//===-- CodeGen.cpp -- bridge to lower to LLVM ----------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/ // //===----------------------------------------------------------------------===// #include "flang/Optimizer/CodeGen/CodeGen.h" #include "PassDetail.h" #include "flang/ISO_Fortran_binding.h" #include "flang/Optimizer/Dialect/FIRAttr.h" #include "flang/Optimizer/Dialect/FIROps.h" #include "mlir/Conversion/ArithmeticToLLVM/ArithmeticToLLVM.h" #include "mlir/Conversion/LLVMCommon/Pattern.h" #include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVM.h" #include "mlir/IR/BuiltinTypes.h" #include "mlir/IR/Matchers.h" #include "mlir/Pass/Pass.h" #include "llvm/ADT/ArrayRef.h" #define DEBUG_TYPE "flang-codegen" // fir::LLVMTypeConverter for converting to LLVM IR dialect types. #include "TypeConverter.h" /// `fir.box` attribute values as defined for CFI_attribute_t in /// flang/ISO_Fortran_binding.h. static constexpr unsigned kAttrPointer = CFI_attribute_pointer; static constexpr unsigned kAttrAllocatable = CFI_attribute_allocatable; static mlir::LLVM::ConstantOp genConstantIndex(mlir::Location loc, mlir::Type ity, mlir::ConversionPatternRewriter &rewriter, std::int64_t offset) { auto cattr = rewriter.getI64IntegerAttr(offset); return rewriter.create(loc, ity, cattr); } static Block *createBlock(mlir::ConversionPatternRewriter &rewriter, mlir::Block *insertBefore) { assert(insertBefore && "expected valid insertion block"); return rewriter.createBlock(insertBefore->getParent(), mlir::Region::iterator(insertBefore)); } namespace { /// FIR conversion pattern template template class FIROpConversion : public mlir::ConvertOpToLLVMPattern { public: explicit FIROpConversion(fir::LLVMTypeConverter &lowering) : mlir::ConvertOpToLLVMPattern(lowering) {} protected: mlir::Type convertType(mlir::Type ty) const { return lowerTy().convertType(ty); } mlir::LLVM::ConstantOp genConstantOffset(mlir::Location loc, mlir::ConversionPatternRewriter &rewriter, int offset) const { auto ity = lowerTy().offsetType(); auto cattr = rewriter.getI32IntegerAttr(offset); return rewriter.create(loc, ity, cattr); } /// Construct code sequence to extract the specifc value from a `fir.box`. mlir::Value getValueFromBox(mlir::Location loc, mlir::Value box, mlir::Type resultTy, mlir::ConversionPatternRewriter &rewriter, unsigned boxValue) const { mlir::LLVM::ConstantOp c0 = genConstantOffset(loc, rewriter, 0); mlir::LLVM::ConstantOp cValuePos = genConstantOffset(loc, rewriter, boxValue); auto pty = mlir::LLVM::LLVMPointerType::get(resultTy); auto p = rewriter.create( loc, pty, mlir::ValueRange{box, c0, cValuePos}); return rewriter.create(loc, resultTy, p); } /// Method to construct code sequence to get the triple for dimension `dim` /// from a box. SmallVector getDimsFromBox(mlir::Location loc, ArrayRef retTys, mlir::Value box, mlir::Value dim, mlir::ConversionPatternRewriter &rewriter) const { mlir::LLVM::ConstantOp c0 = genConstantOffset(loc, rewriter, 0); mlir::LLVM::ConstantOp cDims = genConstantOffset(loc, rewriter, kDimsPosInBox); mlir::LLVM::LoadOp l0 = loadFromOffset(loc, box, c0, cDims, dim, 0, retTys[0], rewriter); mlir::LLVM::LoadOp l1 = loadFromOffset(loc, box, c0, cDims, dim, 1, retTys[1], rewriter); mlir::LLVM::LoadOp l2 = loadFromOffset(loc, box, c0, cDims, dim, 2, retTys[2], rewriter); return {l0.getResult(), l1.getResult(), l2.getResult()}; } mlir::LLVM::LoadOp loadFromOffset(mlir::Location loc, mlir::Value a, mlir::LLVM::ConstantOp c0, mlir::LLVM::ConstantOp cDims, mlir::Value dim, int off, mlir::Type ty, mlir::ConversionPatternRewriter &rewriter) const { auto pty = mlir::LLVM::LLVMPointerType::get(ty); mlir::LLVM::ConstantOp c = genConstantOffset(loc, rewriter, off); mlir::LLVM::GEPOp p = genGEP(loc, pty, rewriter, a, c0, cDims, dim, c); return rewriter.create(loc, ty, p); } /// Read base address from a fir.box. Returned address has type ty. mlir::Value loadBaseAddrFromBox(mlir::Location loc, mlir::Type ty, mlir::Value box, mlir::ConversionPatternRewriter &rewriter) const { mlir::LLVM::ConstantOp c0 = genConstantOffset(loc, rewriter, 0); mlir::LLVM::ConstantOp cAddr = genConstantOffset(loc, rewriter, kAddrPosInBox); auto pty = mlir::LLVM::LLVMPointerType::get(ty); mlir::LLVM::GEPOp p = genGEP(loc, pty, rewriter, box, c0, cAddr); return rewriter.create(loc, ty, p); } mlir::Value loadElementSizeFromBox(mlir::Location loc, mlir::Type ty, mlir::Value box, mlir::ConversionPatternRewriter &rewriter) const { mlir::LLVM::ConstantOp c0 = genConstantOffset(loc, rewriter, 0); mlir::LLVM::ConstantOp cElemLen = genConstantOffset(loc, rewriter, kElemLenPosInBox); auto pty = mlir::LLVM::LLVMPointerType::get(ty); mlir::LLVM::GEPOp p = genGEP(loc, pty, rewriter, box, c0, cElemLen); return rewriter.create(loc, ty, p); } // Load the attribute from the \p box and perform a check against \p maskValue // The final comparison is implemented as `(attribute & maskValue) != 0`. mlir::Value genBoxAttributeCheck(mlir::Location loc, mlir::Value box, mlir::ConversionPatternRewriter &rewriter, unsigned maskValue) const { mlir::Type attrTy = rewriter.getI32Type(); mlir::Value attribute = getValueFromBox(loc, box, attrTy, rewriter, kAttributePosInBox); mlir::LLVM::ConstantOp attrMask = genConstantOffset(loc, rewriter, maskValue); auto maskRes = rewriter.create(loc, attrTy, attribute, attrMask); mlir::LLVM::ConstantOp c0 = genConstantOffset(loc, rewriter, 0); return rewriter.create( loc, mlir::LLVM::ICmpPredicate::ne, maskRes, c0); } template mlir::LLVM::GEPOp genGEP(mlir::Location loc, mlir::Type ty, mlir::ConversionPatternRewriter &rewriter, mlir::Value base, ARGS... args) const { SmallVector cv{args...