//===-- ObjectFileMachO.cpp -------------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "llvm/ADT/StringRef.h" #include "llvm/Support/MachO.h" #include "ObjectFileMachO.h" #include "lldb/Core/ArchSpec.h" #include "lldb/Core/DataBuffer.h" #include "lldb/Core/FileSpecList.h" #include "lldb/Core/Module.h" #include "lldb/Core/PluginManager.h" #include "lldb/Core/RangeMap.h" #include "lldb/Core/Section.h" #include "lldb/Core/StreamFile.h" #include "lldb/Core/StreamString.h" #include "lldb/Core/Timer.h" #include "lldb/Core/UUID.h" #include "lldb/Host/Host.h" #include "lldb/Host/FileSpec.h" #include "lldb/Symbol/ClangNamespaceDecl.h" #include "lldb/Symbol/ObjectFile.h" #include "lldb/Target/Platform.h" #include "lldb/Target/Process.h" #include "lldb/Target/Target.h" #include "Plugins/Process/Utility/RegisterContextDarwin_arm.h" #include "Plugins/Process/Utility/RegisterContextDarwin_i386.h" #include "Plugins/Process/Utility/RegisterContextDarwin_x86_64.h" using namespace lldb; using namespace lldb_private; using namespace llvm::MachO; class RegisterContextDarwin_x86_64_Mach : public RegisterContextDarwin_x86_64 { public: RegisterContextDarwin_x86_64_Mach (lldb_private::Thread &thread, const DataExtractor &data) : RegisterContextDarwin_x86_64 (thread, 0) { SetRegisterDataFrom_LC_THREAD (data); } virtual void InvalidateAllRegisters () { // Do nothing... registers are always valid... } void SetRegisterDataFrom_LC_THREAD (const DataExtractor &data) { uint32_t offset = 0; SetError (GPRRegSet, Read, -1); SetError (FPURegSet, Read, -1); SetError (EXCRegSet, Read, -1); bool done = false; while (!done) { int flavor = data.GetU32 (&offset); if (flavor == 0) done = true; else { uint32_t i; uint32_t count = data.GetU32 (&offset); switch (flavor) { case GPRRegSet: for (i=0; i objfile_ap(new ObjectFileMachO (module_sp, data_sp, file, offset, length)); if (objfile_ap.get() && objfile_ap->ParseHeader()) return objfile_ap.release(); } return NULL; } ObjectFile * ObjectFileMachO::CreateMemoryInstance (const lldb::ModuleSP &module_sp, DataBufferSP& data_sp, const ProcessSP &process_sp, lldb::addr_t header_addr) { if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) { std::auto_ptr objfile_ap(new ObjectFileMachO (module_sp, data_sp, process_sp, header_addr)); if (objfile_ap.get() && objfile_ap->ParseHeader()) return objfile_ap.release(); } return NULL; } const ConstString & ObjectFileMachO::GetSegmentNameTEXT() { static ConstString g_segment_name_TEXT ("__TEXT"); return g_segment_name_TEXT; } const ConstString & ObjectFileMachO::GetSegmentNameDATA() { static ConstString g_segment_name_DATA ("__DATA"); return g_segment_name_DATA; } const ConstString & ObjectFileMachO::GetSegmentNameOBJC() { static ConstString g_segment_name_OBJC ("__OBJC"); return g_segment_name_OBJC; } const ConstString & ObjectFileMachO::GetSegmentNameLINKEDIT() { static ConstString g_section_name_LINKEDIT ("__LINKEDIT"); return g_section_name_LINKEDIT; } const ConstString & ObjectFileMachO::GetSectionNameEHFrame() { static ConstString g_section_name_eh_frame ("__eh_frame"); return g_section_name_eh_frame; } static uint32_t MachHeaderSizeFromMagic(uint32_t magic) { switch (magic) { case HeaderMagic32: case HeaderMagic32Swapped: return sizeof(struct mach_header); case HeaderMagic64: case HeaderMagic64Swapped: return sizeof(struct mach_header_64); break; default: break; } return 0; } bool ObjectFileMachO::MagicBytesMatch (DataBufferSP& data_sp, lldb::addr_t data_offset, lldb::addr_t data_length) { DataExtractor data; data.SetData (data_sp, data_offset, data_length); uint32_t offset = 0; uint32_t magic = data.GetU32(&offset); return MachHeaderSizeFromMagic(magic) != 0; } ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp, DataBufferSP& data_sp, const FileSpec* file, addr_t offset, addr_t length) : ObjectFile(module_sp, file, offset, length, data_sp), m_sections_ap(), m_symtab_ap(), m_mach_segments(), m_mach_sections(), m_entry_point_address(), m_thread_context_offsets(), m_thread_context_offsets_valid(false) { ::memset (&m_header, 0, sizeof(m_header)); ::memset (&m_dysymtab, 0, sizeof(m_dysymtab)); } ObjectFileMachO::ObjectFileMachO (const lldb::ModuleSP &module_sp, lldb::DataBufferSP& header_data_sp, const lldb::ProcessSP &process_sp, lldb::addr_t header_addr) : ObjectFile(module_sp, process_sp, header_addr, header_data_sp), m_sections_ap(), m_symtab_ap(), m_mach_segments(), m_mach_sections(), m_entry_point_address(), m_thread_context_offsets(), m_thread_context_offsets_valid(false) { ::memset (&m_header, 0, sizeof(m_header)); ::memset (&m_dysymtab, 0, sizeof(m_dysymtab)); } ObjectFileMachO::~ObjectFileMachO() { } bool ObjectFileMachO::ParseHeader () { ModuleSP module_sp(GetModule()); if (module_sp) { lldb_private::Mutex::Locker locker(module_sp->GetMutex()); bool can_parse = false; uint32_t offset = 0; m_data.SetByteOrder (lldb::endian::InlHostByteOrder()); // Leave magic in the original byte order m_header.magic = m_data.GetU32(&offset); switch (m_header.magic) { case HeaderMagic32: m_data.SetByteOrder (lldb::endian::InlHostByteOrder()); m_data.SetAddressByteSize(4); can_parse = true; break; case HeaderMagic64: m_data.SetByteOrder (lldb::endian::InlHostByteOrder()); m_data.SetAddressByteSize(8); can_parse = true; break; case HeaderMagic32Swapped: m_data.SetByteOrder(lldb::endian::InlHostByteOrder() == eByteOrderBig ? eByteOrderLittle : eByteOrderBig); m_data.SetAddressByteSize(4); can_parse = true; break; case HeaderMagic64Swapped: m_data.SetByteOrder(lldb::endian::InlHostByteOrder() == eByteOrderBig ? eByteOrderLittle : eByteOrderBig); m_data.SetAddressByteSize(8); can_parse = true; break; default: break; } if (can_parse) { m_data.GetU32(&offset, &m_header.cputype, 6); ArchSpec mach_arch(eArchTypeMachO, m_header.cputype, m_header.cpusubtype); if (SetModulesArchitecture (mach_arch)) { const size_t header_and_lc_size = m_header.sizeofcmds + MachHeaderSizeFromMagic(m_header.magic); if (m_data.GetByteSize() < header_and_lc_size) { DataBufferSP data_sp; ProcessSP process_sp (m_process_wp.lock()); if (process_sp) { data_sp = ReadMemory (process_sp, m_offset, header_and_lc_size); } else { // Read in all only the load command data from the file on disk data_sp = m_file.ReadFileContents(m_offset, header_and_lc_size); if (data_sp->GetByteSize() != header_and_lc_size) return false; } if (data_sp) m_data.SetData (data_sp); } } return true; } else { memset(&m_header, 0, sizeof(struct mach_header)); } } return false; } ByteOrder ObjectFileMachO::GetByteOrder () const { return m_data.GetByteOrder (); } bool ObjectFileMachO::IsExecutable() const { return m_header.filetype == HeaderFileTypeExecutable; } size_t ObjectFileMachO::GetAddressByteSize () const { return m_data.GetAddressByteSize (); } AddressClass ObjectFileMachO::GetAddressClass (lldb::addr_t file_addr) { Symtab *symtab = GetSymtab(); if (symtab) { Symbol *symbol = symtab->FindSymbolContainingFileAddress(file_addr); if (symbol) { if (symbol->ValueIsAddress()) { SectionSP section_sp (symbol->GetAddress().GetSection()); if (section_sp) { const SectionType section_type = section_sp->GetType(); switch (section_type) { case eSectionTypeInvalid: return eAddressClassUnknown; case eSectionTypeCode: if (m_header.cputype == llvm::MachO::CPUTypeARM) { // For ARM we have a bit in the n_desc field of the symbol // that tells us ARM/Thumb which is bit 0x0008. if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB) return eAddressClassCodeAlternateISA; } return eAddressClassCode; case eSectionTypeContainer: return eAddressClassUnknown; case eSectionTypeData: case eSectionTypeDataCString: case eSectionTypeDataCStringPointers: case eSectionTypeDataSymbolAddress: case eSectionTypeData4: case eSectionTypeData8: case eSectionTypeData16: case eSectionTypeDataPointers: case eSectionTypeZeroFill: case eSectionTypeDataObjCMessageRefs: case eSectionTypeDataObjCCFStrings: return eAddressClassData; case eSectionTypeDebug: case eSectionTypeDWARFDebugAbbrev: case eSectionTypeDWARFDebugAranges: case eSectionTypeDWARFDebugFrame: case eSectionTypeDWARFDebugInfo: case eSectionTypeDWARFDebugLine: case eSectionTypeDWARFDebugLoc: case eSectionTypeDWARFDebugMacInfo: case eSectionTypeDWARFDebugPubNames: case eSectionTypeDWARFDebugPubTypes: case eSectionTypeDWARFDebugRanges: case eSectionTypeDWARFDebugStr: case eSectionTypeDWARFAppleNames: case eSectionTypeDWARFAppleTypes: case eSectionTypeDWARFAppleNamespaces: case eSectionTypeDWARFAppleObjC: return eAddressClassDebug; case eSectionTypeEHFrame: return eAddressClassRuntime; case eSectionTypeOther: return eAddressClassUnknown; } } } const SymbolType symbol_type = symbol->GetType(); switch (symbol_type) { case eSymbolTypeAny: return eAddressClassUnknown; case eSymbolTypeAbsolute: return eAddressClassUnknown; case eSymbolTypeCode: case eSymbolTypeTrampoline: if (m_header.cputype == llvm::MachO::CPUTypeARM) { // For ARM we have a bit in the n_desc field of the symbol // that tells us ARM/Thumb which is bit 0x0008. if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB) return eAddressClassCodeAlternateISA; } return eAddressClassCode; case eSymbolTypeData: return eAddressClassData; case eSymbolTypeRuntime: return eAddressClassRuntime; case eSymbolTypeException: return eAddressClassRuntime; case eSymbolTypeSourceFile: return eAddressClassDebug; case eSymbolTypeHeaderFile: return eAddressClassDebug; case eSymbolTypeObjectFile: return eAddressClassDebug; case eSymbolTypeCommonBlock: return eAddressClassDebug; case eSymbolTypeBlock: return eAddressClassDebug; case eSymbolTypeLocal: return eAddressClassData; case eSymbolTypeParam: return eAddressClassData; case eSymbolTypeVariable: return eAddressClassData; case eSymbolTypeVariableType: return eAddressClassDebug; case eSymbolTypeLineEntry: return eAddressClassDebug; case eSymbolTypeLineHeader: return eAddressClassDebug; case eSymbolTypeScopeBegin: return eAddressClassDebug; case eSymbolTypeScopeEnd: return eAddressClassDebug; case eSymbolTypeAdditional: return eAddressClassUnknown; case eSymbolTypeCompiler: return eAddressClassDebug; case eSymbolTypeInstrumentation:return eAddressClassDebug; case eSymbolTypeUndefined: return eAddressClassUnknown; case eSymbolTypeObjCClass: return eAddressClassRuntime; case eSymbolTypeObjCMetaClass: return eAddressClassRuntime; case eSymbolTypeObjCIVar: return eAddressClassRuntime; } } } return eAddressClassUnknown; } Symtab * ObjectFileMachO::GetSymtab() { ModuleSP module_sp(GetModule()); if (module_sp) { lldb_private::Mutex::Locker locker(module_sp->GetMutex()); if (m_symtab_ap.get() == NULL) { m_symtab_ap.reset(new Symtab(this)); Mutex::Locker symtab_locker (m_symtab_ap->GetMutex()); ParseSymtab (true); m_symtab_ap->Finalize (); } } return m_symtab_ap.get(); } SectionList * ObjectFileMachO::GetSectionList() { ModuleSP module_sp(GetModule()); if (module_sp) { lldb_private::Mutex::Locker locker(module_sp->GetMutex()); if (m_sections_ap.get() == NULL) { m_sections_ap.reset(new SectionList()); ParseSections(); } } return m_sections_ap.get(); } size_t ObjectFileMachO::ParseSections () { lldb::user_id_t segID = 0; lldb::user_id_t sectID = 0; uint32_t offset = MachHeaderSizeFromMagic(m_header.magic); uint32_t i; const bool is_core = GetType() == eTypeCoreFile; //bool dump_sections = false; ModuleSP module_sp (GetModule()); // First look up any LC_ENCRYPTION_INFO load commands typedef RangeArray EncryptedFileRanges; EncryptedFileRanges encrypted_file_ranges; encryption_info_command encryption_cmd; for (i=0; i(strlen(load_cmd.segname), sizeof(load_cmd.segname))); // Use a segment ID of the segment index shifted left by 8 so they // never conflict with any of the sections. SectionSP segment_sp; if (segment_name || is_core) { segment_sp.reset(new Section (module_sp, // Module to which this section belongs ++segID << 8, // Section ID is the 1 based segment index shifted right by 8 bits as not to collide with any of the 256 section IDs that are possible segment_name, // Name of this section eSectionTypeContainer, // This section is a container of other sections. load_cmd.vmaddr, // File VM address == addresses as they are found in the object file load_cmd.vmsize, // VM size in bytes of this section load_cmd.fileoff, // Offset to the data for this section in the file load_cmd.filesize, // Size in bytes of this section as found in the the file load_cmd.flags)); // Flags for this section segment_sp->SetIsEncrypted (segment_is_encrypted); m_sections_ap->AddSection(segment_sp); } struct section_64 sect64; ::memset (§64, 0, sizeof(sect64)); // Push a section into our mach sections for the section at // index zero (NListSectionNoSection) if we don't have any // mach sections yet... if (m_mach_sections.empty()) m_mach_sections.push_back(sect64); uint32_t segment_sect_idx; const lldb::user_id_t first_segment_sectID = sectID + 1; const uint32_t num_u32s = load_cmd.cmd == LoadCommandSegment32 ? 7 : 8; for (segment_sect_idx=0; segment_sect_idx(strlen(sect64.sectname), sizeof(sect64.sectname))); if (!segment_name) { // We have a segment with no name so we need to conjure up // segments that correspond to the section's segname if there // isn't already such a section. If there is such a section, // we resize the section so that it spans all sections. // We also mark these sections as fake so address matches don't // hit if they land in the gaps between the child sections. segment_name.SetTrimmedCStringWithLength(sect64.segname, sizeof(sect64.segname)); segment_sp = m_sections_ap->FindSectionByName (segment_name); if (segment_sp.get()) { Section *segment = segment_sp.get(); // Grow the section size as needed. const lldb::addr_t sect64_min_addr = sect64.addr; const lldb::addr_t sect64_max_addr = sect64_min_addr + sect64.size; const lldb::addr_t curr_seg_byte_size = segment->GetByteSize(); const lldb::addr_t curr_seg_min_addr = segment->GetFileAddress(); const lldb::addr_t curr_seg_max_addr = curr_seg_min_addr + curr_seg_byte_size; if (sect64_min_addr >= curr_seg_min_addr) { const lldb::addr_t new_seg_byte_size = sect64_max_addr - curr_seg_min_addr; // Only grow the section size if needed if (new_seg_byte_size > curr_seg_byte_size) segment->SetByteSize (new_seg_byte_size); } else { // We need to change the base address of the segment and // adjust the child section offsets for all existing children. const lldb::addr_t slide_amount = sect64_min_addr - curr_seg_min_addr; segment->Slide(slide_amount, false); segment->GetChildren().Slide (-slide_amount, false); segment->SetByteSize (curr_seg_max_addr - sect64_min_addr); } // Grow the section size as needed. if (sect64.offset) { const lldb::addr_t segment_min_file_offset = segment->GetFileOffset(); const lldb::addr_t segment_max_file_offset = segment_min_file_offset + segment->GetFileSize(); const lldb::addr_t section_min_file_offset = sect64.offset; const lldb::addr_t section_max_file_offset = section_min_file_offset + sect64.size; const lldb::addr_t new_file_offset = std::min (section_min_file_offset, segment_min_file_offset); const lldb::addr_t new_file_size = std::max (section_max_file_offset, segment_max_file_offset) - new_file_offset; segment->SetFileOffset (new_file_offset); segment->SetFileSize (new_file_size); } } else { // Create a fake section for the section's named segment segment_sp.reset(new Section (segment_sp, // Parent section module_sp, // Module to which this section belongs ++segID << 8, // Section ID is the 1 based segment index shifted right by 8 bits as not to collide with any of the 256 section IDs that are possible segment_name, // Name of this section eSectionTypeContainer, // This section is a container of other sections. sect64.addr, // File VM address == addresses as they are found in the object file sect64.size, // VM size in bytes of this section sect64.offset, // Offset to the data for this section in the file sect64.offset ? sect64.size : 0, // Size in bytes of this section as found in the the file load_cmd.flags)); // Flags for this section segment_sp->SetIsFake(true); m_sections_ap->AddSection(segment_sp); segment_sp->SetIsEncrypted (segment_is_encrypted); } } assert (segment_sp.get()); uint32_t mach_sect_type = sect64.flags & SectionFlagMaskSectionType; static ConstString g_sect_name_objc_data ("__objc_data"); static ConstString g_sect_name_objc_msgrefs ("__objc_msgrefs"); static ConstString g_sect_name_objc_selrefs ("__objc_selrefs"); static ConstString g_sect_name_objc_classrefs ("__objc_classrefs"); static ConstString g_sect_name_objc_superrefs ("__objc_superrefs"); static ConstString g_sect_name_objc_const ("__objc_const"); static ConstString g_sect_name_objc_classlist ("__objc_classlist"); static ConstString g_sect_name_cfstring ("__cfstring"); static ConstString g_sect_name_dwarf_debug_abbrev ("__debug_abbrev"); static ConstString g_sect_name_dwarf_debug_aranges ("__debug_aranges"); static ConstString g_sect_name_dwarf_debug_frame ("__debug_frame"); static ConstString g_sect_name_dwarf_debug_info ("__debug_info"); static ConstString g_sect_name_dwarf_debug_line ("__debug_line"); static ConstString g_sect_name_dwarf_debug_loc ("__debug_loc"); static ConstString g_sect_name_dwarf_debug_macinfo ("__debug_macinfo"); static ConstString g_sect_name_dwarf_debug_pubnames ("__debug_pubnames"); static ConstString g_sect_name_dwarf_debug_pubtypes ("__debug_pubtypes"); static ConstString g_sect_name_dwarf_debug_ranges ("__debug_ranges"); static ConstString g_sect_name_dwarf_debug_str ("__debug_str"); static ConstString g_sect_name_dwarf_apple_names ("__apple_names"); static ConstString g_sect_name_dwarf_apple_types ("__apple_types"); static ConstString g_sect_name_dwarf_apple_namespaces ("__apple_namespac"); static ConstString