//===------- VectorCombine.cpp - Optimize partial vector operations -------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This pass optimizes scalar/vector interactions using target cost models. The // transforms implemented here may not fit in traditional loop-based or SLP // vectorization passes. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Vectorize/VectorCombine.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/GlobalsModRef.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/PatternMatch.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/Transforms/Vectorize.h" #include "llvm/Transforms/Utils/Local.h" using namespace llvm; using namespace llvm::PatternMatch; #define DEBUG_TYPE "vector-combine" STATISTIC(NumVecCmp, "Number of vector compares formed"); STATISTIC(NumVecBO, "Number of vector binops formed"); static bool foldExtractCmp(Instruction &I, const TargetTransformInfo &TTI) { // Match a cmp with extracted vector operands. CmpInst::Predicate Pred; Instruction *Ext0, *Ext1; if (!match(&I, m_Cmp(Pred, m_Instruction(Ext0), m_Instruction(Ext1)))) return false; Value *V0, *V1; ConstantInt *C; if (!match(Ext0, m_ExtractElement(m_Value(V0), m_ConstantInt(C))) || !match(Ext1, m_ExtractElement(m_Value(V1), m_Specific(C))) || V0->getType() != V1->getType()) return false; Type *ScalarTy = Ext0->getType(); Type *VecTy = V0->getType(); bool IsFP = ScalarTy->isFloatingPointTy(); unsigned CmpOpcode = IsFP ? Instruction::FCmp : Instruction::ICmp; // Check if the existing scalar code or the vector alternative is cheaper. // Extra uses of the extracts mean that we include those costs in the // vector total because those instructions will not be eliminated. // ((2 * extract) + scalar cmp) < (vector cmp + extract) ? int ExtractCost = TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, C->getZExtValue()); int ScalarCmpCost = TTI.getCmpSelInstrCost(CmpOpcode, ScalarTy, I.getType()); int VecCmpCost = TTI.getCmpSelInstrCost(CmpOpcode, VecTy, CmpInst::makeCmpResultType(VecTy)); int ScalarCost = 2 * ExtractCost + ScalarCmpCost; int VecCost = VecCmpCost + ExtractCost + !Ext0->hasOneUse() * ExtractCost + !Ext1->hasOneUse() * ExtractCost; if (ScalarCost < VecCost) return false; // cmp Pred (extelt V0, C), (extelt V1, C) --> extelt (cmp Pred V0, V1), C ++NumVecCmp; IRBuilder<> Builder(&I); Value *VecCmp = IsFP ? Builder.CreateFCmp(Pred, V0, V1) : Builder.CreateICmp(Pred, V0, V1); Value *Ext = Builder.CreateExtractElement(VecCmp, C); I.replaceAllUsesWith(Ext); return true; } /// Try to reduce extract element costs by converting scalar binops to vector /// binops followed by extract. static bool foldExtractBinop(Instruction &I, const TargetTransformInfo &TTI) { // It is not safe to transform things like div, urem, etc. because we may // create undefined behavior when executing those on unknown vector elements. if (!isSafeToSpeculativelyExecute(&I)) return false; // Match a scalar binop with extracted vector operands: // bo (extelt X, C0), (extelt Y, C1) Instruction *Ext0, *Ext1; if (!match(&I, m_BinOp(m_Instruction(Ext0), m_Instruction(Ext1)))) return false; Value *X, *Y; uint64_t C0, C1; if (!match(Ext0, m_ExtractElement(m_Value(X), m_ConstantInt(C0))) || !match(Ext1, m_ExtractElement(m_Value(Y), m_ConstantInt(C1))) || X->getType() != Y->getType()) return false; // Check if using a vector binop would be cheaper. Instruction::BinaryOps BOpcode = cast(I).getOpcode(); Type *ScalarTy = I.getType(); Type *VecTy = X->getType(); int ScalarBOCost = TTI.getArithmeticInstrCost(BOpcode, ScalarTy); int VecBOCost = TTI.getArithmeticInstrCost(BOpcode, VecTy); int Extract0Cost = TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, C0); // Handle a special case - if the extract indexes are the same, the // replacement sequence does not require a shuffle. Unless the vector binop is // much more expensive than the scalar binop, this eliminates an