientValue; isl_aff_get_coefficient(Aff, isl_dim_in, i, &CoefficientIsl); if (isl_int_is_zero(CoefficientIsl)) continue; CoefficientValue = generateIslInt(CoefficientIsl); CoefficientValue = Builder.CreateIntCast(CoefficientValue, Ty, true); Value *IV = Builder.CreateIntCast(IVS[i], Ty, true); Value *PAdd = Builder.CreateMul(CoefficientValue, IV, "p_mul_coeff"); Result = Builder.CreateAdd(Result, PAdd, "p_sum_coeff"); } isl_int_clear(CoefficientIsl); isl_int_clear(ConstIsl); isl_aff_free(Aff); return Result; } int IslGenerator::mergeIslAffValues(__isl_take isl_set *Set, __isl_take isl_aff *Aff, void *User) { IslGenInfo *GenInfo = (IslGenInfo *)User; assert((GenInfo->Result == NULL) && "Result is already set." "Currently only single isl_aff is supported"); assert(isl_set_plain_is_universe(Set) && "Code generation failed because the set is not universe"); GenInfo->Result = GenInfo->Generator->generateIslAff(Aff); isl_set_free(Set); return 0; } Value *IslGenerator::generateIslPwAff(__isl_take isl_pw_aff *PwAff) { IslGenInfo User; User.Result = NULL; User.Generator = this; isl_pw_aff_foreach_piece(PwAff, mergeIslAffValues, &User); assert(User.Result && "Code generation for isl_pw_aff failed"); isl_pw_aff_free(PwAff); return User.Result; } /// @brief Generate a new basic block for a polyhedral statement. /// /// The only public function exposed is generate(). class BlockGenerator { public: /// @brief Generate a new BasicBlock for a ScopStmt. /// /// @param Builder The LLVM-IR Builder used to generate the statement. The /// code is generated at the location, the Builder points to. /// @param Stmt The statement to code generate. /// @param GlobalMap A map that defines for certain Values referenced from the /// original code new Values they should be replaced with. /// @param P A reference to the pass this function is called from. /// The pass is needed to update other analysis. static void generate(IRBuilder<> &Builder, ScopStmt &Stmt, ValueMapT &GlobalMap, Pass *P) { BlockGenerator Generator(Builder, Stmt, P); Generator.copyBB(GlobalMap); } protected: IRBuilder<> &Builder; ScopStmt &Statement; Pass *P; BlockGenerator(IRBuilder<> &B, ScopStmt &Stmt, Pass *P); /// @brief Get the new version of a Value. /// /// @param Old The old Value. /// @param BBMap A mapping from old values to their new values /// (for values recalculated within this basic block). /// @param GlobalMap A mapping from old values to their new values /// (for values recalculated in the new ScoP, but not /// within this basic block). /// /// @returns o The old value, if it is still valid. /// o The new value, if available. /// o NULL, if no value is found. Value *getNewValue(const Value *Old, ValueMapT &BBMap, ValueMapT &GlobalMap); void copyInstScalar(const Instruction *Inst, ValueMapT &BBMap, ValueMapT &GlobalMap); /// @brief Get the memory access offset to be added to the base address std::vector getMemoryAccessIndex(__isl_keep isl_map *AccessRelation, Value *BaseAddress, ValueMapT &BBMap, ValueMapT &GlobalMap); /// @brief Get the new operand address according to the changed access in /// JSCOP file. Value *getNewAccessOperand(__isl_keep isl_map *NewAccessRelation, Value *BaseAddress, ValueMapT &BBMap, ValueMapT &GlobalMap); /// @brief Generate the operand address Value *generateLocationAccessed(const Instruction *Inst, const Value *Pointer, ValueMapT &BBMap, ValueMapT &GlobalMap); Value *generateScalarLoad(const LoadInst *load, ValueMapT &BBMap, ValueMapT &GlobalMap); Value *generateScalarStore(const StoreInst *store, ValueMapT &BBMap, ValueMapT &GlobalMap); /// @brief Copy a single Instruction. /// /// This copies a single Instruction and updates references to old values /// with references to new values, as defined by GlobalMap and BBMap. /// /// @param BBMap A mapping from old values to their new values /// (for values recalculated within this basic block). /// @param GlobalMap A mapping from old values to their new values /// (for values recalculated in the new ScoP, but not /// within this basic block). void copyInstruction(const Instruction *Inst, ValueMapT &BBMap, ValueMapT &GlobalMap); /// @brief Copy the basic block. /// /// This copies the entire basic block and updates references to old values /// with references to new values, as defined by GlobalMap. /// /// @param GlobalMap A mapping from old values to their new values /// (for values recalculated in the new ScoP, but not /// within this basic block). void copyBB(ValueMapT &GlobalMap); }; BlockGenerator::BlockGenerator(IRBuilder<> &B, ScopStmt &Stmt, Pass *P): Builder(B), Statement(Stmt), P(P) {} Value *BlockGenerator::getNewValue(const Value *Old, ValueMapT &BBMap, ValueMapT &GlobalMap) { // We assume constants never change. // This avoids map lookups for many calls to this function. if (isa(Old)) return const_cast(Old); if (GlobalMap.count(Old)) { Value *New = GlobalMap[Old]; if (Old->getType()->getScalarSizeInBits() < New->getType()->getScalarSizeInBits()) New = Builder.CreateTruncOrBitCast(New, Old->getType()); return New; } if (BBMap.count(Old)) { return BBMap[Old]; } // 'Old' is within the original SCoP, but was not rewritten. // // Such values appear, if they only calculate information already available in // the polyhedral description (e.g. an induction variable increment). They // can be safely ignored. if (const Instruction *Inst = dyn_cast(Old)) if (Statement.getParent()->getRegion().contains(Inst->getParent())) return NULL; // Everything else is probably a scop-constant value defined as global, // function parameter or an instruction not within the scop. return const_cast(Old); } void BlockGenerator::copyInstScalar(const