g_sect_name_dwarf_apple_objc ("__apple_objc"); static ConstString g_sect_name_eh_frame ("__eh_frame"); static ConstString g_sect_name_DATA ("__DATA"); static ConstString g_sect_name_TEXT ("__TEXT"); SectionType sect_type = eSectionTypeOther; if (section_name == g_sect_name_dwarf_debug_abbrev) sect_type = eSectionTypeDWARFDebugAbbrev; else if (section_name == g_sect_name_dwarf_debug_aranges) sect_type = eSectionTypeDWARFDebugAranges; else if (section_name == g_sect_name_dwarf_debug_frame) sect_type = eSectionTypeDWARFDebugFrame; else if (section_name == g_sect_name_dwarf_debug_info) sect_type = eSectionTypeDWARFDebugInfo; else if (section_name == g_sect_name_dwarf_debug_line) sect_type = eSectionTypeDWARFDebugLine; else if (section_name == g_sect_name_dwarf_debug_loc) sect_type = eSectionTypeDWARFDebugLoc; else if (section_name == g_sect_name_dwarf_debug_macinfo) sect_type = eSectionTypeDWARFDebugMacInfo; else if (section_name == g_sect_name_dwarf_debug_pubnames) sect_type = eSectionTypeDWARFDebugPubNames; else if (section_name == g_sect_name_dwarf_debug_pubtypes) sect_type = eSectionTypeDWARFDebugPubTypes; else if (section_name == g_sect_name_dwarf_debug_ranges) sect_type = eSectionTypeDWARFDebugRanges; else if (section_name == g_sect_name_dwarf_debug_str) sect_type = eSectionTypeDWARFDebugStr; else if (section_name == g_sect_name_dwarf_apple_names) sect_type = eSectionTypeDWARFAppleNames; else if (section_name == g_sect_name_dwarf_apple_types) sect_type = eSectionTypeDWARFAppleTypes; else if (section_name == g_sect_name_dwarf_apple_namespaces) sect_type = eSectionTypeDWARFAppleNamespaces; else if (section_name == g_sect_name_dwarf_apple_objc) sect_type = eSectionTypeDWARFAppleObjC; else if (section_name == g_sect_name_objc_selrefs) sect_type = eSectionTypeDataCStringPointers; else if (section_name == g_sect_name_objc_msgrefs) sect_type = eSectionTypeDataObjCMessageRefs; else if (section_name == g_sect_name_eh_frame) sect_type = eSectionTypeEHFrame; else if (section_name == g_sect_name_cfstring) sect_type = eSectionTypeDataObjCCFStrings; else if (section_name == g_sect_name_objc_data || section_name == g_sect_name_objc_classrefs || section_name == g_sect_name_objc_superrefs || section_name == g_sect_name_objc_const || section_name == g_sect_name_objc_classlist) { sect_type = eSectionTypeDataPointers; } if (sect_type == eSectionTypeOther) { switch (mach_sect_type) { // TODO: categorize sections by other flags for regular sections case SectionTypeRegular: if (segment_sp->GetName() == g_sect_name_TEXT) sect_type = eSectionTypeCode; else if (segment_sp->GetName() == g_sect_name_DATA) sect_type = eSectionTypeData; else sect_type = eSectionTypeOther; break; case SectionTypeZeroFill: sect_type = eSectionTypeZeroFill; break; case SectionTypeCStringLiterals: sect_type = eSectionTypeDataCString; break; // section with only literal C strings case SectionType4ByteLiterals: sect_type = eSectionTypeData4; break; // section with only 4 byte literals case SectionType8ByteLiterals: sect_type = eSectionTypeData8; break; // section with only 8 byte literals case SectionTypeLiteralPointers: sect_type = eSectionTypeDataPointers; break; // section with only pointers to literals case SectionTypeNonLazySymbolPointers: sect_type = eSectionTypeDataPointers; break; // section with only non-lazy symbol pointers case SectionTypeLazySymbolPointers: sect_type = eSectionTypeDataPointers; break; // section with only lazy symbol pointers case SectionTypeSymbolStubs: sect_type = eSectionTypeCode; break; // section with only symbol stubs, byte size of stub in the reserved2 field case SectionTypeModuleInitFunctionPointers: sect_type = eSectionTypeDataPointers; break; // section with only function pointers for initialization case SectionTypeModuleTermFunctionPointers: sect_type = eSectionTypeDataPointers; break; // section with only function pointers for termination case SectionTypeCoalesced: sect_type = eSectionTypeOther; break; case SectionTypeZeroFillLarge: sect_type = eSectionTypeZeroFill; break; case SectionTypeInterposing: sect_type = eSectionTypeCode; break; // section with only pairs of function pointers for interposing case SectionType16ByteLiterals: sect_type = eSectionTypeData16; break; // section with only 16 byte literals case SectionTypeDTraceObjectFormat: sect_type = eSectionTypeDebug; break; case SectionTypeLazyDylibSymbolPointers: sect_type = eSectionTypeDataPointers; break; default: break; } } SectionSP section_sp(new Section (segment_sp, module_sp, ++sectID, section_name, sect_type, sect64.addr - segment_sp->GetFileAddress(), sect64.size, sect64.offset, sect64.offset == 0 ? 0 : sect64.size, sect64.flags)); // Set the section to be encrypted to match the segment bool section_is_encrypted = false; if (!segment_is_encrypted && load_cmd.filesize != 0) section_is_encrypted = encrypted_file_ranges.FindEntryThatContains(sect64.offset) != NULL; section_sp->SetIsEncrypted (segment_is_encrypted || section_is_encrypted); segment_sp->GetChildren().AddSection(section_sp); if (segment_sp->IsFake()) { segment_sp.reset(); segment_name.Clear(); } } if (segment_sp && m_header.filetype == HeaderFileTypeDSYM) { if (first_segment_sectID <= sectID) { lldb::user_id_t sect_uid; for (sect_uid = first_segment_sectID; sect_uid <= sectID; ++sect_uid) { SectionSP curr_section_sp(segment_sp->GetChildren().FindSectionByID (sect_uid)); SectionSP next_section_sp; if (sect_uid + 1 <= sectID) next_section_sp = segment_sp->GetChildren().FindSectionByID (sect_uid+1); if (curr_section_sp.get()) { if (curr_section_sp->GetByteSize() == 0) { if (next_section_sp.get() != NULL) curr_section_sp->SetByteSize ( next_section_sp->GetFileAddress() - curr_section_sp->GetFileAddress() ); else curr_section_sp->SetByteSize ( load_cmd.vmsize ); } } } } } } } } else if (load_cmd.cmd == LoadCommandDynamicSymtabInfo) { m_dysymtab.cmd = load_cmd.cmd; m_dysymtab.cmdsize = load_cmd.cmdsize; m_data.GetU32 (&offset, &m_dysymtab.ilocalsym, (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2); } offset = load_cmd_offset + load_cmd.cmdsize; } // if (dump_sections) // { // StreamFile s(stdout); // m_sections_ap->Dump(&s, true); // } return sectID; // Return the number of sections we registered with the module } class MachSymtabSectionInfo { public: MachSymtabSectionInfo (SectionList *section_list) : m_section_list (section_list), m_section_infos() { // Get the number of sections down to a depth of 1 to include // all segments and their sections, but no other sections that // may be added for debug map or m_section_infos.resize(section_list->GetNumSections(1)); } SectionSP GetSection (uint8_t n_sect, addr_t file_addr) { if (n_sect == 0) return SectionSP(); if (n_sect < m_section_infos.size()) { if (!m_section_infos[n_sect].section_sp) { SectionSP section_sp (m_section_list->FindSectionByID (n_sect)); m_section_infos[n_sect].section_sp = section_sp; if (section_sp != NULL) { m_section_infos[n_sect].vm_range.SetBaseAddress (section_sp->GetFileAddress()); m_section_infos[n_sect].vm_range.SetByteSize (section_sp->GetByteSize()); } else { Host::SystemLog (Host::eSystemLogError, "error: unable to find section for section %u\n", n_sect); } } if (m_section_infos[n_sect].vm_range.Contains(file_addr)) { // Symbol is in section. return m_section_infos[n_sect].section_sp; } else if (m_section_infos[n_sect].vm_range.GetByteSize () == 0 && m_section_infos[n_sect].vm_range.GetBaseAddress() == file_addr) { // Symbol is in section with zero size, but has the same start // address as the section. This can happen with linker symbols // (symbols that start with the letter 'l' or 'L'. return m_section_infos[n_sect].section_sp; } } return m_section_list->FindSectionContainingFileAddress(file_addr); } protected: struct SectionInfo { SectionInfo () : vm_range(), section_sp () { } VMRange vm_range; SectionSP section_sp; }; SectionList *m_section_list; std::vector m_section_infos; }; size_t ObjectFileMachO::ParseSymtab (bool minimize) { Timer scoped_timer(__PRETTY_FUNCTION__, "ObjectFileMachO::ParseSymtab () module = %s", m_file.GetFilename().AsCString("")); ModuleSP module_sp (GetModule()); if (!module_sp) return 0; struct symtab_command symtab_load_command = { 0, 0, 0, 0, 0, 0 }; struct linkedit_data_command function_starts_load_command = { 0, 0, 0, 0 }; typedef AddressDataArray FunctionStarts; FunctionStarts function_starts; uint32_t offset = MachHeaderSizeFromMagic(m_header.magic); uint32_t i; LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_SYMBOLS)); for (i=0; iLogMessage(log.get(), "LC_SYMTAB.symoff == 0"); return 0; } if (symtab_load_command.stroff == 0) { if (log) module_sp->LogMessage(log.get(), "LC_SYMTAB.stroff == 0"); return 0; } if (symtab_load_command.nsyms == 0) { if (log) module_sp->LogMessage(log.get(), "LC_SYMTAB.nsyms == 0"); return 0; } if (symtab_load_command.strsize == 0) { if (log) module_sp->LogMessage(log.get(), "LC_SYMTAB.strsize == 0"); return 0; } break; case LoadCommandFunctionStarts: function_starts_load_command.cmd = lc.cmd; function_starts_load_command.cmdsize = lc.cmdsize; if (m_data.GetU32(&offset, &function_starts_load_command.dataoff, 2) == NULL) // fill in symoff, nsyms, stroff, strsize fields bzero (&function_starts_load_command, sizeof(function_starts_load_command)); break; default: break; } offset = cmd_offset + lc.cmdsize; } if (symtab_load_command.cmd) { Symtab *symtab = m_symtab_ap.get(); SectionList *section_list = GetSectionList(); if (section_list == NULL) return 0; ProcessSP process_sp (m_process_wp.lock()); Process *process = process_sp.get(); const size_t addr_byte_size = m_data.GetAddressByteSize(); bool bit_width_32 = addr_byte_size == 4; const size_t nlist_byte_size = bit_width_32 ? sizeof(struct nlist) : sizeof(struct nlist_64); DataExtractor nlist_data (NULL, 0, m_data.GetByteOrder(), m_data.GetAddressByteSize()); DataExtractor strtab_data (NULL, 0, m_data.GetByteOrder(), m_data.GetAddressByteSize()); DataExtractor function_starts_data (NULL, 0, m_data.GetByteOrder(), m_data.GetAddressByteSize()); const addr_t nlist_data_byte_size = symtab_load_command.nsyms * nlist_byte_size; const addr_t strtab_data_byte_size = symtab_load_command.strsize; addr_t strtab_addr = LLDB_INVALID_ADDRESS; if (process) { Target &target = process->GetTarget(); SectionSP linkedit_section_sp(section_list->FindSectionByName(GetSegmentNameLINKEDIT())); // Reading mach file from memory in a process or core file... if (linkedit_section_sp) { const addr_t linkedit_load_addr = linkedit_section_sp->GetLoadBaseAddress(&target); const addr_t linkedit_file_offset = linkedit_section_sp->GetFileOffset(); const addr_t symoff_addr = linkedit_load_addr + symtab_load_command.symoff - linkedit_file_offset; strtab_addr = linkedit_load_addr + symtab_load_command.stroff - linkedit_file_offset; bool data_was_read = false; #if defined (__APPLE__) && defined (__arm__) if (m_header.flags & 0x80000000u) { // This mach-o memory file is in the dyld shared cache. If this // program is not remote and this is iOS, then this process will // share the same shared cache as the process we are debugging and // we can read the entire __LINKEDIT from the address space in this // process. This is a needed optimization that is used for local iOS // debugging only since all shared libraries in the shared cache do // not have corresponding files that exist in the file system of the // device. They have been combined into a single file. This means we // always have to load these files from memory. All of the symbol and // string tables from all of the __LINKEDIT sections from the shared // libraries in the shared cache have been merged into a single large // symbol and string table. Reading all of this symbol and string table // data across can slow down debug launch times, so we optimize this by // reading the memory for the __LINKEDIT section from this process. PlatformSP platform_sp (target.GetPlatform()); if (platform_sp && platform_sp->IsHost()) { data_was_read = true; nlist_data.SetData((void *)symoff_addr, nlist_data_byte_size, eByteOrderLittle); strtab_data.SetData((void *)strtab_addr, strtab_data_byte_size, eByteOrderLittle); if (function_starts_load_command.cmd) { const addr_t func_start_addr = linkedit_load_addr + function_starts_load_command.dataoff - linkedit_file_offset; function_starts_data.SetData ((void *)func_start_addr, function_starts_load_command.datasize, eByteOrderLittle); } } } #endif if (!data_was_read) { DataBufferSP nlist_data_sp (ReadMemory (process_sp, symoff_addr, nlist_data_byte_size)); if (nlist_data_sp) nlist_data.SetData (nlist_data_sp, 0, nlist_data_sp->GetByteSize()); //DataBufferSP strtab_data_sp (ReadMemory (process_sp, strtab_addr, strtab_data_byte_size)); //if (strtab_data_sp) // strtab_data.SetData (strtab_data_sp, 0, strtab_data_sp->GetByteSize()); if (function_starts_load_command.cmd) { const addr_t func_start_addr = linkedit_load_addr + function_starts_load_command.dataoff - linkedit_file_offset; DataBufferSP func_start_data_sp (ReadMemory (process_sp, func_start_addr, function_starts_load_command.datasize)); if (func_start_data_sp) function_starts_data.SetData (func_start_data_sp, 0, func_start_data_sp->GetByteSize()); } } } } else { nlist_data.SetData (m_data, symtab_load_command.symoff, nlist_data_byte_size); strtab_data.SetData (m_data, symtab_load_command.stroff, strtab_data_byte_size); if (function_starts_load_command.cmd) { function_starts_data.SetData (m_data, function_starts_load_command.dataoff, function_starts_load_command.datasize); } } if (nlist_data.GetByteSize() == 0) { if (log) module_sp->LogMessage(log.get(), "failed to read nlist data"); return 0; } const bool have_strtab_data = strtab_data.GetByteSize() > 0; if (!have_strtab_data) { if (process) { if (strtab_addr == LLDB_INVALID_ADDRESS) { if (log) module_sp->LogMessage(log.get(), "failed to locate the strtab in memory"); return 0; } } else { if (log) module_sp->LogMessage(log.get(), "failed to read strtab data"); return 0; } } const ConstString &g_segment_name_TEXT = GetSegmentNameTEXT(); const ConstString &g_segment_name_DATA = GetSegmentNameDATA(); const ConstString &g_segment_name_OBJC = GetSegmentNameOBJC(); const ConstString &g_section_name_eh_frame = GetSectionNameEHFrame(); SectionSP text_section_sp(section_list->FindSectionByName(g_segment_name_TEXT)); SectionSP data_section_sp(section_list->FindSectionByName(g_segment_name_DATA)); SectionSP objc_section_sp(section_list->FindSectionByName(g_segment_name_OBJC)); SectionSP eh_frame_section_sp; if (text_section_sp.get()) eh_frame_section_sp = text_section_sp->GetChildren().FindSectionByName (g_section_name_eh_frame); else eh_frame_section_sp = section_list->FindSectionByName (g_section_name_eh_frame); const bool is_arm = (m_header.cputype == llvm::MachO::CPUTypeARM); if (text_section_sp && function_starts_data.GetByteSize()) { FunctionStarts::Entry function_start_entry; function_start_entry.data = false; uint32_t function_start_offset = 0; function_start_entry.addr = text_section_sp->GetFileAddress(); uint64_t delta; while ((delta = function_starts_data.GetULEB128(&function_start_offset)) > 0) { // Now append the current entry function_start_entry.addr += delta; function_starts.Append(function_start_entry); } } const uint32_t function_starts_count = function_starts.GetSize(); uint8_t TEXT_eh_frame_sectID = eh_frame_section_sp.get() ? eh_frame_section_sp->GetID() : NListSectionNoSection; uint32_t nlist_data_offset = 0; uint32_t N_SO_index = UINT32_MAX; MachSymtabSectionInfo section_info (section_list); std::vector N_FUN_indexes; std::vector N_NSYM_indexes; std::vector N_INCL_indexes; std::vector N_BRAC_indexes; std::vector N_COMM_indexes; typedef std::map ValueToSymbolIndexMap; typedef std::map NListIndexToSymbolIndexMap; ValueToSymbolIndexMap N_FUN_addr_to_sym_idx; ValueToSymbolIndexMap N_STSYM_addr_to_sym_idx; // Any symbols that get merged into another will get an entry // in this map so we know NListIndexToSymbolIndexMap m_nlist_idx_to_sym_idx; uint32_t nlist_idx = 0; Symbol *symbol_ptr = NULL; uint32_t sym_idx = 0; Symbol *sym = symtab->Resize (symtab_load_command.nsyms + m_dysymtab.nindirectsyms); uint32_t num_syms = symtab->GetNumSymbols(); std::string memory_symbol_name; //symtab->Reserve (symtab_load_command.nsyms + m_dysymtab.nindirectsyms); for (nlist_idx = 0; nlist_idx < symtab_load_command.nsyms; ++nlist_idx) { struct nlist_64 nlist; if (!nlist_data.ValidOffsetForDataOfSize(nlist_data_offset, nlist_byte_size)) break; nlist.n_strx = nlist_data.GetU32_unchecked(&nlist_data_offset); nlist.n_type = nlist_data.GetU8_unchecked (&nlist_data_offset); nlist.n_sect = nlist_data.GetU8_unchecked (&nlist_data_offset); nlist.n_desc = nlist_data.GetU16_unchecked (&nlist_data_offset); nlist.n_value = nlist_data.GetAddress_unchecked (&nlist_data_offset); SymbolType type = eSymbolTypeInvalid; const char *symbol_name = NULL; if (have_strtab_data) { symbol_name = strtab_data.PeekCStr(nlist.n_strx); if (symbol_name == NULL) { // No symbol should be NULL, even the symbols with no // string values should have an offset zero which points // to an empty C-string Host::SystemLog (Host::eSystemLogError, "error: symbol[%u] has invalid string table offset 0x%x in %s/%s, ignoring symbol\n", nlist_idx, nlist.n_strx, module_sp->GetFileSpec().GetDirectory().GetCString(), module_sp->GetFileSpec().GetFilename().GetCString()); continue; } if (symbol_name[0] == '\0') symbol_name = NULL; } else { const addr_t str_addr = strtab_addr + nlist.n_strx; Error str_error; if (process->ReadCStringFromMemory(str_addr, memory_symbol_name, str_error)) symbol_name = memory_symbol_name.c_str(); } const char *symbol_name_non_abi_mangled = NULL; SectionSP