extract. // Extra uses of the extracts mean that we include those costs in the // vector total because those instructions will not be eliminated. if (C0 == C1) { assert(Extract0Cost == TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, C1) && "Different costs for same extract?"); int ExtractCost = Extract0Cost; if (X != Y) { int ScalarCost = ExtractCost + ExtractCost + ScalarBOCost; int VecCost = VecBOCost + ExtractCost + !Ext0->hasOneUse() * ExtractCost + !Ext1->hasOneUse() * ExtractCost; if (ScalarCost <= VecCost) return false; } else { // Handle an extra-special case. If the 2 binop operands are identical, // adjust the formulas to account for that: // bo (extelt X, C), (extelt X, C) --> extelt (bo X, X), C // The extra use charge allows for either the CSE'd pattern or an // unoptimized form with identical values. bool HasUseTax = Ext0 == Ext1 ? !Ext0->hasNUses(2) : !Ext0->hasOneUse() || !Ext1->hasOneUse(); int ScalarCost = ExtractCost + ScalarBOCost; int VecCost = VecBOCost + ExtractCost + HasUseTax * ExtractCost; if (ScalarCost <= VecCost) return false; } // bo (extelt X, C), (extelt Y, C) --> extelt (bo X, Y), C ++NumVecBO; IRBuilder<> Builder(&I); Value *NewBO = Builder.CreateBinOp(BOpcode, X, Y); if (auto *VecBOInst = dyn_cast(NewBO)) { // All IR flags are safe to back-propagate because any potential poison // created in unused vector elements is discarded by the extract. VecBOInst->copyIRFlags(&I); } Value *Extract = Builder.CreateExtractElement(NewBO, Ext0->getOperand(1)); I.replaceAllUsesWith(Extract); return true; } // TODO: Handle C0 != C1 by shuffling 1 of the operands. return false; } /// This is the entry point for all transforms. Pass manager differences are /// handled in the callers of this function. static bool runImpl(Function &F, const TargetTransformInfo &TTI, const DominatorTree &DT) { bool MadeChange = false; for (BasicBlock &BB : F) { // Ignore unreachable basic blocks. if (!DT.isReachableFromEntry(&BB)) continue; // Do not delete instructions under here and invalidate the iterator. // Walk the block backwards for efficiency. We're matching a chain of // use->defs, so we're more likely to succeed by starting from the bottom. // TODO: It could be more efficient to remove dead instructions // iteratively in this loop rather than waiting until the end. for (Instruction &I : make_range(BB.rbegin(), BB.rend())) { MadeChange |= foldExtractCmp(I, TTI); MadeChange |= foldExtractBinop(I, TTI); } } // We're done with transforms, so remove dead instructions. if (MadeChange) for (BasicBlock &BB : F) SimplifyInstructionsInBlock(&BB); return MadeChange; } // Pass manager boilerplate below here. namespace { class VectorCombineLegacyPass : public FunctionPass { public: static char ID; VectorCombineLegacyPass() : FunctionPass(ID) { initializeVectorCombineLegacyPassPass(*PassRegistry::getPassRegistry()); } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.addRequired(); AU.setPreservesCFG(); AU.addPreserved(); AU.addPreserved(); FunctionPass::getAnalysisUsage(AU); } bool runOnFunction(Function &F) override { if (skipFunction(F)) return false; auto &TTI = getAnalysis().getTTI(F); auto &DT = getAnalysis().getDomTree(); return runImpl(F, TTI, DT); } }; } // namespace char VectorCombineLegacyPass::ID = 0; INITIALIZE_PASS_BEGIN(VectorCombineLegacyPass, "vector-combine", "Optimize scalar/vector ops", false, false) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_END(VectorCombineLegacyPass, "vector-combine", "Optimize scalar/vector ops", false, false) Pass *llvm::createVectorCombinePass() { return new VectorCombineLegacyPass(); } PreservedAnalyses VectorCombinePass::run(Function &F, FunctionAnalysisManager &FAM) { TargetTransformInfo &TTI = FAM.getResult(F); DominatorTree &DT = FAM.getResult(F); if (!runImpl(F, TTI, DT)) return PreservedAnalyses::all(); PreservedAnalyses PA; PA.preserveSet(); PA.preserve(); return PA; }