//===- Schedule.cpp - Calculate an optimized schedule ---------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass generates an entirey new schedule tree from the data dependences // and iteration domains. The new schedule tree is computed in two steps: // // 1) The isl scheduling optimizer is run // // The isl scheduling optimizer creates a new schedule tree that maximizes // parallelism and tileability and minimizes data-dependence distances. The // algorithm used is a modified version of the ``Pluto'' algorithm: // // U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. // A Practical Automatic Polyhedral Parallelizer and Locality Optimizer. // In Proceedings of the 2008 ACM SIGPLAN Conference On Programming Language // Design and Implementation, PLDI ’08, pages 101–113. ACM, 2008. // // 2) A set of post-scheduling transformations is applied on the schedule tree. // // These optimizations include: // // - Tiling of the innermost tilable bands // - Prevectorization - The coice of a possible outer loop that is strip-mined // to the innermost level to enable inner-loop // vectorization. // - Some optimizations for spatial locality are also planned. // // For a detailed description of the schedule tree itself please see section 6 // of: // // Polyhedral AST generation is more than scanning polyhedra // Tobias Grosser, Sven Verdoolaege, Albert Cohen // ACM Transations on Programming Languages and Systems (TOPLAS), // 37(4), July 2015 // http://www.grosser.es/#pub-polyhedral-AST-generation // // This publication also contains a detailed discussion of the different options // for polyhedral loop unrolling, full/partial tile separation and other uses // of the schedule tree. // //===----------------------------------------------------------------------===// #include "polly/ScheduleOptimizer.h" #include "polly/CodeGen/CodeGeneration.h" #include "polly/DependenceInfo.h" #include "polly/LinkAllPasses.h" #include "polly/Options.h" #include "polly/ScopInfo.h" #include "polly/Support/GICHelper.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/Support/Debug.h" #include "isl/aff.h" #include "isl/band.h" #include "isl/constraint.h" #include "isl/map.h" #include "isl/options.h" #include "isl/printer.h" #include "isl/schedule.h" #include "isl/schedule_node.h" #include "isl/space.h" #include "isl/union_map.h" #include "isl/union_set.h" using namespace llvm; using namespace polly; #define DEBUG_TYPE "polly-opt-isl" static cl::opt OptimizeDeps("polly-opt-optimize-only", cl::desc("Only a certain kind of dependences (all/raw)"), cl::Hidden, cl::init("all"), cl::ZeroOrMore, cl::cat(PollyCategory)); static cl::opt SimplifyDeps("polly-opt-simplify-deps", cl::desc("Dependences should be simplified (yes/no)"), cl::Hidden, cl::init("yes"), cl::ZeroOrMore, cl::cat(PollyCategory)); static cl::opt MaxConstantTerm( "polly-opt-max-constant-term", cl::desc("The maximal constant term allowed (-1 is unlimited)"), cl::Hidden, cl::init(20), cl::ZeroOrMore, cl::cat(PollyCategory)); static cl::opt MaxCoefficient( "polly-opt-max-coefficient", cl::desc("The maximal coefficient allowed (-1 is unlimited)"), cl::Hidden, cl::init(20), cl::ZeroOrMore, cl::cat(PollyCategory)); static cl::opt FusionStrategy( "polly-opt-fusion", cl::desc("The fusion strategy to choose (min/max)"), cl::Hidden, cl::init("min"), cl::ZeroOrMore, cl::cat(PollyCategory)); static cl::opt MaximizeBandDepth("polly-opt-maximize-bands", cl::desc("Maximize the band depth (yes/no)"), cl::Hidden, cl::init("yes"), cl::ZeroOrMore, cl::cat(PollyCategory)); static cl::opt OuterCoincidence( "polly-opt-outer-coincidence", cl::desc("Try to construct schedules where the outer member of each band " "satisfies the coincidence constraints (yes/no)"), cl::Hidden, cl::init("no"), cl::ZeroOrMore, cl::cat(PollyCategory)); static cl::opt PrevectorWidth( "polly-prevect-width", cl::desc( "The