symbol_section; uint32_t symbol_byte_size = 0; bool add_nlist = true; bool is_debug = ((nlist.n_type & NlistMaskStab) != 0); assert (sym_idx < num_syms); sym[sym_idx].SetDebug (is_debug); if (is_debug) { switch (nlist.n_type) { case StabGlobalSymbol: // N_GSYM -- global symbol: name,,NO_SECT,type,0 // Sometimes the N_GSYM value contains the address. // FIXME: In the .o files, we have a GSYM and a debug symbol for all the ObjC data. They // have the same address, but we want to ensure that we always find only the real symbol, // 'cause we don't currently correctly attribute the GSYM one to the ObjCClass/Ivar/MetaClass // symbol type. This is a temporary hack to make sure the ObjectiveC symbols get treated // correctly. To do this right, we should coalesce all the GSYM & global symbols that have the // same address. if (symbol_name && symbol_name[0] == '_' && symbol_name[1] == 'O' && (strncmp (symbol_name, "_OBJC_IVAR_$_", strlen ("_OBJC_IVAR_$_")) == 0 || strncmp (symbol_name, "_OBJC_CLASS_$_", strlen ("_OBJC_CLASS_$_")) == 0 || strncmp (symbol_name, "_OBJC_METACLASS_$_", strlen ("_OBJC_METACLASS_$_")) == 0)) add_nlist = false; else { sym[sym_idx].SetExternal(true); if (nlist.n_value != 0) symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); type = eSymbolTypeData; } break; case StabFunctionName: // N_FNAME -- procedure name (f77 kludge): name,,NO_SECT,0,0 type = eSymbolTypeCompiler; break; case StabFunction: // N_FUN -- procedure: name,,n_sect,linenumber,address if (symbol_name) { type = eSymbolTypeCode; symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); N_FUN_addr_to_sym_idx[nlist.n_value] = sym_idx; // We use the current number of symbols in the symbol table in lieu of // using nlist_idx in case we ever start trimming entries out N_FUN_indexes.push_back(sym_idx); } else { type = eSymbolTypeCompiler; if ( !N_FUN_indexes.empty() ) { // Copy the size of the function into the original STAB entry so we don't have // to hunt for it later symtab->SymbolAtIndex(N_FUN_indexes.back())->SetByteSize(nlist.n_value); N_FUN_indexes.pop_back(); // We don't really need the end function STAB as it contains the size which // we already placed with the original symbol, so don't add it if we want a // minimal symbol table if (minimize) add_nlist = false; } } break; case StabStaticSymbol: // N_STSYM -- static symbol: name,,n_sect,type,address N_STSYM_addr_to_sym_idx[nlist.n_value] = sym_idx; symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); type = eSymbolTypeData; break; case StabLocalCommon: // N_LCSYM -- .lcomm symbol: name,,n_sect,type,address symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); type = eSymbolTypeCommonBlock; break; case StabBeginSymbol: // N_BNSYM // We use the current number of symbols in the symbol table in lieu of // using nlist_idx in case we ever start trimming entries out if (minimize) { // Skip these if we want minimal symbol tables add_nlist = false; } else { symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); N_NSYM_indexes.push_back(sym_idx); type = eSymbolTypeScopeBegin; } break; case StabEndSymbol: // N_ENSYM // Set the size of the N_BNSYM to the terminating index of this N_ENSYM // so that we can always skip the entire symbol if we need to navigate // more quickly at the source level when parsing STABS if (minimize) { // Skip these if we want minimal symbol tables add_nlist = false; } else { if ( !N_NSYM_indexes.empty() ) { symbol_ptr = symtab->SymbolAtIndex(N_NSYM_indexes.back()); symbol_ptr->SetByteSize(sym_idx + 1); symbol_ptr->SetSizeIsSibling(true); N_NSYM_indexes.pop_back(); } type = eSymbolTypeScopeEnd; } break; case StabSourceFileOptions: // N_OPT - emitted with gcc2_compiled and in gcc source type = eSymbolTypeCompiler; break; case StabRegisterSymbol: // N_RSYM - register sym: name,,NO_SECT,type,register type = eSymbolTypeVariable; break; case StabSourceLine: // N_SLINE - src line: 0,,n_sect,linenumber,address symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); type = eSymbolTypeLineEntry; break; case StabStructureType: // N_SSYM - structure elt: name,,NO_SECT,type,struct_offset type = eSymbolTypeVariableType; break; case StabSourceFileName: // N_SO - source file name type = eSymbolTypeSourceFile; if (symbol_name == NULL) { if (minimize) add_nlist = false; if (N_SO_index != UINT32_MAX) { // Set the size of the N_SO to the terminating index of this N_SO // so that we can always skip the entire N_SO if we need to navigate // more quickly at the source level when parsing STABS symbol_ptr = symtab->SymbolAtIndex(N_SO_index); symbol_ptr->SetByteSize(sym_idx + (minimize ? 0 : 1)); symbol_ptr->SetSizeIsSibling(true); } N_NSYM_indexes.clear(); N_INCL_indexes.clear(); N_BRAC_indexes.clear(); N_COMM_indexes.clear(); N_FUN_indexes.clear(); N_SO_index = UINT32_MAX; } else { // We use the current number of symbols in the symbol table in lieu of // using nlist_idx in case we ever start trimming entries out const bool N_SO_has_full_path = symbol_name[0] == '/'; if (N_SO_has_full_path) { if (minimize && (N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) { // We have two consecutive N_SO entries where the first contains a directory // and the second contains a full path. sym[sym_idx - 1].GetMangled().SetValue(symbol_name, false); m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; add_nlist = false; } else { // This is the first entry in a N_SO that contains a directory or // a full path to the source file N_SO_index = sym_idx; } } else if (minimize && (N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) { // This is usually the second N_SO entry that contains just the filename, // so here we combine it with the first one if we are minimizing the symbol table const char *so_path = sym[sym_idx - 1].GetMangled().GetDemangledName().AsCString(); if (so_path && so_path[0]) { std::string full_so_path (so_path); if (*full_so_path.rbegin() != '/') full_so_path += '/'; full_so_path += symbol_name; sym[sym_idx - 1].GetMangled().SetValue(full_so_path.c_str(), false); add_nlist = false; m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; } } } break; case StabObjectFileName: // N_OSO - object file name: name,,0,0,st_mtime type = eSymbolTypeObjectFile; break; case StabLocalSymbol: // N_LSYM - local sym: name,,NO_SECT,type,offset type = eSymbolTypeLocal; break; //---------------------------------------------------------------------- // INCL scopes //---------------------------------------------------------------------- case StabBeginIncludeFileName: // N_BINCL - include file beginning: name,,NO_SECT,0,sum // We use the current number of symbols in the symbol table in lieu of // using nlist_idx in case we ever start trimming entries out N_INCL_indexes.push_back(sym_idx); type = eSymbolTypeScopeBegin; break; case StabEndIncludeFile: // N_EINCL - include file end: name,,NO_SECT,0,0 // Set the size of the N_BINCL to the terminating index of this N_EINCL // so that we can always skip the entire symbol if we need to navigate // more quickly at the source level when parsing STABS if ( !N_INCL_indexes.empty() ) { symbol_ptr = symtab->SymbolAtIndex(N_INCL_indexes.back()); symbol_ptr->SetByteSize(sym_idx + 1); symbol_ptr->SetSizeIsSibling(true); N_INCL_indexes.pop_back(); } type = eSymbolTypeScopeEnd; break; case StabIncludeFileName: // N_SOL - #included file name: name,,n_sect,0,address type = eSymbolTypeHeaderFile; // We currently don't use the header files on darwin if (minimize) add_nlist = false; break; case StabCompilerParameters: // N_PARAMS - compiler parameters: name,,NO_SECT,0,0 type = eSymbolTypeCompiler; break; case StabCompilerVersion: // N_VERSION - compiler version: name,,NO_SECT,0,0 type = eSymbolTypeCompiler; break; case StabCompilerOptLevel: // N_OLEVEL - compiler -O level: name,,NO_SECT,0,0 type = eSymbolTypeCompiler; break; case StabParameter: // N_PSYM - parameter: name,,NO_SECT,type,offset type = eSymbolTypeVariable; break; case StabAlternateEntry: // N_ENTRY - alternate entry: name,,n_sect,linenumber,address symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); type = eSymbolTypeLineEntry; break; //---------------------------------------------------------------------- // Left and Right Braces //---------------------------------------------------------------------- case StabLeftBracket: // N_LBRAC - left bracket: 0,,NO_SECT,nesting level,address // We use the current number of symbols in the symbol table in lieu of // using nlist_idx in case we ever start trimming entries out symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); N_BRAC_indexes.push_back(sym_idx); type = eSymbolTypeScopeBegin; break; case StabRightBracket: // N_RBRAC - right bracket: 0,,NO_SECT,nesting level,address // Set the size of the N_LBRAC to the terminating index of this N_RBRAC // so that we can always skip the entire symbol if we need to