Instruction *Inst, ValueMapT &BBMap, ValueMapT &GlobalMap) { Instruction *NewInst = Inst->clone(); // Replace old operands with the new ones. for (Instruction::const_op_iterator OI = Inst->op_begin(), OE = Inst->op_end(); OI != OE; ++OI) { Value *OldOperand = *OI; Value *NewOperand = getNewValue(OldOperand, BBMap, GlobalMap); if (!NewOperand) { assert(!isa(NewInst) && "Store instructions are always needed!"); delete NewInst; return; } NewInst->replaceUsesOfWith(OldOperand, NewOperand); } Builder.Insert(NewInst); BBMap[Inst] = NewInst; if (!NewInst->getType()->isVoidTy()) NewInst->setName("p_" + Inst->getName()); } std::vector BlockGenerator::getMemoryAccessIndex( __isl_keep isl_map *AccessRelation, Value *BaseAddress, ValueMapT &BBMap, ValueMapT &GlobalMap) { assert((isl_map_dim(AccessRelation, isl_dim_out) == 1) && "Only single dimensional access functions supported"); std::vector IVS; for (unsigned i = 0; i < Statement.getNumIterators(); ++i) { const Value *OriginalIV = Statement.getInductionVariableForDimension(i); Value *NewIV = getNewValue(OriginalIV, BBMap, GlobalMap); IVS.push_back(NewIV); } isl_pw_aff *PwAff = isl_map_dim_max(isl_map_copy(AccessRelation), 0); IslGenerator IslGen(Builder, IVS); Value *OffsetValue = IslGen.generateIslPwAff(PwAff); Type *Ty = Builder.getInt64Ty(); OffsetValue = Builder.CreateIntCast(OffsetValue, Ty, true); std::vector IndexArray; Value *NullValue = Constant::getNullValue(Ty); IndexArray.push_back(NullValue); IndexArray.push_back(OffsetValue); return IndexArray; } Value *BlockGenerator::getNewAccessOperand( __isl_keep isl_map *NewAccessRelation, Value *BaseAddress, ValueMapT &BBMap, ValueMapT &GlobalMap) { std::vector IndexArray = getMemoryAccessIndex(NewAccessRelation, BaseAddress, BBMap, GlobalMap); Value *NewOperand = Builder.CreateGEP(BaseAddress, IndexArray, "p_newarrayidx_"); return NewOperand; } Value *BlockGenerator::generateLocationAccessed(const Instruction *Inst, const Value *Pointer, ValueMapT &BBMap, ValueMapT &GlobalMap) { MemoryAccess &Access = Statement.getAccessFor(Inst); isl_map *CurrentAccessRelation = Access.getAccessRelation(); isl_map *NewAccessRelation = Access.getNewAccessRelation(); assert(isl_map_has_equal_space(CurrentAccessRelation, NewAccessRelation) && "Current and new access function use different spaces"); Value *NewPointer; if (!NewAccessRelation) { NewPointer = getNewValue(Pointer, BBMap, GlobalMap); } else { Value *BaseAddress = const_cast(Access.getBaseAddr()); NewPointer = getNewAccessOperand(NewAccessRelation, BaseAddress, BBMap, GlobalMap); } isl_map_free(CurrentAccessRelation); isl_map_free(NewAccessRelation); return NewPointer; } Value *BlockGenerator::generateScalarLoad(const LoadInst *Load, ValueMapT &BBMap, ValueMapT &GlobalMap) { const Value *Pointer = Load->getPointerOperand(); const Instruction *Inst = dyn_cast(Load); Value *NewPointer = generateLocationAccessed(Inst, Pointer, BBMap, GlobalMap); Value *ScalarLoad = Builder.CreateLoad(NewPointer, Load->getName() + "_p_scalar_"); return ScalarLoad; } Value *BlockGenerator::generateScalarStore(const StoreInst *Store, ValueMapT &BBMap, ValueMapT &GlobalMap) { const Value *Pointer = Store->getPointerOperand(); Value *NewPointer = generateLocationAccessed(Store, Pointer, BBMap, GlobalMap); Value *ValueOperand = getNewValue(Store->getValueOperand(), BBMap, GlobalMap); return Builder.CreateStore(ValueOperand, NewPointer); } void BlockGenerator::copyInstruction(const Instruction *Inst, ValueMapT &BBMap, ValueMapT &GlobalMap) { // Terminator instructions control the control flow. They are explicitly // expressed in the clast and do not need to be copied. if (Inst->isTerminator()) return; if (const LoadInst *Load = dyn_cast(Inst)) { BBMap[Load] = generateScalarLoad(Load, BBMap, GlobalMap); return; } if (const StoreInst *Store = dyn_cast(Inst)) { BBMap[Store] = generateScalarStore(Store, BBMap, GlobalMap); return; } copyInstScalar(Inst, BBMap, GlobalMap); } void BlockGenerator::copyBB(ValueMapT &GlobalMap) { BasicBlock *BB = Statement.getBasicBlock(); BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(), Builder.GetInsertPoint(), P); CopyBB->setName("polly.stmt." + BB->getName()); Builder.SetInsertPoint(CopyBB->begin()); ValueMapT BBMap; for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end(); II != IE; ++II) copyInstruction(II, BBMap, GlobalMap); } /// @brief Generate a new vector basic block for a polyhedral statement. /// /// The only public function exposed is generate(). class VectorBlockGenerator : BlockGenerator { public: /// @brief Generate a new vector basic block for a ScoPStmt. /// /// This code generation is similar to the normal, scalar code generation, /// except that each instruction is code generated for several vector lanes /// at a time. If possible instructions are issued as actual vector /// instructions, but e.g. for address calculation instructions we currently /// generate scalar instructions for each vector lane. /// /// @param Builder The LLVM-IR Builder used to generate the statement. The /// code is generated at the location, the builder points /// to. /// @param Stmt The statement to code generate. /// @param GlobalMaps A vector of maps that define for certain Values /// referenced from the original code new Values they should /// be replaced with. Each map in the vector of maps is /// used for one vector lane. The number of elements in the /// vector defines the width of the generated vector /// instructions. /// @param P A reference to the pass this function is called from. /// The pass is needed to update other analysis. static void generate(IRBuilder<> &B, ScopStmt &Stmt, VectorValueMapT &GlobalMaps, __isl_keep isl_set *Domain, Pass *P) { VectorBlockGenerator Generator(B, GlobalMaps, Stmt, Domain, P); Generator.copyBB(); } private: // This is a vector of global value maps. The first map is used for the first // vector lane, ... // Each map, contains information about Instructions in the old ScoP, which // are recalculated in the new SCoP. When copying the basic block, we replace // all referenes to the old instructions with their recalculated values. VectorValueMapT &GlobalMaps; isl_set *Domain; VectorBlockGenerator(IRBuilder<> &B, VectorValueMapT &GlobalMaps, ScopStmt &Stmt, __isl_keep isl_set *Domain, Pass *P); int getVectorWidth(); Value *getVectorValue(const Value *Old, ValueMapT &VectorMap, VectorValueMapT &ScalarMaps); Type *getVectorPtrTy(const Value *V, int Width); /// @brief Load a vector from a set of adjacent scalars /// /// In case a set of scalars is known to be next to each other in memory, /// create a vector load that loads those scalars /// /// %vector_ptr= bitcast double* %p to <4 x double>* /// %vec_full = load <4 x double>* %vector_ptr /// Value *generateStrideOneLoad(const LoadInst *Load, ValueMapT &BBMap); /// @brief Load a vector initialized from a single scalar in memory /// /// In case all elements of a vector are initialized to the same /// scalar value, this value is loaded and shuffeled into all elements /// of the vector. /// /// %splat_one = load <1 x double>* %p /// %splat = shufflevector <1 x double> %splat_one, <1 x /// double> %splat_one, <4 x i32> zeroinitializer /// Value *generateStrideZeroLoad(const LoadInst *Load, ValueMapT &BBMap); /// @Load a vector from scalars distributed in memory /// /// In case some scalars a distributed randomly in memory. Create a vector /// by loading each scalar and by inserting one after the other into the /// vector. /// /// %scalar_1= load double* %p_1 /// %vec_1 = insertelement <2 x double> undef, double %scalar_1, i32 0 /// %scalar 2 = load double* %p_2 /// %vec_2 = insertelement <2 x double> %vec_1, double %scalar_1, i32 1 /// Value *generateUnknownStrideLoad(const LoadInst *Load, VectorValueMapT &ScalarMaps); void generateLoad(const LoadInst *Load, ValueMapT &VectorMap, VectorValueMapT &ScalarMaps); void copyUnaryInst(const UnaryInstruction *Inst, ValueMapT &VectorMap, VectorValueMapT &ScalarMaps); void copyBinaryInst(const BinaryOperator *Inst, ValueMapT &VectorMap, VectorValueMapT &ScalarMaps); void copyStore(const StoreInst *Store, ValueMapT &VectorMap, VectorValueMapT &ScalarMaps); bool hasVectorOperands(const Instruction *Inst, ValueMapT &VectorMap); void copyInstruction(const Instruction *Inst, ValueMapT &VectorMap, VectorValueMapT &ScalarMaps); void copyBB(); }; VectorBlockGenerator::VectorBlockGenerator(IRBuilder<> &B, VectorValueMapT &GlobalMaps, ScopStmt &Stmt, __isl_keep isl_set *Domain, Pass *P) : BlockGenerator(B, Stmt, P), GlobalMaps(GlobalMaps), Domain(Domain) { assert(GlobalMaps.size() > 1 && "Only one vector lane found"); assert(Domain && "No statement domain provided"); } Value *VectorBlockGenerator::getVectorValue(const Value *Old, ValueMapT &VectorMap, VectorValueMapT &ScalarMaps) { if (VectorMap.count(Old)) return VectorMap[Old]; int Width = getVectorWidth(); Value *Vector = UndefValue::get(VectorType::get(Old->getType(), Width)); for (int Lane = 0; Lane < Width; Lane++) Vector = Builder.CreateInsertElement(Vector, getNewValue(Old, ScalarMaps[Lane], GlobalMaps[Lane]), Builder.getInt32(Lane)); VectorMap[Old] = Vector; return Vector; } Type *VectorBlockGenerator::getVectorPtrTy(const Value *Val, int Width) { PointerType *PointerTy = dyn_cast(Val->getType()); assert(PointerTy && "PointerType expected"); Type *ScalarType = PointerTy->getElementType(); VectorType *VectorType = VectorType::get(ScalarType, Width); return PointerType::getUnqual(VectorType); } Value *VectorBlockGenerator::generateStrideOneLoad(const LoadInst *Load, ValueMapT &BBMap) { const Value *Pointer = Load->getPointerOperand(); Type *VectorPtrType = getVectorPtrTy(Pointer, getVectorWidth()); Value *NewPointer = getNewValue(Pointer, BBMap, GlobalMaps[0]); Value *VectorPtr = Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr"); LoadInst *VecLoad = Builder.CreateLoad(VectorPtr, Load->getName() + "_p_vec_full"); if (!Aligned) VecLoad->setAlignment(8); return VecLoad; } Value *VectorBlockGenerator::generateStrideZeroLoad(const LoadInst *Load, ValueMapT &BBMap) { const Value *Pointer = Load->getPointerOperand(); Type *VectorPtrType = getVectorPtrTy(Pointer, 1); Value *NewPointer = getNewValue(Pointer, BBMap, GlobalMaps[0]); Value *VectorPtr = Builder.CreateBitCast(NewPointer, VectorPtrType, Load->getName() + "_p_vec_p"); LoadInst *ScalarLoad= Builder.CreateLoad(VectorPtr, Load->getName() + "_p_splat_one"); if (!Aligned) ScalarLoad->setAlignment(8); Constant *SplatVector = Constant::getNullValue(VectorType::get(Builder.getInt32Ty(), getVectorWidth())); Value *VectorLoad = Builder.CreateShuffleVector(ScalarLoad, ScalarLoad, SplatVector, Load->getName() + "_p_splat"); return VectorLoad; } Value *VectorBlockGenerator::generateUnknownStrideLoad(const LoadInst *Load, VectorValueMapT &ScalarMaps) { int VectorWidth = getVectorWidth(); const Value *Pointer = Load->getPointerOperand(); VectorType *VectorType = VectorType::get( dyn_cast(Pointer->getType())->getElementType(), VectorWidth); Value *Vector = UndefValue::get(VectorType); for (int i = 0; i < VectorWidth; i++) { Value *NewPointer = getNewValue(Pointer, ScalarMaps[i], GlobalMaps[i]); Value *ScalarLoad = Builder.CreateLoad(NewPointer, Load->getName() + "_p_scalar_"); Vector = Builder.CreateInsertElement(Vector, ScalarLoad, Builder.getInt32(i), Load->getName() + "_p_vec_"); } return Vector; } void VectorBlockGenerator::generateLoad(const LoadInst *Load, ValueMapT &VectorMap, VectorValueMapT &ScalarMaps) { Value *NewLoad; MemoryAccess &Access = Statement.getAccessFor(Load); if (Access.isStrideZero(isl_set_copy(Domain))) NewLoad = generateStrideZeroLoad(Load, ScalarMaps[0]); else if (Access.isStrideOne(isl_set_copy(Domain))) NewLoad = generateStrideOneLoad(Load, ScalarMaps[0]); else NewLoad = generateUnknownStrideLoad(Load, ScalarMaps); VectorMap[Load] = NewLoad; } void VectorBlockGenerator::copyUnaryInst(const UnaryInstruction *Inst, ValueMapT &VectorMap, VectorValueMapT &ScalarMaps) { int VectorWidth = getVectorWidth(); Value *NewOperand = getVectorValue(Inst->getOperand(0), VectorMap, ScalarMaps); assert(isa(Inst) && "Can not generate vector code for instruction"); const CastInst *Cast = dyn_cast(Inst); VectorType *DestType = VectorType::get(Inst->getType(), VectorWidth); VectorMap[Inst] = Builder.CreateCast(Cast->getOpcode(), NewOperand, DestType); } void VectorBlockGenerator::copyBinaryInst(const BinaryOperator *Inst, ValueMapT &VectorMap, VectorValueMapT &ScalarMaps) { Value *OpZero = Inst->getOperand(0); Value *OpOne = Inst->getOperand(1); Value *NewOpZero, *NewOpOne; NewOpZero = getVectorValue(OpZero, VectorMap, ScalarMaps); NewOpOne = getVectorValue(OpOne, VectorMap, ScalarMaps); Value *NewInst = Builder.CreateBinOp(Inst->getOpcode(), NewOpZero, NewOpOne, Inst->getName() + "p_vec"); VectorMap[Inst] = NewInst; } void VectorBlockGenerator::copyStore(const StoreInst *Store, ValueMapT &VectorMap, VectorValueMapT &ScalarMaps) { int VectorWidth = getVectorWidth(); MemoryAccess &Access = Statement.getAccessFor(Store); const Value *Pointer = Store->getPointerOperand(); Value *Vector = getVectorValue(Store->getValueOperand(), VectorMap, ScalarMaps); if (Access.isStrideOne(isl_set_copy(Domain))) { Type *VectorPtrType = getVectorPtrTy(Pointer, VectorWidth); Value *NewPointer = getNewValue(Pointer, ScalarMaps[0], GlobalMaps[0]); Value *VectorPtr = Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr"); StoreInst *Store = Builder.CreateStore(Vector, VectorPtr); if (!Aligned) Store->setAlignment(8); } else { for (unsigned i = 0; i < ScalarMaps.size(); i++) { Value *Scalar = Builder.CreateExtractElement(Vector, Builder.getInt32(i)); Value *NewPointer = getNewValue(Pointer, ScalarMaps[i], GlobalMaps[i]); Builder.CreateStore(Scalar, NewPointer); } } } bool VectorBlockGenerator::hasVectorOperands(const Instruction *Inst, ValueMapT &VectorMap) { for (Instruction::const_op_iterator OI = Inst->op_begin(), OE = Inst->op_end(); OI != OE; ++OI) if (VectorMap.count(*OI)) return true; return false; } int VectorBlockGenerator::getVectorWidth() { return GlobalMaps.size(); } void VectorBlockGenerator::copyInstruction(const Instruction *Inst, ValueMapT &VectorMap, VectorValueMapT &ScalarMaps) { // Terminator instructions control the control flow. They are explicitly // expressed in the clast and do not need to be copied. if (Inst->isTerminator()) return; if (const LoadInst *Load = dyn_cast(Inst)) { generateLoad(Load, VectorMap, ScalarMaps); return; } if (hasVectorOperands(Inst, VectorMap)) { if (const StoreInst *Store = dyn_cast(Inst)) { copyStore(Store, VectorMap, ScalarMaps); return; } if (const UnaryInstruction *Unary = dyn_cast(Inst)) { copyUnaryInst(Unary, VectorMap, ScalarMaps); return; } if (const BinaryOperator *Binary = dyn_cast(Inst)) { copyBinaryInst(Binary, VectorMap, ScalarMaps); return; } llvm_unreachable("Cannot issue vector code for this instruction"); } for (int VectorLane = 0; VectorLane < getVectorWidth(); VectorLane++) copyInstScalar(Inst, ScalarMaps[VectorLane], GlobalMaps[VectorLane]); } void VectorBlockGenerator::copyBB() { BasicBlock *BB = Statement.getBasicBlock(); BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(), Builder.GetInsertPoint(), P); CopyBB->setName("polly.stmt." + BB->getName()); Builder.SetInsertPoint(CopyBB->begin()); // Create two maps that store the mapping from the original instructions of // the old basic block to their copies in the new basic block. Those maps // are basic block local. // // As vector code generation is supported there is one map for scalar values // and one for vector values. // // In case we just do scalar code generation, the vectorMap is not used and // the scalarMap has just one dimension, which contains the mapping. // // In case vector code generation is done, an instruction may either appear // in the vector map once (as it is calculating >vectorwidth< values at a // time. Or (if the values are calculated using scalar operations), it // appears once in every dimension of the scalarMap. VectorValueMapT ScalarBlockMap(getVectorWidth()); ValueMapT VectorBlockMap; for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end(); II != IE; ++II) copyInstruction(II, VectorBlockMap, ScalarBlockMap); } /// Class to generate LLVM-IR that calculates the value of a clast_expr. class ClastExpCodeGen { IRBuilder<> &Builder; const CharMapT &IVS; Value *codegen(const clast_name *e, Type *Ty); Value *codegen(const clast_term *e, Type *Ty); Value *codegen(const clast_binary *e, Type *Ty); Value *codegen(const clast_reduction *r, Type *Ty); public: // A generator for clast expressions. // // @param B The IRBuilder that defines where the code to calculate the // clast expressions should be inserted. // @param IVMAP A Map that translates strings describing the induction // variables to the Values* that represent these variables // on the LLVM side. ClastExpCodeGen(IRBuilder<> &B, CharMapT &IVMap); // Generates