}; return rewriter.create(loc, ty, base, cv); } /// Perform an extension or truncation as needed on an integer value. Lowering /// to the specific target may involve some sign-extending or truncation of /// values, particularly to fit them from abstract box types to the /// appropriate reified structures. mlir::Value integerCast(mlir::Location loc, mlir::ConversionPatternRewriter &rewriter, mlir::Type ty, mlir::Value val) const { auto valTy = val.getType(); // If the value was not yet lowered, lower its type so that it can // be used in getPrimitiveTypeSizeInBits. if (!valTy.isa()) valTy = convertType(valTy); auto toSize = mlir::LLVM::getPrimitiveTypeSizeInBits(ty); auto fromSize = mlir::LLVM::getPrimitiveTypeSizeInBits(valTy); if (toSize < fromSize) return rewriter.create(loc, ty, val); if (toSize > fromSize) return rewriter.create(loc, ty, val); return val; } fir::LLVMTypeConverter &lowerTy() const { return *static_cast(this->getTypeConverter()); } }; /// FIR conversion pattern template template class FIROpAndTypeConversion : public FIROpConversion { public: using FIROpConversion::FIROpConversion; using OpAdaptor = typename FromOp::Adaptor; mlir::LogicalResult matchAndRewrite(FromOp op, OpAdaptor adaptor, mlir::ConversionPatternRewriter &rewriter) const final { mlir::Type ty = this->convertType(op.getType()); return doRewrite(op, ty, adaptor, rewriter); } virtual mlir::LogicalResult doRewrite(FromOp addr, mlir::Type ty, OpAdaptor adaptor, mlir::ConversionPatternRewriter &rewriter) const = 0; }; /// Create value signaling an absent optional argument in a call, e.g. /// `fir.absent !fir.ref` --> `llvm.mlir.null : !llvm.ptr` struct AbsentOpConversion : public FIROpConversion { using FIROpConversion::FIROpConversion; mlir::LogicalResult matchAndRewrite(fir::AbsentOp absent, OpAdaptor, mlir::ConversionPatternRewriter &rewriter) const override { mlir::Type ty = convertType(absent.getType()); mlir::Location loc = absent.getLoc(); if (absent.getType().isa()) { auto structTy = ty.cast(); assert(!structTy.isOpaque() && !structTy.getBody().empty()); auto undefStruct = rewriter.create(loc, ty); auto nullField = rewriter.create(loc, structTy.getBody()[0]); mlir::MLIRContext *ctx = absent.getContext(); auto c0 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(0)); rewriter.replaceOpWithNewOp( absent, ty, undefStruct, nullField, c0); } else { rewriter.replaceOpWithNewOp(absent, ty); } return success(); } }; // Lower `fir.address_of` operation to `llvm.address_of` operation. struct AddrOfOpConversion : public FIROpConversion { using FIROpConversion::FIROpConversion; mlir::LogicalResult matchAndRewrite(fir::AddrOfOp addr, OpAdaptor adaptor, mlir::ConversionPatternRewriter &rewriter) const override { auto ty = convertType(addr.getType()); rewriter.replaceOpWithNewOp( addr, ty, addr.symbol().getRootReference().getValue()); return success(); } }; } // namespace /// Lookup the function to compute the memory size of this parametric derived /// type. The size of the object may depend on the LEN type parameters of the /// derived type. static mlir::LLVM::LLVMFuncOp getDependentTypeMemSizeFn(fir::RecordType recTy, fir::AllocaOp op, mlir::ConversionPatternRewriter &rewriter) { auto module = op->getParentOfType(); std::string name = recTy.getName().str() + "P.mem.size"; return module.lookupSymbol(name); } namespace { /// convert to LLVM IR dialect `alloca` struct AllocaOpConversion : public FIROpConversion { using FIROpConversion::FIROpConversion; mlir::LogicalResult matchAndRewrite(fir::AllocaOp alloc, OpAdaptor adaptor, mlir::ConversionPatternRewriter &rewriter) const override { mlir::ValueRange operands = adaptor.getOperands(); auto loc = alloc.getLoc(); mlir::Type ity = lowerTy().indexType(); unsigned i = 0; mlir::Value size = genConstantIndex(loc, ity, rewriter, 1).getResult(); mlir::Type ty = convertType(alloc.getType()); mlir::Type resultTy = ty; if (alloc.hasLenParams()) { unsigned end = alloc.numLenParams(); llvm::SmallVector lenParams; for (; i < end; ++i) lenParams.push_back(operands[i]); mlir::Type scalarType = fir::unwrapSequenceType(alloc.getInType()); if (auto chrTy = scalarType.dyn_cast()) { fir::CharacterType rawCharTy = fir::CharacterType::getUnknownLen( chrTy.getContext(), chrTy.getFKind()); ty = mlir::LLVM::LLVMPointerType::get(convertType(rawCharTy)); assert(end == 1); size = integerCast(loc, rewriter, ity, lenParams[0]); } else if (auto recTy = scalarType.dyn_cast()) { mlir::LLVM::LLVMFuncOp memSizeFn = getDependentTypeMemSizeFn(recTy, alloc, rewriter); if (!memSizeFn) emitError(loc, "did not find allocation function"); mlir::NamedAttribute attr = rewriter.getNamedAttr( "callee", mlir::SymbolRefAttr::get(memSizeFn)); auto call = rewriter.create( loc, ity, lenParams, llvm::ArrayRef{attr}); size = call.getResult(0); ty = mlir::LLVM::LLVMPointerType::get( mlir::IntegerType::get(alloc.getContext(), 8)); } else { return emitError(loc, "unexpected type ") << scalarType << " with type parameters"; } } if (alloc.hasShapeOperands()) { mlir::Type allocEleTy = fir::unwrapRefType(alloc.getType()); // Scale the size by constant factors encoded in the array type. if (auto seqTy = allocEleTy.dyn_cast()) { fir::SequenceType::Extent constSize = 1; for (auto extent : seqTy.getShape()) if (extent != fir::SequenceType::getUnknownExtent()) constSize *= extent; mlir::Value constVal{ genConstantIndex(loc, ity, rewriter, constSize).getResult()}; size = rewriter.create(loc, ity, size, constVal); } unsigned end = operands.size(); for (; i < end; ++i) size = rewriter.create( loc, ity, size, integerCast(loc, rewriter, ity, operands[i])); } if (ty == resultTy) { // Do not emit the bitcast if ty and resultTy are the same. rewriter.replaceOpWithNewOp(alloc, ty, size, alloc->getAttrs()); } else { auto al = rewriter.create(loc, ty, size, alloc->getAttrs()); rewriter.replaceOpWithNewOp(alloc, resultTy, al); } return success(); } }; /// Lower `fir.box_addr` to the sequence of operations to extract the first /// element of the box. struct BoxAddrOpConversion : public FIROpConversion { using FIROpConversion::FIROpConversion; mlir::LogicalResult matchAndRewrite(fir::BoxAddrOp boxaddr, OpAdaptor adaptor, mlir::ConversionPatternRewriter &rewriter) const override { mlir::Value a = adaptor.getOperands()[0]; auto loc = boxaddr.getLoc(); mlir::Type ty = convertType(boxaddr.getType()); if (auto argty = boxaddr.val().getType().dyn_cast()) { rewriter.replaceOp(boxaddr, loadBaseAddrFromBox(loc, ty, a, rewriter)); } else { auto c0attr = rewriter.getI32IntegerAttr(0); auto c0 = mlir::ArrayAttr::get(boxaddr.getContext(), c0attr); rewriter.replaceOpWithNewOp(boxaddr, ty, a, c0); } return success(); } }; /// Lower `fir.box_dims` to a sequence of operations to extract the requested /// dimension infomartion from the boxed value. /// Result in a triple set of