navigate // more quickly at the source level when parsing STABS symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); if ( !N_BRAC_indexes.empty() ) { symbol_ptr = symtab->SymbolAtIndex(N_BRAC_indexes.back()); symbol_ptr->SetByteSize(sym_idx + 1); symbol_ptr->SetSizeIsSibling(true); N_BRAC_indexes.pop_back(); } type = eSymbolTypeScopeEnd; break; case StabDeletedIncludeFile: // N_EXCL - deleted include file: name,,NO_SECT,0,sum type = eSymbolTypeHeaderFile; break; //---------------------------------------------------------------------- // COMM scopes //---------------------------------------------------------------------- case StabBeginCommon: // N_BCOMM - begin common: name,,NO_SECT,0,0 // We use the current number of symbols in the symbol table in lieu of // using nlist_idx in case we ever start trimming entries out type = eSymbolTypeScopeBegin; N_COMM_indexes.push_back(sym_idx); break; case StabEndCommonLocal: // N_ECOML - end common (local name): 0,,n_sect,0,address symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); // Fall through case StabEndCommon: // N_ECOMM - end common: name,,n_sect,0,0 // Set the size of the N_BCOMM to the terminating index of this N_ECOMM/N_ECOML // so that we can always skip the entire symbol if we need to navigate // more quickly at the source level when parsing STABS if ( !N_COMM_indexes.empty() ) { symbol_ptr = symtab->SymbolAtIndex(N_COMM_indexes.back()); symbol_ptr->SetByteSize(sym_idx + 1); symbol_ptr->SetSizeIsSibling(true); N_COMM_indexes.pop_back(); } type = eSymbolTypeScopeEnd; break; case StabLength: // N_LENG - second stab entry with length information type = eSymbolTypeAdditional; break; default: break; } } else { //uint8_t n_pext = NlistMaskPrivateExternal & nlist.n_type; uint8_t n_type = NlistMaskType & nlist.n_type; sym[sym_idx].SetExternal((NlistMaskExternal & nlist.n_type) != 0); switch (n_type) { case NListTypeIndirect: // N_INDR - Fall through case NListTypePreboundUndefined:// N_PBUD - Fall through case NListTypeUndefined: // N_UNDF type = eSymbolTypeUndefined; break; case NListTypeAbsolute: // N_ABS type = eSymbolTypeAbsolute; break; case NListTypeSection: // N_SECT { symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); if (symbol_section == NULL) { // TODO: warn about this? add_nlist = false; break; } if (TEXT_eh_frame_sectID == nlist.n_sect) { type = eSymbolTypeException; } else { uint32_t section_type = symbol_section->Get() & SectionFlagMaskSectionType; switch (section_type) { case SectionTypeRegular: break; // regular section //case SectionTypeZeroFill: type = eSymbolTypeData; break; // zero fill on demand section case SectionTypeCStringLiterals: type = eSymbolTypeData; break; // section with only literal C strings case SectionType4ByteLiterals: type = eSymbolTypeData; break; // section with only 4 byte literals case SectionType8ByteLiterals: type = eSymbolTypeData; break; // section with only 8 byte literals case SectionTypeLiteralPointers: type = eSymbolTypeTrampoline; break; // section with only pointers to literals case SectionTypeNonLazySymbolPointers: type = eSymbolTypeTrampoline; break; // section with only non-lazy symbol pointers case SectionTypeLazySymbolPointers: type = eSymbolTypeTrampoline; break; // section with only lazy symbol pointers case SectionTypeSymbolStubs: type = eSymbolTypeTrampoline; break; // section with only symbol stubs, byte size of stub in the reserved2 field case SectionTypeModuleInitFunctionPointers: type = eSymbolTypeCode; break; // section with only function pointers for initialization case SectionTypeModuleTermFunctionPointers: type = eSymbolTypeCode; break; // section with only function pointers for termination //case SectionTypeCoalesced: type = eSymbolType; break; // section contains symbols that are to be coalesced //case SectionTypeZeroFillLarge: type = eSymbolTypeData; break; // zero fill on demand section (that can be larger than 4 gigabytes) case SectionTypeInterposing: type = eSymbolTypeTrampoline; break; // section with only pairs of function pointers for interposing case SectionType16ByteLiterals: type = eSymbolTypeData; break; // section with only 16 byte literals case SectionTypeDTraceObjectFormat: type = eSymbolTypeInstrumentation; break; case SectionTypeLazyDylibSymbolPointers: type = eSymbolTypeTrampoline; break; default: break; } if (type == eSymbolTypeInvalid) { const char *symbol_sect_name = symbol_section->GetName().AsCString(); if (symbol_section->IsDescendant (text_section_sp.get())) { if (symbol_section->IsClear(SectionAttrUserPureInstructions | SectionAttrUserSelfModifyingCode | SectionAttrSytemSomeInstructions)) type = eSymbolTypeData; else type = eSymbolTypeCode; } else if (symbol_section->IsDescendant(data_section_sp.get())) { if (symbol_sect_name && ::strstr (symbol_sect_name, "__objc") == symbol_sect_name) { type = eSymbolTypeRuntime; if (symbol_name && symbol_name[0] == '_' && symbol_name[1] == 'O' && symbol_name[2] == 'B') { llvm::StringRef symbol_name_ref(symbol_name); static const llvm::StringRef g_objc_v2_prefix_class ("_OBJC_CLASS_$_"); static const llvm::StringRef g_objc_v2_prefix_metaclass ("_OBJC_METACLASS_$_"); static const llvm::StringRef g_objc_v2_prefix_ivar ("_OBJC_IVAR_$_"); if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) { symbol_name_non_abi_mangled = symbol_name + 1; symbol_name = symbol_name + g_objc_v2_prefix_class.size(); type = eSymbolTypeObjCClass; } else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) { symbol_name_non_abi_mangled = symbol_name + 1; symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size(); type = eSymbolTypeObjCMetaClass; } else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) { symbol_name_non_abi_mangled = symbol_name + 1; symbol_name = symbol_name + g_objc_v2_prefix_ivar.size(); type = eSymbolTypeObjCIVar; } } } else if (symbol_sect_name && ::strstr (symbol_sect_name, "__gcc_except_tab") == symbol_sect_name) { type = eSymbolTypeException; } else { type = eSymbolTypeData; } } else if (symbol_sect_name && ::strstr (symbol_sect_name, "__IMPORT") == symbol_sect_name) { type = eSymbolTypeTrampoline; } else if (symbol_section->IsDescendant(objc_section_sp.get())) { type = eSymbolTypeRuntime; if (symbol_name && symbol_name[0] == '.') { llvm::StringRef symbol_name_ref(symbol_name); static const llvm::StringRef g_objc_v1_prefix_class (".objc_class_name_"); if (symbol_name_ref.startswith(g_objc_v1_prefix_class)) { symbol_name_non_abi_mangled = symbol_name; symbol_name = symbol_name + g_objc_v1_prefix_class.size(); type = eSymbolTypeObjCClass; } } } } } } break; } } if (add_nlist) { uint64_t symbol_value = nlist.n_value; bool symbol_name_is_mangled = false; if (symbol_name_non_abi_mangled) { sym[sym_idx].GetMangled().SetMangledName (symbol_name_non_abi_mangled); sym[sym_idx].GetMangled().SetDemangledName (symbol_name); } else { if (symbol_name && symbol_name[0] == '_') { symbol_name_is_mangled = symbol_name[1] == '_'; symbol_name++; // Skip the leading underscore } if (symbol_name) { sym[sym_idx].GetMangled().SetValue(symbol_name, symbol_name_is_mangled); } } if (is_debug == false) { if (type == eSymbolTypeCode) { // See if we can find a N_FUN entry for any code symbols. // If we do find a match, and the name matches, then we // can merge the two into just the function symbol to avoid // duplicate entries in the symbol table ValueToSymbolIndexMap::const_iterator pos = N_FUN_addr_to_sym_idx.find (nlist.n_value); if (pos != N_FUN_addr_to_sym_idx.end()) { if ((symbol_name_is_mangled == true && sym[sym_idx].GetMangled().GetMangledName() == sym[pos->second].GetMangled().GetMangledName()) || (symbol_name_is_mangled == false && sym[sym_idx].GetMangled().GetDemangledName() == sym[pos->second].GetMangled().GetDemangledName())) { m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; // We just need the flags from the linker symbol, so put these flags // into the N_FUN flags to avoid duplicate symbols in the symbol table sym[pos->second].SetFlags (nlist.n_type << 16 | nlist.n_desc); sym[sym_idx].Clear(); continue; } } } else if (type == eSymbolTypeData) { // See if we can find a N_STSYM entry for any data symbols. // If we do find a match, and the name matches, then we // can merge the two into just the Static symbol to avoid // duplicate entries in the symbol table ValueToSymbolIndexMap::const_iterator pos = N_STSYM_addr_to_sym_idx.find (nlist.n_value); if (pos != N_STSYM_addr_to_sym_idx.end()) { if ((symbol_name_is_mangled == true && sym[sym_idx].GetMangled().GetMangledName() == sym[pos->second].GetMangled().GetMangledName()) || (symbol_name_is_mangled == false && sym[sym_idx].GetMangled().GetDemangledName() == sym[pos->second].GetMangled().GetDemangledName())) { m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; // We just need the flags from the linker symbol, so put these flags // into the