code to calculate a given clast expression. // // @param e The expression to calculate. // @return The Value that holds the result. Value *codegen(const clast_expr *e, Type *Ty); }; Value *ClastExpCodeGen::codegen(const clast_name *e, Type *Ty) { CharMapT::const_iterator I = IVS.find(e->name); assert(I != IVS.end() && "Clast name not found"); return Builder.CreateSExtOrBitCast(I->second, Ty); } Value *ClastExpCodeGen::codegen(const clast_term *e, Type *Ty) { APInt a = APInt_from_MPZ(e->val); Value *ConstOne = ConstantInt::get(Builder.getContext(), a); ConstOne = Builder.CreateSExtOrBitCast(ConstOne, Ty); if (!e->var) return ConstOne; Value *var = codegen(e->var, Ty); return Builder.CreateMul(ConstOne, var); } Value *ClastExpCodeGen::codegen(const clast_binary *e, Type *Ty) { Value *LHS = codegen(e->LHS, Ty); APInt RHS_AP = APInt_from_MPZ(e->RHS); Value *RHS = ConstantInt::get(Builder.getContext(), RHS_AP); RHS = Builder.CreateSExtOrBitCast(RHS, Ty); switch (e->type) { case clast_bin_mod: return Builder.CreateSRem(LHS, RHS); case clast_bin_fdiv: { // floord(n,d) ((n < 0) ? (n - d + 1) : n) / d Value *One = ConstantInt::get(Ty, 1); Value *Zero = ConstantInt::get(Ty, 0); Value *Sum1 = Builder.CreateSub(LHS, RHS); Value *Sum2 = Builder.CreateAdd(Sum1, One); Value *isNegative = Builder.CreateICmpSLT(LHS, Zero); Value *Dividend = Builder.CreateSelect(isNegative, Sum2, LHS); return Builder.CreateSDiv(Dividend, RHS); } case clast_bin_cdiv: { // ceild(n,d) ((n < 0) ? n : (n + d - 1)) / d Value *One = ConstantInt::get(Ty, 1); Value *Zero = ConstantInt::get(Ty, 0); Value *Sum1 = Builder.CreateAdd(LHS, RHS); Value *Sum2 = Builder.CreateSub(Sum1, One); Value *isNegative = Builder.CreateICmpSLT(LHS, Zero); Value *Dividend = Builder.CreateSelect(isNegative, LHS, Sum2); return Builder.CreateSDiv(Dividend, RHS); } case clast_bin_div: return Builder.CreateSDiv(LHS, RHS); }; llvm_unreachable("Unknown clast binary expression type"); } Value *ClastExpCodeGen::codegen(const clast_reduction *r, Type *Ty) { assert(( r->type == clast_red_min || r->type == clast_red_max || r->type == clast_red_sum) && "Clast reduction type not supported"); Value *old = codegen(r->elts[0], Ty); for (int i=1; i < r->n; ++i) { Value *exprValue = codegen(r->elts[i], Ty); switch (r->type) { case clast_red_min: { Value *cmp = Builder.CreateICmpSLT(old, exprValue); old = Builder.CreateSelect(cmp, old, exprValue); break; } case clast_red_max: { Value *cmp = Builder.CreateICmpSGT(old, exprValue); old = Builder.CreateSelect(cmp, old, exprValue); break; } case clast_red_sum: old = Builder.CreateAdd(old, exprValue); break; } } return old; } ClastExpCodeGen::ClastExpCodeGen(IRBuilder<> &B, CharMapT &IVMap) : Builder(B), IVS(IVMap) {} Value *ClastExpCodeGen::codegen(const clast_expr *e, Type *Ty) { switch(e->type) { case clast_expr_name: return codegen((const clast_name *)e, Ty); case clast_expr_term: return codegen((const clast_term *)e, Ty); case clast_expr_bin: return codegen((const clast_binary *)e, Ty); case clast_expr_red: return codegen((const clast_reduction *)e, Ty); } llvm_unreachable("Unknown clast expression!"); } class ClastStmtCodeGen { public: const std::vector &getParallelLoops(); private: // The Scop we code generate. Scop *S; Pass *P; // The Builder specifies the current location to code generate at. IRBuilder<> &Builder; // Map the Values from the old code to their counterparts in the new code. ValueMapT ValueMap; // clastVars maps from the textual representation of a clast variable to its // current *Value. clast variables are scheduling variables, original // induction variables or parameters. They are used either in loop bounds or // to define the statement instance that is executed. // // for (s = 0; s < n + 3; ++i) // for (t = s; t < m; ++j) // Stmt(i = s + 3 * m, j = t); // // {s,t,i,j,n,m} is the set of clast variables in this clast. CharMapT ClastVars; // Codegenerator for clast expressions. ClastExpCodeGen ExpGen; // Do we currently generate parallel code? bool parallelCodeGeneration; std::vector parallelLoops; void codegen(const clast_assignment *a); void codegen(const clast_assignment *a, ScopStmt *Statement, unsigned Dimension, int vectorDim, std::vector *VectorVMap = 0); void codegenSubstitutions(const clast_stmt *Assignment, ScopStmt *Statement, int vectorDim = 0, std::vector *VectorVMap = 0); void codegen(const clast_user_stmt *u, std::vector *IVS = NULL, const char *iterator = NULL, isl_set *scatteringDomain = 0); void codegen(const clast_block *b); /// @brief Create a classical sequential loop. void codegenForSequential(const clast_for *f); /// @brief Create OpenMP structure values. /// /// Create a list of values that has to be stored into the OpenMP subfuncition /// structure. SetVector getOMPValues(); /// @brief Update the internal structures according to a Value Map. /// /// @param VMap A map from old to new values. /// @param Reverse If true, we assume the update should be reversed. void updateWithValueMap(OMPGenerator::ValueToValueMapTy &VMap, bool Reverse); /// @brief Create an OpenMP parallel for loop. /// /// This loop reflects a loop as if it would have been created by an OpenMP /// statement. void codegenForOpenMP(const clast_for *f); bool isInnermostLoop(const clast_for *f); /// @brief Get the number of loop iterations for this loop. /// @param f The clast for loop to check. int getNumberOfIterations(const clast_for *f); /// @brief Create vector instructions for this loop. void codegenForVector(const clast_for *f); void codegen(const clast_for *f); Value *codegen(const clast_equation *eq); void codegen(const clast_guard *g); void codegen(const