GEPs and loads. struct BoxDimsOpConversion : public FIROpConversion { using FIROpConversion::FIROpConversion; mlir::LogicalResult matchAndRewrite(fir::BoxDimsOp boxdims, OpAdaptor adaptor, mlir::ConversionPatternRewriter &rewriter) const override { SmallVector resultTypes = { convertType(boxdims.getResult(0).getType()), convertType(boxdims.getResult(1).getType()), convertType(boxdims.getResult(2).getType()), }; auto results = getDimsFromBox(boxdims.getLoc(), resultTypes, adaptor.getOperands()[0], adaptor.getOperands()[1], rewriter); rewriter.replaceOp(boxdims, results); return success(); } }; /// Lower `fir.box_elesize` to a sequence of operations ro extract the size of /// an element in the boxed value. struct BoxEleSizeOpConversion : public FIROpConversion { using FIROpConversion::FIROpConversion; mlir::LogicalResult matchAndRewrite(fir::BoxEleSizeOp boxelesz, OpAdaptor adaptor, mlir::ConversionPatternRewriter &rewriter) const override { mlir::Value a = adaptor.getOperands()[0]; auto loc = boxelesz.getLoc(); auto ty = convertType(boxelesz.getType()); auto elemSize = getValueFromBox(loc, a, ty, rewriter, kElemLenPosInBox); rewriter.replaceOp(boxelesz, elemSize); return success(); } }; /// Lower `fir.box_isalloc` to a sequence of operations to determine if the /// boxed value was from an ALLOCATABLE entity. struct BoxIsAllocOpConversion : public FIROpConversion { using FIROpConversion::FIROpConversion; mlir::LogicalResult matchAndRewrite(fir::BoxIsAllocOp boxisalloc, OpAdaptor adaptor, mlir::ConversionPatternRewriter &rewriter) const override { mlir::Value box = adaptor.getOperands()[0]; auto loc = boxisalloc.getLoc(); mlir::Value check = genBoxAttributeCheck(loc, box, rewriter, kAttrAllocatable); rewriter.replaceOp(boxisalloc, check); return success(); } }; /// Lower `fir.box_isarray` to a sequence of operations to determine if the /// boxed is an array. struct BoxIsArrayOpConversion : public FIROpConversion { using FIROpConversion::FIROpConversion; mlir::LogicalResult matchAndRewrite(fir::BoxIsArrayOp boxisarray, OpAdaptor adaptor, mlir::ConversionPatternRewriter &rewriter) const override { mlir::Value a = adaptor.getOperands()[0]; auto loc = boxisarray.getLoc(); auto rank = getValueFromBox(loc, a, rewriter.getI32Type(), rewriter, kRankPosInBox); auto c0 = genConstantOffset(loc, rewriter, 0); rewriter.replaceOpWithNewOp( boxisarray, mlir::LLVM::ICmpPredicate::ne, rank, c0); return success(); } }; /// Lower `fir.box_isptr` to a sequence of operations to determined if the /// boxed value was from a POINTER entity. struct BoxIsPtrOpConversion : public FIROpConversion { using FIROpConversion::FIROpConversion; mlir::LogicalResult matchAndRewrite(fir::BoxIsPtrOp boxisptr, OpAdaptor adaptor, mlir::ConversionPatternRewriter &rewriter) const override { mlir::Value box = adaptor.getOperands()[0]; auto loc = boxisptr.getLoc(); mlir::Value check = genBoxAttributeCheck(loc, box, rewriter, kAttrPointer); rewriter.replaceOp(boxisptr, check); return success(); } }; /// Lower `fir.box_rank` to the sequence of operation to extract the rank from /// the box. struct BoxRankOpConversion : public FIROpConversion { using FIROpConversion::FIROpConversion; mlir::LogicalResult matchAndRewrite(fir::BoxRankOp boxrank, OpAdaptor adaptor, mlir::ConversionPatternRewriter &rewriter) const override { mlir::Value a = adaptor.getOperands()[0]; auto loc = boxrank.getLoc(); mlir::Type ty = convertType(boxrank.getType()); auto result = getValueFromBox(loc, a, ty, rewriter, kRankPosInBox); rewriter.replaceOp(boxrank, result); return success(); } }; // `fir.call` -> `llvm.call` struct CallOpConversion : public FIROpConversion { using FIROpConversion::FIROpConversion; mlir::LogicalResult matchAndRewrite(fir::CallOp call, OpAdaptor adaptor, mlir::ConversionPatternRewriter &rewriter) const override { SmallVector resultTys; for (auto r : call.getResults()) resultTys.push_back(convertType(r.getType())); rewriter.replaceOpWithNewOp( call, resultTys, adaptor.getOperands(), call->getAttrs()); return success(); } }; static mlir::Type getComplexEleTy(mlir::Type complex) { if (auto cc = complex.dyn_cast()) return cc.getElementType(); return complex.cast().getElementType(); } /// convert value of from-type to value of to-type struct ConvertOpConversion : public FIROpConversion { using FIROpConversion::FIROpConversion; static bool isFloatingPointTy(mlir::Type ty) { return ty.isa(); } mlir::LogicalResult matchAndRewrite(fir::ConvertOp convert, OpAdaptor adaptor, mlir::ConversionPatternRewriter &rewriter) const override { auto fromTy = convertType(convert.value().getType()); auto toTy = convertType(convert.res().getType()); mlir::Value op0 = adaptor.getOperands()[0]; if (fromTy == toTy) { rewriter.replaceOp(convert, op0); return success(); } auto loc = convert.getLoc(); auto convertFpToFp = [&](mlir::Value val, unsigned fromBits, unsigned toBits, mlir::Type toTy) -> mlir::Value { if (fromBits == toBits) { // TODO: Converting between two floating-point representations with the // same bitwidth is not allowed for now. mlir::emitError(loc, "cannot implicitly convert between two floating-point " "representations of the same bitwidth"); return {}; } if (fromBits > toBits) return rewriter.create(loc, toTy, val); return rewriter.create(loc, toTy, val); }; // Complex to complex conversion. if (fir::isa_complex(convert.value().getType()) && fir::isa_complex(convert.res().getType())) { // Special case: handle the conversion of a complex such that both the // real and imaginary parts are converted together. auto zero = mlir::ArrayAttr::get(convert.getContext(), rewriter.getI32IntegerAttr(0)); auto one = mlir::ArrayAttr::get(convert.getContext(), rewriter.getI32IntegerAttr(1)); auto ty = convertType(getComplexEleTy(convert.value().getType())); auto rp = rewriter.create(loc, ty, op0, zero); auto ip = rewriter.create(loc, ty, op0, one); auto nt = convertType(getComplexEleTy(convert.res().getType())); auto fromBits = mlir::LLVM::getPrimitiveTypeSizeInBits(ty); auto toBits = mlir::LLVM::getPrimitiveTypeSizeInBits(nt); auto rc = convertFpToFp(rp, fromBits, toBits, nt); auto ic = convertFpToFp(ip, fromBits, toBits, nt); auto un = rewriter.create(loc, toTy); auto i1 = rewriter.create(loc, toTy, un, rc, zero); rewriter.replaceOpWithNewOp(convert, toTy, i1, ic, one); return mlir::success(); } // Floating point to floating point conversion. if (isFloatingPointTy(fromTy)) { if (isFloatingPointTy(toTy)) { auto fromBits = mlir::LLVM::getPrimitiveTypeSizeInBits(fromTy); auto toBits = mlir::LLVM::getPrimitiveTypeSizeInBits(toTy); auto v = convertFpToFp(op0, fromBits, toBits, toTy); rewriter.replaceOp(convert, v); return mlir::success(); } if (toTy.isa()) { rewriter.replaceOpWithNewOp(convert, toTy, op0); return mlir::success(); } } else if (fromTy.isa()) { // Integer to integer conversion. if (toTy.isa()) { auto fromBits = mlir::LLVM::getPrimitiveTypeSizeInBits(fromTy); auto toBits = mlir::LLVM::getPrimitiveTypeSizeInBits(toTy); assert(fromBits != toBits); if (fromBits > toBits) { rewriter.replaceOpWithNewOp(convert, toTy, op0); return mlir::success(); } rewriter.replaceOpWithNewOp(convert, toTy, op0); return mlir::success(); } // Integer to floating point conversion. if (isFloatingPointTy(toTy)) { rewriter.replaceOpWithNewOp(convert, toTy, op0); return mlir::success(); } // Integer to pointer conversion. if (toTy.isa()) { rewriter.replaceOpWithNewOp(convert, toTy, op0); return mlir::success(); } } else if (fromTy.isa()) { // Pointer to integer conversion. if (toTy.isa()) { rewriter.replaceOpWithNewOp(convert, toTy, op0); return mlir::success(); } // Pointer to pointer conversion. if (toTy.isa()) { rewriter.replaceOpWithNewOp(convert, toTy, op0); return mlir::success(); } } return emitError(loc) << "cannot convert " << fromTy << " to " << toTy; } }; /// Lower `fir.dispatch` operation. A virtual call to a method in a dispatch /// table. struct DispatchOpConversion : public FIROpConversion { using FIROpConversion::FIROpConversion; mlir::LogicalResult matchAndRewrite(fir::DispatchOp dispatch, OpAdaptor adaptor, mlir::ConversionPatternRewriter &rewriter) const override { return rewriter.notifyMatchFailure( dispatch, "fir.dispatch codegen is not implemented yet"); } }; /// Lower `fir.dispatch_table` operation. The dispatch table for a Fortran /// derived type. struct DispatchTableOpConversion : public FIROpConversion { using FIROpConversion::FIROpConversion; mlir::LogicalResult matchAndRewrite(fir::DispatchTableOp dispTab, OpAdaptor adaptor, mlir::ConversionPatternRewriter &rewriter) const override { return rewriter.notifyMatchFailure( dispTab, "fir.dispatch_table codegen is not implemented yet"); } }; /// Lower `fir.dt_entry` operation. An entry in a dispatch table; binds a /// method-name to a function. struct DTEntryOpConversion : public FIROpConversion { using FIROpConversion::FIROpConversion; mlir::LogicalResult matchAndRewrite(fir::DTEntryOp dtEnt, OpAdaptor adaptor, mlir::ConversionPatternRewriter &rewriter) const override { return rewriter.notifyMatchFailure( dtEnt, "fir.dt_entry codegen is not implemented yet"); } }; /// Lower `fir.has_value` operation to `llvm.return` operation. struct HasValueOpConversion : public FIROpConversion { using FIROpConversion::FIROpConversion; mlir::LogicalResult matchAndRewrite(fir::HasValueOp op, OpAdaptor adaptor, mlir::ConversionPatternRewriter &rewriter) const override { rewriter.replaceOpWithNewOp(op, adaptor.getOperands()); return success(); } }; /// Lower `fir.global` operation to `llvm.global` operation. /// `fir.insert_on_range` operations are replaced with constant dense attribute /// if they are applied on the full range. struct GlobalOpConversion : public FIROpConversion { using FIROpConversion::FIROpConversion; mlir::LogicalResult matchAndRewrite(fir::GlobalOp global, OpAdaptor adaptor, mlir::ConversionPatternRewriter &rewriter) const override { auto tyAttr = convertType(global.getType()); if (global.getType().isa()) tyAttr = tyAttr.cast().getElementType(); auto loc = global.getLoc(); mlir::Attribute initAttr{}; if (global.initVal()) initAttr = global.initVal().getValue(); auto linkage = convertLinkage(global.linkName()); auto isConst = global.constant().hasValue(); auto g = rewriter.create( loc, tyAttr, isConst, linkage, global.sym_name(), initAttr); auto &gr = g.getInitializerRegion(); rewriter.inlineRegionBefore(global.region(), gr, gr.end()); if (!gr.empty()) { // Replace insert_on_range with a constant dense attribute if the // initialization is on the full range. auto insertOnRangeOps = gr.front().getOps(); for (auto insertOp : insertOnRangeOps) { if (isFullRange(insertOp.coor(), insertOp.getType())) { auto seqTyAttr = convertType(insertOp.getType()); auto *op = insertOp.val().getDefiningOp(); auto constant = mlir::dyn_cast(op); if (!constant) { auto convertOp = mlir::dyn_cast(op); if (!convertOp) continue; constant = cast( convertOp.value().getDefiningOp()); } mlir::Type vecType = mlir::VectorType::get( insertOp.getType().getShape(), constant.getType()); auto denseAttr = mlir::DenseElementsAttr::get( vecType.cast(), constant.value()); rewriter.setInsertionPointAfter(insertOp); rewriter.replaceOpWithNewOp( insertOp, seqTyAttr, denseAttr); } } } rewriter.eraseOp(global); return success(); } bool isFullRange(mlir::ArrayAttr indexes, fir::SequenceType seqTy) const { auto extents = seqTy.getShape(); if (indexes.size() / 2 != extents.size()) return false; for (unsigned i = 0; i < indexes.size(); i += 2) { if (indexes[i].cast().getInt() != 0) return false; if (indexes[i + 1].cast().getInt() != extents[i / 2] - 1) return false; } return true; } // TODO: String comparaison should be avoided. Replace linkName with an // enumeration. mlir::LLVM::Linkage convertLinkage(Optional optLinkage) const { if (optLinkage.hasValue()) { auto name = optLinkage.getValue(); if (name == "internal") return mlir::LLVM::Linkage::Internal; if (name == "linkonce") return mlir::LLVM::Linkage::Linkonce; if (name == "common") return mlir::LLVM::Linkage::Common; if (name == "weak") return mlir::LLVM::Linkage::Weak; } return mlir::LLVM::Linkage::External; } }; void genCondBrOp(mlir::Location loc, mlir::Value cmp, mlir::Block *dest, Optional destOps, mlir::ConversionPatternRewriter &rewriter, mlir::Block *newBlock) { if (destOps.hasValue()) rewriter.create(loc, cmp, dest, destOps.getValue(), newBlock, mlir::ValueRange()); else rewriter.create(loc, cmp, dest, newBlock); } template void genBrOp(A caseOp, mlir::Block *dest, Optional destOps, mlir::ConversionPatternRewriter &rewriter) { if (destOps.hasValue()) rewriter.replaceOpWithNewOp(caseOp, destOps.getValue(), dest); else rewriter.replaceOpWithNewOp(caseOp, llvm::None, dest); } void genCaseLadderStep(mlir::Location loc, mlir::Value cmp, mlir::Block *dest, Optional destOps, mlir::ConversionPatternRewriter &rewriter) { auto *thisBlock = rewriter.getInsertionBlock(); auto *newBlock = createBlock(rewriter, dest); rewriter.setInsertionPointToEnd(thisBlock); genCondBrOp(loc, cmp, dest, destOps, rewriter, newBlock); rewriter.setInsertionPointToEnd(newBlock); } /// Conversion of `fir.select_case` /// /// The `fir.select_case` operation is converted to a if-then-else ladder. /// Depending on the case condition type, one or several comparison and /// conditional branching can be generated. /// /// A a point value case such as `case(4)`, a lower bound case such as /// `case(5:)` or an upper bound case such as `case(:3)` are converted to a /// simple comparison between the selector value and the constant value in the /// case. The block associated with the case condition is then executed if /// the comparison succeed otherwise it branch to the next block with the /// comparison for the the next case conditon. /// /// A closed interval case condition such as `case(7:10)` is converted with a /// first comparison and conditional branching for the lower bound. If /// successful, it branch to a second block with the comparison for the /// upper bound in the same case condition. /// /// TODO: lowering of CHARACTER type cases is not handled yet. struct SelectCaseOpConversion : public FIROpConversion { using FIROpConversion::FIROpConversion; mlir::LogicalResult matchAndRewrite(fir::SelectCaseOp caseOp, OpAdaptor adaptor, mlir::ConversionPatternRewriter &rewriter) const override { unsigned conds = caseOp.getNumConditions(); llvm::ArrayRef cases = caseOp.getCases().getValue(); // Type can be CHARACTER, INTEGER, or LOGICAL (C1145) LLVM_ATTRIBUTE_UNUSED auto ty = caseOp.getSelector().getType(); if (ty.isa()) return rewriter.notifyMatchFailure(caseOp, "conversion of fir.select_case with " "character type not implemented yet"); mlir::Value selector = caseOp.getSelector(adaptor.getOperands()); auto loc = caseOp.getLoc(); for (unsigned t = 0; t != conds; ++t) { mlir::Block *dest = caseOp.getSuccessor(t); llvm::Optional destOps = caseOp.getSuccessorOperands(adaptor.getOperands(), t); llvm::Optional cmpOps = *caseOp.getCompareOperands(adaptor.getOperands(), t); mlir::Value caseArg = *(cmpOps.getValue().begin()); mlir::Attribute attr = cases[t]; if (attr.isa()) { auto cmp = rewriter.create( loc, mlir::LLVM::ICmpPredicate::eq, selector, caseArg); genCaseLadderStep(loc, cmp, dest, destOps, rewriter); continue; } if (attr.isa()) { auto cmp = rewriter.create( loc, mlir::LLVM::ICmpPredicate::sle, caseArg, selector); genCaseLadderStep(loc, cmp, dest, destOps, rewriter); continue; } if (attr.isa()) { auto cmp = rewriter.create( loc, mlir::LLVM::ICmpPredicate::sle, selector, caseArg); genCaseLadderStep(loc, cmp, dest, destOps, rewriter); continue; } if (attr.isa()) { auto cmp = rewriter.create( loc, mlir::LLVM::ICmpPredicate::sle, caseArg, selector); auto *thisBlock = rewriter.getInsertionBlock(); auto *newBlock1 = createBlock(rewriter, dest); auto *newBlock2 = createBlock(rewriter, dest); rewriter.setInsertionPointToEnd(thisBlock); rewriter.create(loc, cmp, newBlock1, newBlock2); rewriter.setInsertionPointToEnd(newBlock1); mlir::Value caseArg0 = *(cmpOps.getValue().begin() + 1); auto cmp0 = rewriter.create( loc, mlir::LLVM::ICmpPredicate::sle, selector, caseArg0); genCondBrOp(loc, cmp0, dest, destOps, rewriter, newBlock2); rewriter.setInsertionPointToEnd(newBlock2); continue; } assert(attr.isa()); assert((t + 1 == conds) && "unit must be last"); genBrOp(caseOp, dest, destOps, rewriter); } return success(); } }; template void selectMatchAndRewrite(fir::LLVMTypeConverter &lowering, OP select, typename OP::Adaptor adaptor, mlir::ConversionPatternRewriter &rewriter) { unsigned conds = select.getNumConditions(); auto cases = select.getCases().getValue(); mlir::Value selector = adaptor.selector(); auto loc = select.getLoc(); assert(conds > 0 && "select must have cases"); llvm::SmallVector destinations; llvm::SmallVector destinationsOperands; mlir::Block *defaultDestination; mlir::ValueRange defaultOperands; llvm::SmallVector caseValues; for (unsigned t = 0; t != conds; ++t) { mlir::Block *dest = select.getSuccessor(t); auto destOps = select.getSuccessorOperands(adaptor.getOperands(), t); const mlir::Attribute &attr = cases[t]; if (auto intAttr = attr.template dyn_cast()) { destinations.push_back(dest); destinationsOperands.push_back(destOps.hasValue() ? *destOps : ValueRange()); caseValues.push_back(intAttr.getInt()); continue; } assert(attr.template dyn_cast_or_null()); assert((t + 1 == conds) && "unit must be last"); defaultDestination = dest; defaultOperands = destOps.hasValue() ? *destOps : ValueRange(); } // LLVM::SwitchOp takes a i32 type for the selector. if (select.getSelector().getType() != rewriter.getI32Type()) selector = rewriter.create(loc, rewriter.getI32Type(), selector); rewriter.replaceOpWithNewOp( select, selector, /*defaultDestination=*/defaultDestination, /*defaultOperands=*/defaultOperands, /*caseValues=*/caseValues, /*caseDestinations=*/destinations, /*caseOperands=*/destinationsOperands, /*branchWeights=*/ArrayRef()); } /// conversion of fir::SelectOp to an if-then-else ladder struct SelectOpConversion : public FIROpConversion { using FIROpConversion::FIROpConversion; mlir::LogicalResult matchAndRewrite(fir::SelectOp op, OpAdaptor adaptor, mlir::ConversionPatternRewriter &rewriter) const override { selectMatchAndRewrite(lowerTy(), op, adaptor, rewriter); return success(); } }; /// `fir.load` --> `llvm.load` struct LoadOpConversion : public FIROpConversion { using FIROpConversion::FIROpConversion; mlir::LogicalResult matchAndRewrite(fir::LoadOp load, OpAdaptor adaptor, mlir::ConversionPatternRewriter &rewriter) const override { // fir.box is a special case because it is considered as an ssa values in // fir, but it is lowered as a pointer to a descriptor. So fir.ref // and fir.box end up being the same llvm types and