N_STSYM flags to avoid duplicate symbols in the symbol table sym[pos->second].SetFlags (nlist.n_type << 16 | nlist.n_desc); sym[sym_idx].Clear(); continue; } } } } if (symbol_section) { const addr_t section_file_addr = symbol_section->GetFileAddress(); if (symbol_byte_size == 0 && function_starts_count > 0) { addr_t symbol_lookup_file_addr = nlist.n_value; // Do an exact address match for non-ARM addresses, else get the closest since // the symbol might be a thumb symbol which has an address with bit zero set FunctionStarts::Entry *func_start_entry = function_starts.FindEntry (symbol_lookup_file_addr, !is_arm); if (is_arm && func_start_entry) { // Verify that the function start address is the symbol address (ARM) // or the symbol address + 1 (thumb) if (func_start_entry->addr != symbol_lookup_file_addr && func_start_entry->addr != (symbol_lookup_file_addr + 1)) { // Not the right entry, NULL it out... func_start_entry = NULL; } } if (func_start_entry) { func_start_entry->data = true; addr_t symbol_file_addr = func_start_entry->addr; uint32_t symbol_flags = 0; if (is_arm) { if (symbol_file_addr & 1) symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB; symbol_file_addr &= 0xfffffffffffffffeull; } const FunctionStarts::Entry *next_func_start_entry = function_starts.FindNextEntry (func_start_entry); const addr_t section_end_file_addr = section_file_addr + symbol_section->GetByteSize(); if (next_func_start_entry) { addr_t next_symbol_file_addr = next_func_start_entry->addr; // Be sure the clear the Thumb address bit when we calculate the size // from the current and next address if (is_arm) next_symbol_file_addr &= 0xfffffffffffffffeull; symbol_byte_size = std::min(next_symbol_file_addr - symbol_file_addr, section_end_file_addr - symbol_file_addr); } else { symbol_byte_size = section_end_file_addr - symbol_file_addr; } } } symbol_value -= section_file_addr; } sym[sym_idx].SetID (nlist_idx); sym[sym_idx].SetType (type); sym[sym_idx].GetAddress().SetSection (symbol_section); sym[sym_idx].GetAddress().SetOffset (symbol_value); sym[sym_idx].SetFlags (nlist.n_type << 16 | nlist.n_desc); if (symbol_byte_size > 0) sym[sym_idx].SetByteSize(symbol_byte_size); ++sym_idx; } else { sym[sym_idx].Clear(); } } // STAB N_GSYM entries end up having a symbol type eSymbolTypeGlobal and when the symbol value // is zero, the address of the global ends up being in a non-STAB entry. Try and fix up all // such entries by figuring out what the address for the global is by looking up this non-STAB // entry and copying the value into the debug symbol's value to save us the hassle in the // debug symbol parser. Symbol *global_symbol = NULL; for (nlist_idx = 0; nlist_idx < symtab_load_command.nsyms && (global_symbol = symtab->FindSymbolWithType (eSymbolTypeData, Symtab::eDebugYes, Symtab::eVisibilityAny, nlist_idx)) != NULL; nlist_idx++) { if (global_symbol->GetAddress().GetFileAddress() == 0) { std::vector indexes; if (symtab->AppendSymbolIndexesWithName (global_symbol->GetMangled().GetName(), indexes) > 0) { std::vector::const_iterator pos; std::vector::const_iterator end = indexes.end(); for (pos = indexes.begin(); pos != end; ++pos) { symbol_ptr = symtab->SymbolAtIndex(*pos); if (symbol_ptr != global_symbol && symbol_ptr->IsDebug() == false) { global_symbol->GetAddress() = symbol_ptr->GetAddress(); break; } } } } } uint32_t synthetic_sym_id = symtab_load_command.nsyms; if (function_starts_count > 0) { char synthetic_function_symbol[PATH_MAX]; uint32_t num_synthetic_function_symbols = 0; for (i=0; i 0) { if (num_syms < sym_idx + num_synthetic_function_symbols) { num_syms = sym_idx + num_synthetic_function_symbols; sym = symtab->Resize (num_syms); } uint32_t synthetic_function_symbol_idx = 0; for (i=0; idata == false) { addr_t symbol_file_addr = func_start_entry->addr; uint32_t symbol_flags = 0; if (is_arm) { if (symbol_file_addr & 1) symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB; symbol_file_addr &= 0xfffffffffffffffeull; } Address symbol_addr; if (module_sp->ResolveFileAddress (symbol_file_addr, symbol_addr)) { SectionSP symbol_section (symbol_addr.GetSection()); uint32_t symbol_byte_size = 0; if (symbol_section) { const addr_t section_file_addr = symbol_section->GetFileAddress(); const FunctionStarts::Entry *next_func_start_entry = function_starts.FindNextEntry (func_start_entry); const addr_t section_end_file_addr = section_file_addr + symbol_section->GetByteSize(); if (next_func_start_entry) { addr_t next_symbol_file_addr = next_func_start_entry->addr; if (is_arm) next_symbol_file_addr &= 0xfffffffffffffffeull; symbol_byte_size = std::min(next_symbol_file_addr - symbol_file_addr, section_end_file_addr - symbol_file_addr); } else { symbol_byte_size = section_end_file_addr - symbol_file_addr; } snprintf (synthetic_function_symbol, sizeof(synthetic_function_symbol), "___lldb_unnamed_function%u$$%s", ++synthetic_function_symbol_idx, module_sp->GetFileSpec().GetFilename().GetCString()); sym[sym_idx].SetID (synthetic_sym_id++); sym[sym_idx].GetMangled().SetDemangledName(synthetic_function_symbol); sym[sym_idx].SetType (eSymbolTypeCode); sym[sym_idx].SetIsSynthetic (true); sym[sym_idx].GetAddress() = symbol_addr; if (symbol_flags) sym[sym_idx].SetFlags (symbol_flags); if (symbol_byte_size) sym[sym_idx].SetByteSize (symbol_byte_size); ++sym_idx; } } } } } } // Trim our symbols down to just what we ended up with after // removing any symbols. if (sym_idx < num_syms) { num_syms = sym_idx; sym = symtab->Resize (num_syms); } // Now synthesize indirect symbols if (m_dysymtab.nindirectsyms != 0) { DataExtractor indirect_symbol_index_data (m_data, m_dysymtab.indirectsymoff, m_dysymtab.nindirectsyms * 4); if (indirect_symbol_index_data.GetByteSize()) { NListIndexToSymbolIndexMap::const_iterator end_index_pos = m_nlist_idx_to_sym_idx.end(); for (uint32_t sect_idx = 1; sect_idx < m_mach_sections.size(); ++sect_idx) { if ((m_mach_sections[sect_idx].flags & SectionFlagMaskSectionType) == SectionTypeSymbolStubs) { uint32_t symbol_stub_byte_size = m_mach_sections[sect_idx].reserved2; if (symbol_stub_byte_size == 0) continue; const uint32_t num_symbol_stubs = m_mach_sections[sect_idx].size / symbol_stub_byte_size; if (num_symbol_stubs == 0) continue; const uint32_t symbol_stub_index_offset = m_mach_sections[sect_idx].reserved1; for (uint32_t stub_idx = 0; stub_idx < num_symbol_stubs; ++stub_idx) { const uint32_t symbol_stub_index = symbol_stub_index_offset + stub_idx; const lldb::addr_t symbol_stub_addr = m_mach_sections[sect_idx].addr + (stub_idx * symbol_stub_byte_size); uint32_t symbol_stub_offset = symbol_stub_index * 4; if (indirect_symbol_index_data.ValidOffsetForDataOfSize(symbol_stub_offset, 4)) { const uint32_t stub_sym_id = indirect_symbol_index_data.GetU32 (&symbol_stub_offset); if (stub_sym_id & (IndirectSymbolAbsolute | IndirectSymbolLocal)) continue; NListIndexToSymbolIndexMap::const_iterator index_pos = m_nlist_idx_to_sym_idx.find (stub_sym_id); Symbol *stub_symbol = NULL; if (index_pos != end_index_pos) { // We have a remapping from the original nlist index to // a current symbol index, so just look this up by index stub_symbol = symtab->SymbolAtIndex (index_pos->second); } else { // We need to lookup a symbol using the original nlist // symbol index since this index is coming from the // S_SYMBOL_STUBS stub_symbol = symtab->FindSymbolByID (stub_sym_id); } assert (stub_symbol); if (stub_symbol) { Address so_addr(symbol_stub_addr, section_list); if (stub_symbol->GetType() == eSymbolTypeUndefined) { // Change the external symbol into a trampoline that makes sense // These symbols were N_UNDF N_EXT, and are useless to us, so we // can re-use them so we don't have to make up a synthetic symbol // for no good reason. stub_symbol->SetType (eSymbolTypeTrampoline); stub_symbol->SetExternal (false); stub_symbol->GetAddress() = so_addr; stub_symbol->SetByteSize (symbol_stub_byte_size); } else { // Make a synthetic symbol to describe the trampoline stub Mangled stub_symbol_mangled_name(stub_symbol->GetMangled()); if (sym_idx >= num_syms) { sym = symtab->Resize (++num_syms); stub_symbol = NULL; // this pointer no longer valid } sym[sym_idx].SetID (synthetic_sym_id++); sym[sym_idx].GetMangled() = stub_symbol_mangled_name; sym[sym_idx].SetType (eSymbolTypeTrampoline); sym[sym_idx].SetIsSynthetic (true); sym[sym_idx].GetAddress() = so_addr; sym[sym_idx].SetByteSize (symbol_stub_byte_size); ++sym_idx; } } } } } } } } return symtab->GetNumSymbols(); } return 0; } void ObjectFileMachO::Dump (Stream *s) { ModuleSP module_sp(GetModule()); if (module_sp) { lldb_private::Mutex::Locker locker(module_sp->GetMutex()); s->Printf("%p: ", this); s->Indent(); if (m_header.magic == HeaderMagic64 || m_header.magic == HeaderMagic64Swapped) s->PutCString("ObjectFileMachO64"); else s->PutCString("ObjectFileMachO32"); ArchSpec