clast_stmt *stmt); void addParameters(const CloogNames *names); IntegerType *getIntPtrTy(); public: void codegen(const clast_root *r); ClastStmtCodeGen(Scop *scop, IRBuilder<> &B, Pass *P); }; } IntegerType *ClastStmtCodeGen::getIntPtrTy() { return P->getAnalysis().getIntPtrType(Builder.getContext()); } const std::vector &ClastStmtCodeGen::getParallelLoops() { return parallelLoops; } void ClastStmtCodeGen::codegen(const clast_assignment *a) { Value *V= ExpGen.codegen(a->RHS, getIntPtrTy()); ClastVars[a->LHS] = V; } void ClastStmtCodeGen::codegen(const clast_assignment *A, ScopStmt *Stmt, unsigned Dim, int VectorDim, std::vector *VectorVMap) { const PHINode *PN; Value *RHS; assert(!A->LHS && "Statement assignments do not have left hand side"); PN = Stmt->getInductionVariableForDimension(Dim); RHS = ExpGen.codegen(A->RHS, Builder.getInt64Ty()); RHS = Builder.CreateTruncOrBitCast(RHS, PN->getType()); if (VectorVMap) (*VectorVMap)[VectorDim][PN] = RHS; ValueMap[PN] = RHS; } void ClastStmtCodeGen::codegenSubstitutions(const clast_stmt *Assignment, ScopStmt *Statement, int vectorDim, std::vector *VectorVMap) { int Dimension = 0; while (Assignment) { assert(CLAST_STMT_IS_A(Assignment, stmt_ass) && "Substitions are expected to be assignments"); codegen((const clast_assignment *)Assignment, Statement, Dimension, vectorDim, VectorVMap); Assignment = Assignment->next; Dimension++; } } void ClastStmtCodeGen::codegen(const clast_user_stmt *u, std::vector *IVS , const char *iterator, isl_set *Domain) { ScopStmt *Statement = (ScopStmt *)u->statement->usr; if (u->substitutions) codegenSubstitutions(u->substitutions, Statement); int VectorDimensions = IVS ? IVS->size() : 1; if (VectorDimensions == 1) { BlockGenerator::generate(Builder, *Statement, ValueMap, P); return; } VectorValueMapT VectorMap(VectorDimensions); if (IVS) { assert (u->substitutions && "Substitutions expected!"); int i = 0; for (std::vector::iterator II = IVS->begin(), IE = IVS->end(); II != IE; ++II) { ClastVars[iterator] = *II; codegenSubstitutions(u->substitutions, Statement, i, &VectorMap); i++; } } VectorBlockGenerator::generate(Builder, *Statement, VectorMap, Domain, P); } void ClastStmtCodeGen::codegen(const clast_block *b) { if (b->body) codegen(b->body); } void ClastStmtCodeGen::codegenForSequential(const clast_for *f) { Value *LowerBound, *UpperBound, *IV, *Stride; BasicBlock *AfterBB; Type *IntPtrTy = getIntPtrTy(); LowerBound = ExpGen.codegen(f->LB, IntPtrTy); UpperBound = ExpGen.codegen(f->UB, IntPtrTy); Stride = Builder.getInt(APInt_from_MPZ(f->stride)); IV = createLoop(LowerBound, UpperBound, Stride, &Builder, P, &AfterBB); // Add loop iv to symbols. ClastVars[f->iterator] = IV; if (f->body) codegen(f->body); // Loop is finished, so remove its iv from the live symbols. ClastVars.erase(f->iterator); Builder.SetInsertPoint(AfterBB->begin()); } SetVector ClastStmtCodeGen::getOMPValues() { SetVector Values; // The clast variables for (CharMapT::iterator I = ClastVars.begin(), E = ClastVars.end(); I != E; I++) Values.insert(I->second); // The memory reference base addresses for (Scop::iterator SI = S->begin(), SE = S->end(); SI != SE; ++SI) { ScopStmt *Stmt = *SI; for (SmallVector::iterator I = Stmt->memacc_begin(), E = Stmt->memacc_end(); I != E; ++I) { Value *BaseAddr = const_cast((*I)->getBaseAddr()); Values.insert((BaseAddr)); } } return Values; } void ClastStmtCodeGen::updateWithValueMap(OMPGenerator::ValueToValueMapTy &VMap, bool Reverse) { std::set Inserted; if (Reverse) { OMPGenerator::ValueToValueMapTy ReverseMap; for (std::map::iterator I = VMap.begin(), E = VMap.end(); I != E; ++I) ReverseMap.insert(std::make_pair(I->second, I->first)); for (CharMapT::iterator I = ClastVars.begin(), E = ClastVars.end(); I != E; I++) { ClastVars[I->first] = ReverseMap[I->second]; Inserted.insert(I->second); } /// FIXME: At the moment we do not reverse the update of the ValueMap. /// This is incomplet, but the failure should be obvious, such that /// we can fix this later. return; } for (CharMapT::iterator I = ClastVars.begin(), E = ClastVars.end(); I != E; I++) { ClastVars[I->first] = VMap[I->second]; Inserted.insert(I->second); } for (std::map::iterator I = VMap.begin(), E = VMap.end(); I != E; ++I) { if (Inserted.count(I->first)) continue; ValueMap[I->first] = I->second; } } static void clearDomtree(Function *F, DominatorTree &DT) { DomTreeNode *N = DT.getNode(&F->getEntryBlock()); std::vector Nodes; for (po_iterator I = po_begin(N), E = po_end(N); I != E; ++I) Nodes.push_back(I->getBlock()); for (std::vector::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) DT.eraseNode(*I); } void ClastStmtCodeGen::codegenForOpenMP(const clast_for *For) { Value *Stride, *LB, *UB, *IV; BasicBlock::iterator LoopBody; IntegerType *IntPtrTy = getIntPtrTy(); SetVector Values; OMPGenerator::ValueToValueMapTy VMap; OMPGenerator OMPGen(Builder, P); Stride = Builder.getInt(APInt_from_MPZ(For->stride)); Stride = Builder.CreateSExtOrBitCast(Stride, IntPtrTy); LB = ExpGen.codegen(For->LB, IntPtrTy); UB = ExpGen.codegen(For->UB, IntPtrTy); Values = getOMPValues(); IV = OMPGen.createParallelLoop(LB, UB, Stride, Values, VMap, &LoopBody); BasicBlock::iterator AfterLoop = Builder.GetInsertPoint(); Builder.SetInsertPoint(LoopBody); updateWithValueMap(VMap, /* reverse */ false); ClastVars[For->iterator] = IV; if (For->body) codegen(For->body); ClastVars.erase(For->iterator); updateWithValueMap(VMap, /* reverse */ true); clearDomtree((*LoopBody).getParent()->getParent(), P->getAnalysis()); Builder.SetInsertPoint(AfterLoop); } bool ClastStmtCodeGen::isInnermostLoop(const clast_for *f) { const clast_stmt *stmt = f->body; while (stmt) { if (!CLAST_STMT_IS_A(stmt, stmt_user)) return false; stmt = stmt->next; } return true; } int ClastStmtCodeGen::getNumberOfIterations(const clast_for *f) { isl_set *loopDomain = isl_set_copy(isl_set_from_cloog_domain(f->domain)); isl_set *tmp = isl_set_copy(loopDomain); // Calculate a map similar to the identity map, but with the last input // and output dimension not related. // [i0, i1, i2, i3] -> [i0, i1, i2, o0] isl_space *Space = isl_set_get_space(loopDomain); Space = isl_space_drop_outputs(Space, isl_set_dim(loopDomain, isl_dim_set) - 2, 1); Space = isl_space_map_from_set(Space); isl_map *identity = isl_map_identity(Space); identity = isl_map_add_dims(identity, isl_dim_in, 1); identity = isl_map_add_dims(identity, isl_dim_out, 1); isl_map *map = isl_map_from_domain_and_range(tmp, loopDomain); map = isl_map_intersect(map, identity); isl_map *lexmax = isl_map_lexmax(isl_map_copy(map)); isl_map *lexmin = isl_map_lexmin(map); isl_map *sub = isl_map_sum(lexmax, isl_map_neg(lexmin)); isl_set *elements = isl_map_range(sub); if (!isl_set_is_singleton(elements)) { isl_set_free(elements); return -1; } isl_point *p = isl_set_sample_point(elements); isl_int v; isl_int_init(v); isl_point_get_coordinate(p, isl_dim_set, isl_set_n_dim(loopDomain) - 1, &v); int numberIterations = isl_int_get_si(v); isl_int_clear(v); isl_point_free(p); return (numberIterations) / isl_int_get_si(f->stride) + 1; } void ClastStmtCodeGen::codegenForVector(const clast_for *F) { DEBUG(dbgs() << "Vectorizing loop '" << F->iterator << "'\n";); int VectorWidth = getNumberOfIterations(F); Value *LB = ExpGen.codegen(F->LB, getIntPtrTy()); APInt Stride = APInt_from_MPZ(F->stride); IntegerType *LoopIVType = dyn_cast(LB->getType()); Stride = Stride.zext(LoopIVType->getBitWidth()); Value *StrideValue = ConstantInt::get(LoopIVType, Stride); std::vector IVS(VectorWidth); IVS[0] = LB; for (int i = 1; i < VectorWidth; i++) IVS[i] = Builder.CreateAdd(IVS[i-1], StrideValue, "p_vector_iv"); isl_set *Domain = isl_set_from_cloog_domain(F->domain); // Add loop iv to symbols. ClastVars[F->iterator] = LB; const clast_stmt *Stmt = F->body; while (Stmt) { codegen((const clast_user_stmt *)Stmt, &IVS, F->iterator, isl_set_copy(Domain)); Stmt = Stmt->next; } // Loop is finished, so remove its iv from the live symbols. isl_set_free(Domain); ClastVars.erase(F->iterator); } void ClastStmtCodeGen::codegen(const clast_for *f) { if ((Vector || OpenMP) && P->getAnalysis().isParallelFor(f)) { if (Vector && isInnermostLoop(f) && (-1 != getNumberOfIterations(f)) && (getNumberOfIterations(f) <= 16)) { codegenForVector(f); return; } if (OpenMP && !parallelCodeGeneration) { parallelCodeGeneration = true; parallelLoops.push_back(f->iterator); codegenForOpenMP(f); parallelCodeGeneration = false; return; } } codegenForSequential(f); } Value *ClastStmtCodeGen::codegen(const clast_equation *eq) { Value *LHS = ExpGen.codegen(eq->LHS, getIntPtrTy()); Value *RHS = ExpGen.codegen(eq->RHS, getIntPtrTy()); CmpInst::Predicate P; if (eq->sign == 0) P = ICmpInst::ICMP_EQ; else if (eq->sign > 0) P = ICmpInst::ICMP_SGE; else P = ICmpInst::ICMP_SLE; return Builder.CreateICmp(P, LHS, RHS); } void ClastStmtCodeGen::codegen(const clast_guard *g) { Function *F = Builder.GetInsertBlock()->getParent(); LLVMContext &Context = F->getContext(); BasicBlock *CondBB = SplitBlock(Builder.GetInsertBlock(), Builder.GetInsertPoint(), P); CondBB->setName("polly.cond"); BasicBlock *MergeBB = SplitBlock(CondBB, CondBB->begin(), P); MergeBB->setName("polly.merge"); BasicBlock *ThenBB = BasicBlock::Create(Context, "polly.then", F); DominatorTree &DT = P->getAnalysis(); DT.addNewBlock(ThenBB, CondBB); DT.changeImmediateDominator(MergeBB, CondBB); CondBB->getTerminator()->eraseFromParent(); Builder.SetInsertPoint(CondBB); Value *Predicate = codegen(&(g->eq[0])); for (int i = 1; i < g->n; ++i) { Value *TmpPredicate = codegen(&(g->eq[i])); Predicate = Builder.CreateAnd(Predicate, TmpPredicate); } Builder.CreateCondBr(Predicate, ThenBB, MergeBB); Builder.SetInsertPoint(ThenBB); Builder.CreateBr(MergeBB); Builder.SetInsertPoint(ThenBB->begin()); codegen(g->then); Builder.SetInsertPoint(MergeBB->begin()); } void ClastStmtCodeGen::codegen(const clast_stmt *stmt) { if (CLAST_STMT_IS_A(stmt, stmt_root)) assert(false && "No second root statement expected"); else if (CLAST_STMT_IS_A(stmt, stmt_ass)) codegen((const clast_assignment *)stmt); else if (CLAST_STMT_IS_A(stmt, stmt_user)) codegen((const clast_user_stmt *)stmt); else if (CLAST_STMT_IS_A(stmt, stmt_block)) codegen((const clast_block *)stmt); else if (CLAST_STMT_IS_A(stmt, stmt_for)) codegen((const clast_for *)stmt); else if (CLAST_STMT_IS_A(stmt, stmt_guard)) codegen((const clast_guard *)stmt); if (stmt->next) codegen(stmt->next); } void ClastStmtCodeGen::addParameters(const CloogNames *names) { SCEVExpander Rewriter(P->getAnalysis(), "polly"); int i = 0; for (Scop::param_iterator PI = S->param_begin(), PE = S->param_end(); PI != PE; ++PI) { assert(i < names->nb_parameters && "Not enough parameter names"); const SCEV *Param = *PI; Type *Ty = Param->getType(); Instruction *insertLocation = --(Builder.GetInsertBlock()->end()); Value *V = Rewriter.expandCodeFor(Param, Ty, insertLocation); ClastVars[names->parameters[i]] = V; ++i; } } void ClastStmtCodeGen::codegen(const clast_root *r) { addParameters(r->names); parallelCodeGeneration = false; const clast_stmt *stmt = (const clast_stmt*) r; if (stmt->next) codegen(stmt->next); } ClastStmtCodeGen::ClastStmtCodeGen(Scop *scop, IRBuilder<> &B, Pass *P) : S(scop), P(P), Builder(B), ExpGen(Builder, ClastVars) {} namespace { class CodeGeneration : public ScopPass { Region *region; Scop *S; DominatorTree *DT; RegionInfo *RI; std::vector parallelLoops; public: static char ID; CodeGeneration() : ScopPass(ID) {} // Split the entry edge of the region and generate a new basic block on this // edge. This function also updates ScopInfo and RegionInfo. // // @param region The region where the entry edge will be splitted. BasicBlock *splitEdgeAdvanced(Region *region) { BasicBlock *newBlock; BasicBlock *splitBlock; newBlock = SplitEdge(region->getEnteringBlock(), region->getEntry(), this); if (DT->dominates(region->getEntry(), newBlock)) { BasicBlock *OldBlock = region->getEntry(); std::string OldName = OldBlock->getName(); // Update ScopInfo. for (Scop::iterator SI = S->begin(), SE = S->end(); SI != SE; ++SI) if ((*SI)->getBasicBlock() == OldBlock) { (*SI)->setBasicBlock(newBlock); break; } // Update RegionInfo. splitBlock = OldBlock; OldBlock->setName("polly.split"); newBlock->setName(OldName); region->replaceEntry(newBlock); RI->setRegionFor(newBlock, region); } else { RI->setRegionFor(newBlock, region->getParent()); splitBlock = newBlock; } return splitBlock; } // Create a split block that branches either to the old code or to a new basic // block where the new code can be inserted. // // @param Builder A builder that will be set to point to a basic block, where // the new code can be generated. // @return The split basic block. BasicBlock *addSplitAndStartBlock(IRBuilder<> *Builder) { BasicBlock *StartBlock, *SplitBlock; SplitBlock = splitEdgeAdvanced(region); SplitBlock->setName("polly.split_new_and_old"); Function *F = SplitBlock->getParent(); StartBlock = BasicBlock::Create(F->getContext(), "polly.start", F); SplitBlock->getTerminator()->eraseFromParent(); Builder->SetInsertPoint(SplitBlock); Builder->CreateCondBr(Builder->getTrue(), StartBlock, region->getEntry()); DT->addNewBlock(StartBlock, SplitBlock); Builder->SetInsertPoint(StartBlock); return SplitBlock; } // Merge the control flow of the newly generated code with the existing code. // // @param SplitBlock The basic block where the control flow was split between // old and new version of the Scop. // @param Builder An IRBuilder that points to the last instruction of the // newly generated code. void mergeControlFlow(BasicBlock *SplitBlock, IRBuilder<> *Builder) { BasicBlock *MergeBlock; Region *R = region; if (R->getExit()->getSinglePredecessor()) // No splitEdge required. A block with a single predecessor cannot have // PHI nodes that would complicate life. MergeBlock = R->getExit(); else { MergeBlock = SplitEdge(R->getExitingBlock(), R->getExit(), this); // SplitEdge will never split R->getExit(), as R->getExit() has more than // one predecessor. Hence, mergeBlock is always a newly generated block. R->replaceExit(MergeBlock); } Builder->CreateBr(MergeBlock); MergeBlock->setName("polly.merge_new_and_old"); if (DT->dominates(SplitBlock, MergeBlock)) DT->changeImmediateDominator(MergeBlock, SplitBlock); } bool runOnScop(Scop &scop) { S = &scop; region = &S->getRegion(); DT = &getAnalysis(); RI = &getAnalysis(); parallelLoops.clear(); assert(region->isSimple() && "Only simple regions are supported"); // In the CFG the optimized code of the SCoP is generated next to the // original code. Both the new and the original version of the code remain // in the CFG. A branch statement decides which version is executed. // For now, we always execute the new version (the old one is dead code // eliminated by the cleanup passes). In the future we may decide to execute // the new version only if certain run time checks succeed. This will be // useful to support constructs for which we cannot prove all assumptions at // compile time. // // Before transformation: // // bb0 // | // orig_scop // | // bb1 // // After transformation: // bb0 // | // polly.splitBlock // / \. // | startBlock // | | // orig_scop new_scop // \ / // \ / // bb1 (joinBlock) IRBuilder<> builder(region->getEntry()); // The builder will be set to startBlock. BasicBlock *splitBlock = addSplitAndStartBlock(&builder); BasicBlock *StartBlock = builder.GetInsertBlock(); mergeControlFlow(splitBlock, &builder); builder.SetInsertPoint(StartBlock->begin()); ClastStmtCodeGen CodeGen(S, builder, this); CloogInfo &C = getAnalysis(); CodeGen.codegen(C.getClast()); parallelLoops.insert(parallelLoops.begin(), CodeGen.getParallelLoops().begin(), CodeGen.getParallelLoops().end()); return true; } virtual void printScop(raw_ostream &OS) const { for (std::vector::const_iterator PI = parallelLoops.begin(), PE = parallelLoops.end(); PI != PE; ++PI) OS << "Parallel loop with iterator '" << *PI << "' generated\n"; } virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addPreserved(); // FIXME: We do not create LoopInfo for the newly generated loops. AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); // FIXME: We do not yet add regions for the newly generated code to the // region tree. AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); AU.addPreservedID(IndependentBlocksID); } }; } char CodeGeneration::ID = 1; INITIALIZE_PASS_BEGIN(CodeGeneration, "polly-codegen", "Polly - Create LLVM-IR from SCoPs", false, false) INITIALIZE_PASS_DEPENDENCY(CloogInfo) INITIALIZE_PASS_DEPENDENCY(Dependences) INITIALIZE_PASS_DEPENDENCY(DominatorTree) INITIALIZE_PASS_DEPENDENCY(RegionInfo) INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) INITIALIZE_PASS_DEPENDENCY(ScopDetection) INITIALIZE_PASS_DEPENDENCY(TargetData) INITIALIZE_PASS_END(CodeGeneration, "polly-codegen", "Polly - Create LLVM-IR from SCoPs", false, false) Pass *polly::createCodeGenerationPass() { return new CodeGeneration(); }