loading a // fir.ref is actually a no op in LLVM. if (load.getType().isa()) { rewriter.replaceOp(load, adaptor.getOperands()[0]); } else { mlir::Type ty = convertType(load.getType()); ArrayRef at = load->getAttrs(); rewriter.replaceOpWithNewOp( load, ty, adaptor.getOperands(), at); } return success(); } }; /// Lower `fir.select_type` to LLVM IR dialect. struct SelectTypeOpConversion : public FIROpConversion { using FIROpConversion::FIROpConversion; mlir::LogicalResult matchAndRewrite(fir::SelectTypeOp select, OpAdaptor adaptor, mlir::ConversionPatternRewriter &rewriter) const override { return rewriter.notifyMatchFailure( select, "fir.select_type codegen is not implemented yet"); return failure(); } }; /// conversion of fir::SelectRankOp to an if-then-else ladder struct SelectRankOpConversion : public FIROpConversion { using FIROpConversion::FIROpConversion; mlir::LogicalResult matchAndRewrite(fir::SelectRankOp op, OpAdaptor adaptor, mlir::ConversionPatternRewriter &rewriter) const override { selectMatchAndRewrite(lowerTy(), op, adaptor, rewriter); return success(); } }; /// `fir.store` --> `llvm.store` struct StoreOpConversion : public FIROpConversion { using FIROpConversion::FIROpConversion; mlir::LogicalResult matchAndRewrite(fir::StoreOp store, OpAdaptor adaptor, mlir::ConversionPatternRewriter &rewriter) const override { if (store.value().getType().isa()) { // fir.box value is actually in memory, load it first before storing it. mlir::Location loc = store.getLoc(); mlir::Type boxPtrTy = adaptor.getOperands()[0].getType(); auto val = rewriter.create( loc, boxPtrTy.cast().getElementType(), adaptor.getOperands()[0]); rewriter.replaceOpWithNewOp( store, val, adaptor.getOperands()[1]); } else { rewriter.replaceOpWithNewOp( store, adaptor.getOperands()[0], adaptor.getOperands()[1]); } return success(); } }; /// convert to LLVM IR dialect `undef` struct UndefOpConversion : public FIROpConversion { using FIROpConversion::FIROpConversion; mlir::LogicalResult matchAndRewrite(fir::UndefOp undef, OpAdaptor, mlir::ConversionPatternRewriter &rewriter) const override { rewriter.replaceOpWithNewOp( undef, convertType(undef.getType())); return success(); } }; /// `fir.unreachable` --> `llvm.unreachable` struct UnreachableOpConversion : public FIROpConversion { using FIROpConversion::FIROpConversion; mlir::LogicalResult matchAndRewrite(fir::UnreachableOp unreach, OpAdaptor adaptor, mlir::ConversionPatternRewriter &rewriter) const override { rewriter.replaceOpWithNewOp(unreach); return success(); } }; struct ZeroOpConversion : public FIROpConversion { using FIROpConversion::FIROpConversion; mlir::LogicalResult matchAndRewrite(fir::ZeroOp zero, OpAdaptor, mlir::ConversionPatternRewriter &rewriter) const override { auto ty = convertType(zero.getType()); if (ty.isa()) { rewriter.replaceOpWithNewOp(zero, ty); } else if (ty.isa()) { rewriter.replaceOpWithNewOp( zero, ty, mlir::IntegerAttr::get(zero.getType(), 0)); } else if (mlir::LLVM::isCompatibleFloatingPointType(ty)) { rewriter.replaceOpWithNewOp( zero, ty, mlir::FloatAttr::get(zero.getType(), 0.0)); } else { // TODO: create ConstantAggregateZero for FIR aggregate/array types. return rewriter.notifyMatchFailure( zero, "conversion of fir.zero with aggregate type not implemented yet"); } return success(); } }; // Code shared between insert_value and extract_value Ops. struct ValueOpCommon { // Translate the arguments pertaining to any multidimensional array to // row-major order for LLVM-IR. static void toRowMajor(SmallVectorImpl &attrs, mlir::Type ty) { assert(ty && "type is null"); const auto end = attrs.size(); for (std::remove_const_t i = 0; i < end; ++i) { if (auto seq = ty.dyn_cast()) { const auto dim = getDimension(seq); if (dim > 1) { auto ub = std::min(i + dim, end); std::reverse(attrs.begin() + i, attrs.begin() + ub); i += dim - 1; } ty = getArrayElementType(seq); } else if (auto st = ty.dyn_cast()) { ty = st.getBody()[attrs[i].cast().getInt()]; } else { llvm_unreachable("index into invalid type"); } } } static llvm::SmallVector collectIndices(mlir::ConversionPatternRewriter &rewriter, mlir::ArrayAttr arrAttr) { llvm::SmallVector attrs; for (auto i = arrAttr.begin(), e = arrAttr.end(); i != e; ++i) { if (i->isa()) { attrs.push_back(*i); } else { auto fieldName = i->cast().getValue(); ++i; auto ty = i->cast().getValue(); auto index = ty.cast().getFieldIndex(fieldName); attrs.push_back(mlir::IntegerAttr::get(rewriter.getI32Type(), index)); } } return attrs; } private: static unsigned getDimension(mlir::LLVM::LLVMArrayType ty) { unsigned result = 1; for (auto eleTy = ty.getElementType().dyn_cast(); eleTy; eleTy = eleTy.getElementType().dyn_cast()) ++result; return result; } static mlir::Type getArrayElementType(mlir::LLVM::LLVMArrayType ty) { auto eleTy = ty.getElementType(); while (auto arrTy = eleTy.dyn_cast()) eleTy = arrTy.getElementType(); return eleTy; } }; /// Extract a subobject value from an ssa-value of aggregate type struct ExtractValueOpConversion : public FIROpAndTypeConversion, public ValueOpCommon { using FIROpAndTypeConversion::FIROpAndTypeConversion; mlir::LogicalResult doRewrite(fir::ExtractValueOp extractVal, mlir::Type ty, OpAdaptor adaptor, mlir::ConversionPatternRewriter &rewriter) const override { auto attrs = collectIndices(rewriter, extractVal.coor()); toRowMajor(attrs, adaptor.getOperands()[0].getType()); auto position = mlir::ArrayAttr::get(extractVal.getContext(), attrs); rewriter.replaceOpWithNewOp( extractVal, ty, adaptor.getOperands()[0], position); return success(); } }; /// InsertValue is the generalized instruction for the composition of new /// aggregate type values. struct InsertValueOpConversion : public FIROpAndTypeConversion, public ValueOpCommon { using FIROpAndTypeConversion::FIROpAndTypeConversion; mlir::LogicalResult doRewrite(fir::InsertValueOp insertVal, mlir::Type ty, OpAdaptor adaptor, mlir::ConversionPatternRewriter &rewriter) const override { auto attrs = collectIndices(rewriter, insertVal.coor()); toRowMajor(attrs, adaptor.getOperands()[0].getType()); auto position = mlir::ArrayAttr::get(insertVal.getContext(), attrs); rewriter.replaceOpWithNewOp( insertVal, ty, adaptor.getOperands()[0], adaptor.getOperands()[1], position); return