header_arch(eArchTypeMachO, m_header.cputype, m_header.cpusubtype); *s << ", file = '" << m_file << "', arch = " << header_arch.GetArchitectureName() << "\n"; if (m_sections_ap.get()) m_sections_ap->Dump(s, NULL, true, UINT32_MAX); if (m_symtab_ap.get()) m_symtab_ap->Dump(s, NULL, eSortOrderNone); } } bool ObjectFileMachO::GetUUID (lldb_private::UUID* uuid) { ModuleSP module_sp(GetModule()); if (module_sp) { lldb_private::Mutex::Locker locker(module_sp->GetMutex()); struct uuid_command load_cmd; uint32_t offset = MachHeaderSizeFromMagic(m_header.magic); uint32_t i; for (i=0; iSetBytes (uuid_bytes); return true; } return false; } offset = cmd_offset + load_cmd.cmdsize; } } return false; } uint32_t ObjectFileMachO::GetDependentModules (FileSpecList& files) { uint32_t count = 0; ModuleSP module_sp(GetModule()); if (module_sp) { lldb_private::Mutex::Locker locker(module_sp->GetMutex()); struct load_command load_cmd; uint32_t offset = MachHeaderSizeFromMagic(m_header.magic); const bool resolve_path = false; // Don't resolve the dependend file paths since they may not reside on this system uint32_t i; for (i=0; i corresponding to the flavor. // // // So we just keep reading the various register flavors till we find the GPR one, then read the PC out of there. // FIXME: We will need to have a "RegisterContext data provider" class at some point that can get all the registers // out of data in this form & attach them to a given thread. That should underlie the MacOS X User process plugin, // and we'll also need it for the MacOS X Core File process plugin. When we have that we can also use it here. // // For now we hard-code the offsets and flavors we need: // // ModuleSP module_sp(GetModule()); if (module_sp) { lldb_private::Mutex::Locker locker(module_sp->GetMutex()); struct load_command load_cmd; uint32_t offset = MachHeaderSizeFromMagic(m_header.magic); uint32_t i; lldb::addr_t start_address = LLDB_INVALID_ADDRESS; bool done = false; for (i=0; iFindSectionByName(text_segment_name); if (text_segment_sp) { done = true; start_address = text_segment_sp->GetFileAddress() + entryoffset; } } default: break; } if (done) break; // Go to the next load command: offset = cmd_offset + load_cmd.cmdsize; } if (start_address != LLDB_INVALID_ADDRESS) { // We got the start address from the load commands, so now resolve that address in the sections // of this ObjectFile: if (!m_entry_point_address.ResolveAddressUsingFileSections (start_address, GetSectionList())) { m_entry_point_address.Clear(); } } else { // We couldn't read the UnixThread load command - maybe it wasn't there. As a fallback look for the // "start" symbol in the main executable. ModuleSP module_sp (GetModule()); if (module_sp) { SymbolContextList contexts; SymbolContext context; if (module_sp->FindSymbolsWithNameAndType(ConstString ("start"), eSymbolTypeCode, contexts)) { if (contexts.GetContextAtIndex(0, context)) m_entry_point_address = context.symbol->GetAddress(); } } } } return m_entry_point_address; } lldb_private::Address ObjectFileMachO::GetHeaderAddress () { lldb_private::Address header_addr; SectionList *section_list = GetSectionList(); if (section_list) { SectionSP text_segment_sp (section_list->FindSectionByName (GetSegmentNameTEXT())); if (text_segment_sp) { header_addr.SetSection (text_segment_sp); header_addr.SetOffset (0); } } return header_addr; } uint32_t ObjectFileMachO::GetNumThreadContexts () { ModuleSP module_sp(GetModule()); if (module_sp) { lldb_private::Mutex::Locker locker(module_sp->GetMutex()); if (!m_thread_context_offsets_valid) { m_thread_context_offsets_valid = true; uint32_t offset = MachHeaderSizeFromMagic(m_header.magic); FileRangeArray::Entry file_range; thread_command thread_cmd; for (uint32_t i=0; iGetMutex()); if (!m_thread_context_offsets_valid) GetNumThreadContexts (); const FileRangeArray::Entry *thread_context_file_range = m_thread_context_offsets.GetEntryAtIndex (idx); DataExtractor data (m_data, thread_context_file_range->GetRangeBase(), thread_context_file_range->GetByteSize()); switch (m_header.cputype) { case llvm::MachO::CPUTypeARM: reg_ctx_sp.reset (new RegisterContextDarwin_arm_Mach (thread, data)); break; case llvm::MachO::CPUTypeI386: reg_ctx_sp.reset (new RegisterContextDarwin_i386_Mach (thread, data)); break; case llvm::MachO::CPUTypeX86_64: reg_ctx_sp.reset (new RegisterContextDarwin_x86_64_Mach (thread, data)); break; } } return reg_ctx_sp; } ObjectFile::Type ObjectFileMachO::CalculateType() { switch (m_header.filetype) { case HeaderFileTypeObject: // 0x1u MH_OBJECT if (GetAddressByteSize () == 4) { // 32 bit kexts are just object files, but they do have a valid // UUID load command. UUID uuid; if (GetUUID(&uuid)) { // this checking for the UUID load command is not enough // we could eventually look for the symbol named // "OSKextGetCurrentIdentifier" as this is required of kexts if (m_strata == eStrataInvalid) m_strata = eStrataKernel; return eTypeSharedLibrary; } } return eTypeObjectFile; case HeaderFileTypeExecutable: return eTypeExecutable; // 0x2u MH_EXECUTE case HeaderFileTypeFixedVMShlib: return eTypeSharedLibrary; // 0x3u MH_FVMLIB case HeaderFileTypeCore: return eTypeCoreFile; // 0x4u MH_CORE case HeaderFileTypePreloadedExecutable: return eTypeSharedLibrary; // 0x5u MH_PRELOAD case HeaderFileTypeDynamicShlib: return eTypeSharedLibrary; // 0x6u MH_DYLIB case HeaderFileTypeDynamicLinkEditor: return eTypeDynamicLinker; // 0x7u MH_DYLINKER case HeaderFileTypeBundle: return eTypeSharedLibrary; // 0x8u MH_BUNDLE case HeaderFileTypeDynamicShlibStub: return eTypeStubLibrary; // 0x9u MH_DYLIB_STUB case HeaderFileTypeDSYM: return eTypeDebugInfo; // 0xAu MH_DSYM case HeaderFileTypeKextBundle: return eTypeSharedLibrary; // 0xBu MH_KEXT_BUNDLE default: break; } return eTypeUnknown; } ObjectFile::Strata ObjectFileMachO::CalculateStrata() { switch (m_header.filetype) { case HeaderFileTypeObject: // 0x1u MH_OBJECT { // 32 bit kexts are just object files, but they do have a valid // UUID load command. UUID uuid; if (GetUUID(&uuid)) { // this checking for the UUID load command is not enough // we could eventually look for the symbol named // "OSKextGetCurrentIdentifier" as this is required of kexts if (m_type == eTypeInvalid) m_type = eTypeSharedLibrary; return eStrataKernel; } } return eStrataUnknown; case HeaderFileTypeExecutable: // 0x2u MH_EXECUTE // Check for the MH_DYLDLINK bit in the flags if (m_header.flags & HeaderFlagBitIsDynamicLinkObject) { return eStrataUser; } else { SectionList *section_list = GetSectionList(); if (section_list) { static ConstString g_kld_section_name ("__KLD"); if (section_list->FindSectionByName(g_kld_section_name)) return eStrataKernel; } } return eStrataRawImage; case HeaderFileTypeFixedVMShlib: return eStrataUser; // 0x3u MH_FVMLIB case HeaderFileTypeCore: return eStrataUnknown; // 0x4u MH_CORE case HeaderFileTypePreloadedExecutable: return eStrataRawImage; // 0x5u MH_PRELOAD case HeaderFileTypeDynamicShlib: return eStrataUser; // 0x6u MH_DYLIB case HeaderFileTypeDynamicLinkEditor: return eStrataUser; // 0x7u MH_DYLINKER case HeaderFileTypeBundle: return eStrataUser; // 0x8u MH_BUNDLE case HeaderFileTypeDynamicShlibStub: return eStrataUser; // 0x9u MH_DYLIB_STUB case HeaderFileTypeDSYM: return eStrataUnknown; // 0xAu MH_DSYM case HeaderFileTypeKextBundle: return eStrataKernel; // 0xBu MH_KEXT_BUNDLE default: break; } return eStrataUnknown; } uint32_t ObjectFileMachO::GetVersion (uint32_t *versions, uint32_t num_versions) { ModuleSP module_sp(GetModule()); if (module_sp) { lldb_private::Mutex::Locker locker(module_sp->GetMutex()); struct dylib_command load_cmd; uint32_t offset = MachHeaderSizeFromMagic(m_header.magic); uint32_t version_cmd = 0; uint64_t version = 0; uint32_t i; for (i=0; i 0) { if (num_versions > 0) versions[0] = (version & 0xFFFF0000ull) >> 16; if (num_versions > 1) versions[1] = (version & 0x0000FF00ull) >> 8; if (num_versions > 2) versions[2] = (version & 0x000000FFull); // Fill in an remaining version numbers with invalid values for (i=3; iGetMutex()); arch.SetArchitecture (eArchTypeMachO, m_header.cputype, m_header.cpusubtype); // Files with type MH_PRELOAD are currently used in cases where the image // debugs at the addresses in the file itself. Below we set the OS to // unknown to make sure we use the DynamicLoaderStatic()... if (m_header.filetype == HeaderFileTypePreloadedExecutable) { arch.GetTriple().setOS (llvm::Triple::UnknownOS); } return true; } return false; } //------------------------------------------------------------------ // PluginInterface protocol //------------------------------------------------------------------ const char * ObjectFileMachO::GetPluginName() { return "ObjectFileMachO"; } const char * ObjectFileMachO::GetShortPluginName() { return GetPluginNameStatic(); } uint32_t ObjectFileMachO::GetPluginVersion() { return 1; }