success(); } }; /// InsertOnRange inserts a value into a sequence over a range of offsets. struct InsertOnRangeOpConversion : public FIROpAndTypeConversion { using FIROpAndTypeConversion::FIROpAndTypeConversion; // Increments an array of subscripts in a row major fasion. void incrementSubscripts(const SmallVector &dims, SmallVector &subscripts) const { for (size_t i = dims.size(); i > 0; --i) { if (++subscripts[i - 1] < dims[i - 1]) { return; } subscripts[i - 1] = 0; } } mlir::LogicalResult doRewrite(fir::InsertOnRangeOp range, mlir::Type ty, OpAdaptor adaptor, mlir::ConversionPatternRewriter &rewriter) const override { llvm::SmallVector dims; auto type = adaptor.getOperands()[0].getType(); // Iteratively extract the array dimensions from the type. while (auto t = type.dyn_cast()) { dims.push_back(t.getNumElements()); type = t.getElementType(); } SmallVector lBounds; SmallVector uBounds; // Extract integer value from the attribute SmallVector coordinates = llvm::to_vector<4>( llvm::map_range(range.coor(), [](Attribute a) -> int64_t { return a.cast().getInt(); })); // Unzip the upper and lower bound and convert to a row major format. for (auto i = coordinates.rbegin(), e = coordinates.rend(); i != e; ++i) { uBounds.push_back(*i++); lBounds.push_back(*i); } auto &subscripts = lBounds; auto loc = range.getLoc(); mlir::Value lastOp = adaptor.getOperands()[0]; mlir::Value insertVal = adaptor.getOperands()[1]; auto i64Ty = rewriter.getI64Type(); while (subscripts != uBounds) { // Convert uint64_t's to Attribute's. SmallVector subscriptAttrs; for (const auto &subscript : subscripts) subscriptAttrs.push_back(IntegerAttr::get(i64Ty, subscript)); lastOp = rewriter.create( loc, ty, lastOp, insertVal, ArrayAttr::get(range.getContext(), subscriptAttrs)); incrementSubscripts(dims, subscripts); } // Convert uint64_t's to Attribute's. SmallVector subscriptAttrs; for (const auto &subscript : subscripts) subscriptAttrs.push_back( IntegerAttr::get(rewriter.getI64Type(), subscript)); mlir::ArrayRef arrayRef(subscriptAttrs); rewriter.replaceOpWithNewOp( range, ty, lastOp, insertVal, ArrayAttr::get(range.getContext(), arrayRef)); return success(); } }; // // Primitive operations on Complex types // /// Generate inline code for complex addition/subtraction template mlir::LLVM::InsertValueOp complexSum(OPTY sumop, mlir::ValueRange opnds, mlir::ConversionPatternRewriter &rewriter, fir::LLVMTypeConverter &lowering) { mlir::Value a = opnds[0]; mlir::Value b = opnds[1]; auto loc = sumop.getLoc(); auto ctx = sumop.getContext(); auto c0 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(0)); auto c1 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(1)); mlir::Type eleTy = lowering.convertType(getComplexEleTy(sumop.getType())); mlir::Type ty = lowering.convertType(sumop.getType()); auto x0 = rewriter.create(loc, eleTy, a, c0); auto y0 = rewriter.create(loc, eleTy, a, c1); auto x1 = rewriter.create(loc, eleTy, b, c0); auto y1 = rewriter.create(loc, eleTy, b, c1); auto rx = rewriter.create(loc, eleTy, x0, x1); auto ry = rewriter.create(loc, eleTy, y0, y1); auto r0 = rewriter.create(loc, ty); auto r1 = rewriter.create(loc, ty, r0, rx, c0); return rewriter.create(loc, ty, r1, ry, c1); } struct AddcOpConversion : public FIROpConversion { using FIROpConversion::FIROpConversion; mlir::LogicalResult matchAndRewrite(fir::AddcOp addc, OpAdaptor adaptor, mlir::ConversionPatternRewriter &rewriter) const override { // given: (x + iy) + (x' + iy') // result: (x + x') + i(y + y') auto r = complexSum(addc, adaptor.getOperands(), rewriter, lowerTy()); rewriter.replaceOp(addc, r.getResult()); return success(); } }; struct SubcOpConversion : public FIROpConversion { using FIROpConversion::FIROpConversion; mlir::LogicalResult matchAndRewrite(fir::SubcOp subc, OpAdaptor adaptor, mlir::ConversionPatternRewriter &rewriter) const override { // given: (x + iy) - (x' + iy') // result: (x - x') + i(y - y') auto r = complexSum(subc, adaptor.getOperands(), rewriter, lowerTy()); rewriter.replaceOp(subc, r.getResult()); return success(); } }; /// Inlined complex multiply struct MulcOpConversion : public FIROpConversion { using FIROpConversion::FIROpConversion; mlir::LogicalResult matchAndRewrite(fir::MulcOp mulc, OpAdaptor adaptor, mlir::ConversionPatternRewriter &rewriter) const override { // TODO: Can we use a call to __muldc3 ? // given: (x + iy) * (x' + iy') // result: (xx'-yy')+i(xy'+yx') mlir::Value a = adaptor.getOperands()[0]; mlir::Value b = adaptor.getOperands()[1]; auto loc = mulc.getLoc(); auto *ctx = mulc.getContext(); auto c0 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(0)); auto c1 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(1)); mlir::Type eleTy = convertType(getComplexEleTy(mulc.getType())); mlir::Type ty = convertType(mulc.getType()); auto x0 = rewriter.create(loc, eleTy, a, c0); auto y0 = rewriter.create(loc, eleTy, a, c1); auto x1 = rewriter.create(loc, eleTy, b, c0); auto y1 = rewriter.create(loc, eleTy, b, c1); auto xx = rewriter.create(loc, eleTy, x0, x1); auto yx = rewriter.create(loc, eleTy, y0, x1); auto xy = rewriter.create(loc, eleTy, x0, y1); auto ri = rewriter.create(loc, eleTy, xy, yx); auto yy = rewriter.create(loc, eleTy, y0, y1); auto rr = rewriter.create(loc, eleTy, xx, yy); auto ra = rewriter.create(loc, ty); auto r1 = rewriter.create(loc, ty, ra, rr, c0); auto r0 = rewriter.create(loc, ty, r1, ri, c1); rewriter.replaceOp(mulc, r0.getResult()); return success(); } }; /// Inlined complex division struct DivcOpConversion : public FIROpConversion { using FIROpConversion::FIROpConversion; mlir::LogicalResult matchAndRewrite(fir::DivcOp divc, OpAdaptor adaptor, mlir::ConversionPatternRewriter &rewriter) const override { // TODO: Can we use a call to __divdc3 instead? // Just generate inline code for now. // given: (x + iy) / (x' + iy') // result: ((xx'+yy')/d) + i((yx'-xy')/d) where d = x'x' + y'y' mlir::Value a = adaptor.getOperands()[0]; mlir::Value b = adaptor.getOperands()[1]; auto loc = divc.getLoc(); auto *ctx = divc.getContext(); auto c0 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(0)); auto c1 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(1)); mlir::Type eleTy = convertType(getComplexEleTy(divc.getType())); mlir::Type ty = convertType(divc.getType()); auto x0 = rewriter.create(loc, eleTy, a, c0); auto y0 = rewriter.create(loc, eleTy, a, c1); auto x1 = rewriter.create(loc, eleTy, b, c0); auto y1 = rewriter.create(loc, eleTy, b, c1); auto xx = rewriter.create(loc, eleTy, x0, x1); auto x1x1 = rewriter.create(loc, eleTy, x1, x1); auto yx = rewriter.create(loc, eleTy, y0, x1); auto xy = rewriter.create(loc, eleTy, x0, y1); auto yy = rewriter.create(loc, eleTy, y0, y1); auto y1y1 = rewriter.create(loc, eleTy, y1, y1); auto d = rewriter.create(loc, eleTy, x1x1, y1y1); auto rrn = rewriter.create(loc, eleTy, xx, yy); auto rin = rewriter.create(loc, eleTy, yx, xy); auto rr = rewriter.create(loc, eleTy, rrn, d); auto ri = rewriter.create(loc, eleTy, rin, d); auto ra = rewriter.create(loc, ty); auto r1 = rewriter.create(loc, ty, ra, rr, c0); auto r0 = rewriter.create(loc, ty, r1, ri, c1); rewriter.replaceOp(divc, r0.getResult()); return success(); } }; /// Inlined complex negation struct NegcOpConversion : public FIROpConversion { using FIROpConversion::FIROpConversion; mlir::LogicalResult matchAndRewrite(fir::NegcOp neg, OpAdaptor adaptor, mlir::ConversionPatternRewriter &rewriter) const override { // given: -(x + iy) // result: -x - iy auto *ctxt = neg.getContext(); auto eleTy = convertType(getComplexEleTy(neg.getType())); auto ty = convertType(neg.getType()); auto loc = neg.getLoc(); mlir::Value o0 = adaptor.getOperands()[0]; auto c0 = mlir::ArrayAttr::get(ctxt, rewriter.getI32IntegerAttr(0)); auto c1 = mlir::ArrayAttr::get(ctxt, rewriter.getI32IntegerAttr(1)); auto rp = rewriter.create(loc, eleTy, o0, c0); auto ip = rewriter.create(loc, eleTy, o0, c1); auto nrp = rewriter.create(loc, eleTy, rp); auto nip = rewriter.create(loc, eleTy, ip); auto r = rewriter.create(loc, ty, o0, nrp, c0); rewriter.replaceOpWithNewOp(neg, ty, r, nip, c1); return success(); } }; /// `fir.is_present` --> /// ``` /// %0 = llvm.mlir.constant(0 : i64) /// %1 = llvm.ptrtoint %0 /// %2 = llvm.icmp "ne" %1, %0 : i64 /// ``` struct IsPresentOpConversion : public FIROpConversion { using FIROpConversion::FIROpConversion; mlir::LogicalResult matchAndRewrite(fir::IsPresentOp isPresent, OpAdaptor adaptor, mlir::ConversionPatternRewriter &rewriter) const override { mlir::Type idxTy = lowerTy().indexType(); mlir::Location loc = isPresent.getLoc(); auto ptr = adaptor.getOperands()[0]; if (isPresent.val().getType().isa()) { auto structTy = ptr.getType().cast(); assert(!structTy.isOpaque() && !structTy.getBody().empty()); mlir::Type ty = structTy.getBody()[0]; mlir::MLIRContext *ctx = isPresent.getContext(); auto c0 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(0)); ptr = rewriter.create(loc, ty, ptr, c0); } mlir::LLVM::ConstantOp c0 = genConstantIndex(isPresent.getLoc(), idxTy, rewriter, 0); auto addr = rewriter.create(loc, idxTy, ptr); rewriter.replaceOpWithNewOp( isPresent, mlir::LLVM::ICmpPredicate::ne, addr, c0); return success(); } }; /// Convert `!fir.emboxchar, #n>` into a sequence of /// instructions that generate `!llvm.struct<(ptr, i64)>`. The 1st element /// in this struct is a pointer. Its type is determined from `KIND`. The 2nd /// element is the length of the character buffer (`#n`). struct EmboxCharOpConversion : public FIROpConversion { using FIROpConversion::FIROpConversion; mlir::LogicalResult matchAndRewrite(fir::EmboxCharOp emboxChar, OpAdaptor adaptor, mlir::ConversionPatternRewriter &rewriter) const override { mlir::ValueRange operands = adaptor.getOperands(); MLIRContext *ctx = emboxChar.getContext(); mlir::Value charBuffer = operands[0]; mlir::Value charBufferLen = operands[1]; mlir::Location loc = emboxChar.getLoc(); mlir::Type llvmStructTy = convertType(emboxChar.getType()); auto llvmStruct = rewriter.create(loc, llvmStructTy); mlir::Type lenTy = llvmStructTy.cast().getBody()[1]; mlir::Value lenAfterCast = integerCast(loc, rewriter, lenTy, charBufferLen); auto c0 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(0)); auto c1 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(1)); auto insertBufferOp = rewriter.create( loc, llvmStructTy, llvmStruct, charBuffer, c0); rewriter.replaceOpWithNewOp( emboxChar, llvmStructTy, insertBufferOp, lenAfterCast, c1); return success(); } }; } // namespace namespace { /// Convert FIR dialect to LLVM dialect /// /// This pass lowers all FIR dialect operations to LLVM IR dialect. An /// MLIR pass is used to lower residual Std dialect to LLVM IR dialect. /// /// This pass is not complete yet. We are upstreaming it in small patches. class FIRToLLVMLowering : public fir::FIRToLLVMLoweringBase { public: mlir::ModuleOp getModule() { return getOperation(); } void runOnOperation() override final { auto mod = getModule(); if (!forcedTargetTriple.empty()) { fir::setTargetTriple(mod, forcedTargetTriple); } auto *context = getModule().getContext(); fir::LLVMTypeConverter typeConverter{getModule()}; mlir::OwningRewritePatternList pattern(context); pattern.insert< AbsentOpConversion, AddcOpConversion, AddrOfOpConversion, AllocaOpConversion, BoxAddrOpConversion, BoxDimsOpConversion, BoxEleSizeOpConversion, BoxIsAllocOpConversion, BoxIsArrayOpConversion, BoxIsPtrOpConversion, BoxRankOpConversion, CallOpConversion, ConvertOpConversion, DispatchOpConversion, DispatchTableOpConversion, DTEntryOpConversion, DivcOpConversion, EmboxCharOpConversion, ExtractValueOpConversion, HasValueOpConversion, GlobalOpConversion, InsertOnRangeOpConversion, InsertValueOpConversion, IsPresentOpConversion, LoadOpConversion, NegcOpConversion, MulcOpConversion, SelectCaseOpConversion, SelectOpConversion, SelectRankOpConversion, SelectTypeOpConversion, StoreOpConversion, SubcOpConversion, UndefOpConversion, UnreachableOpConversion, ZeroOpConversion>(typeConverter); mlir::populateStdToLLVMConversionPatterns(typeConverter, pattern); mlir::arith::populateArithmeticToLLVMConversionPatterns(typeConverter, pattern); mlir::ConversionTarget target{*context}; target.addLegalDialect(); // required NOPs for applying a full conversion target.addLegalOp(); // apply the patterns if (mlir::failed(mlir::applyFullConversion(getModule(), target, std::move(pattern)))) { signalPassFailure(); } } }; } // namespace std::unique_ptr fir::createFIRToLLVMPass() { return std::make_unique(); }