number of loop iterations to strip-mine for pre-vectorization"), cl::Hidden, cl::init(4), cl::ZeroOrMore, cl::cat(PollyCategory)); static cl::opt FirstLevelTiling("polly-tiling", cl::desc("Enable loop tiling"), cl::init(true), cl::ZeroOrMore, cl::cat(PollyCategory)); static cl::opt LatencyVectorFma( "polly-target-latency-vector-fma", cl::desc("The minimal number of cycles between issuing two " "dependent consecutive vector fused multiply-add " "instructions."), cl::Hidden, cl::init(8), cl::ZeroOrMore, cl::cat(PollyCategory)); static cl::opt ThrougputVectorFma( "polly-target-througput-vector-fma", cl::desc("A throughput of the processor floating-point arithmetic units " "expressed in the number of vector fused multiply-add " "instructions per clock cycle."), cl::Hidden, cl::init(1), cl::ZeroOrMore, cl::cat(PollyCategory)); static cl::opt FirstLevelDefaultTileSize( "polly-default-tile-size", cl::desc("The default tile size (if not enough were provided by" " --polly-tile-sizes)"), cl::Hidden, cl::init(32), cl::ZeroOrMore, cl::cat(PollyCategory)); static cl::list FirstLevelTileSizes( "polly-tile-sizes", cl::desc("A tile size for each loop dimension, filled " "with --polly-default-tile-size"), cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated, cl::cat(PollyCategory)); static cl::opt SecondLevelTiling("polly-2nd-level-tiling", cl::desc("Enable a 2nd level loop of loop tiling"), cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); static cl::opt SecondLevelDefaultTileSize( "polly-2nd-level-default-tile-size", cl::desc("The default 2nd-level tile size (if not enough were provided by" " --polly-2nd-level-tile-sizes)"), cl::Hidden, cl::init(16), cl::ZeroOrMore, cl::cat(PollyCategory)); static cl::list SecondLevelTileSizes("polly-2nd-level-tile-sizes", cl::desc("A tile size for each loop dimension, filled " "with --polly-default-tile-size"), cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated, cl::cat(PollyCategory)); static cl::opt RegisterTiling("polly-register-tiling", cl::desc("Enable register tiling"), cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); static cl::opt RegisterDefaultTileSize( "polly-register-tiling-default-tile-size", cl::desc("The default register tile size (if not enough were provided by" " --polly-register-tile-sizes)"), cl::Hidden, cl::init(2), cl::ZeroOrMore, cl::cat(PollyCategory)); static cl::list RegisterTileSizes("polly-register-tile-sizes", cl::desc("A tile size for each loop dimension, filled " "with --polly-register-tile-size"), cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated, cl::cat(PollyCategory)); static cl::opt PMBasedOpts("polly-pattern-matching-based-opts", cl::desc("Perform optimizations based on pattern matching"), cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); /// @brief Create an isl_union_set, which describes the isolate option based /// on IsoalteDomain. /// /// @param IsolateDomain An isl_set whose last dimension is the only one that /// should belong to the current band node. static __isl_give isl_union_set * getIsolateOptions(__isl_take isl_set *IsolateDomain) { auto Dims = isl_set_dim(IsolateDomain, isl_dim_set); auto *IsolateRelation = isl_map_from_domain(IsolateDomain); IsolateRelation = isl_map_move_dims(IsolateRelation, isl_dim_out, 0, isl_dim_in, Dims - 1, 1); auto *IsolateOption = isl_map_wrap(IsolateRelation); auto *Id = isl_id_alloc(isl_set_get_ctx(IsolateOption), "isolate", nullptr); return isl_union_set_from_set(isl_set_set_tuple_id(IsolateOption, Id)); } /// @brief Create an isl_union_set, which describes the atomic option for the /// dimension of the current node. /// /// It may help to reduce the size of generated code. /// /// @param Ctx An isl_ctx, which is used to create the isl_union_set. static __isl_give isl_union_set *getAtomicOptions(__isl_take isl_ctx *Ctx) { auto *Space = isl_space_set_alloc(Ctx, 0, 1); auto *AtomicOption = isl_set_universe(Space); auto *Id = isl_id_alloc(Ctx, "atomic", nullptr); return isl_union_set_from_set(isl_set_set_tuple_id(AtomicOption, Id)); } /// @brief Make the last dimension of Set to take values /// from 0 to VectorWidth - 1. /// /// @param Set A set, which should be modified. /// @param VectorWidth A parameter, which determines the constraint. static __isl_give isl_set *addExtentConstraints(__isl_take isl_set *Set, int VectorWidth) { auto Dims = isl_set_dim(Set, isl_dim_set); auto Space = isl_set_get_space(Set); auto *LocalSpace = isl_local_space_from_space(Space); auto *ExtConstr = isl_constraint_alloc_inequality(isl_local_space_copy(LocalSpace)); ExtConstr = isl_constraint_set_constant_si(ExtConstr, 0); ExtConstr = isl_constraint_set_coefficient_si(ExtConstr, isl_dim_set, Dims - 1, 1); Set = isl_set_add_constraint(Set, ExtConstr); ExtConstr = isl_constraint_alloc_inequality(LocalSpace); ExtConstr = isl_constraint_set_constant_si(ExtConstr, VectorWidth - 1); ExtConstr = isl_constraint_set_coefficient_si(ExtConstr, isl_dim_set, Dims - 1, -1); return isl_set_add_constraint(Set, ExtConstr); } /// @brief Build the desired set of partial tile prefixes. /// /// We build a set of partial tile prefixes, which are prefixes of the vector /// loop that have exactly VectorWidth iterations. /// /// 1. Get all prefixes of the vector loop. /// 2. Extend it to a set, which has exactly VectorWidth iterations for /// any prefix from the set that was built on the previous step. /// 3. Subtract loop domain from it, project out the vector loop dimension and /// get a set of prefixes, which don't have exactly VectorWidth iterations. /// 4. Subtract it from all prefixes of the vector loop and get the desired /// set. /// /// @param ScheduleRange A range of a map, which describes a prefix schedule /// relation. static __isl_give isl_set * getPartialTilePrefixes(__isl_take isl_set *ScheduleRange, int VectorWidth) { auto Dims = isl_set_dim(ScheduleRange, isl_dim_set); auto *LoopPrefixes = isl_set_project_out(isl_set_copy(ScheduleRange), isl_dim_set, Dims - 1, 1); auto *ExtentPrefixes = isl_set_add_dims(isl_set_copy(LoopPrefixes), isl_dim_set, 1); ExtentPrefixes = addExtentConstraints(ExtentPrefixes, VectorWidth); auto *BadPrefixes = isl_set_subtract(ExtentPrefixes, ScheduleRange); BadPrefixes = isl_set_project_out(BadPrefixes, isl_dim_set, Dims - 1, 1); return isl_set_subtract(LoopPrefixes, BadPrefixes); } __isl_give isl_schedule_node *ScheduleTreeOptimizer::isolateFullPartialTiles( __isl_take isl_schedule_node *Node, int VectorWidth) { assert(isl_schedule_node_get_type(Node) == isl_schedule_node_band); Node = isl_schedule_node_child(Node, 0); Node = isl_schedule_node_child(Node, 0); auto *SchedRelUMap = isl_schedule_node_get_prefix_schedule_relation(Node); auto *ScheduleRelation = isl_map_from_union_map(SchedRelUMap); auto *ScheduleRange = isl_map_range(ScheduleRelation); auto *IsolateDomain = getPartialTilePrefixes(ScheduleRange, VectorWidth); auto *AtomicOption = getAtomicOptions(isl_set_get_ctx(IsolateDomain)); auto *IsolateOption = getIsolateOptions(IsolateDomain); Node = isl_schedule_node_parent(Node); Node = isl_schedule_node_parent(Node); auto *Options = isl_union_set_union(IsolateOption, AtomicOption); Node = isl_schedule_node_band_set_ast_build_options(Node, Options); return Node; } __isl_give isl_schedule_node * ScheduleTreeOptimizer::prevectSchedBand(__isl_take isl_schedule_node *Node, unsigned DimToVectorize, int VectorWidth) { assert(isl_schedule_node_get_type(Node) == isl_schedule_node_band); auto Space = isl_schedule_node_band_get_space(Node); auto ScheduleDimensions = isl_space_dim(Space, isl_dim_set); isl_space_free(Space); assert(DimToVectorize < ScheduleDimensions); if (DimToVectorize > 0) { Node = isl_schedule_node_band_split(Node, DimToVectorize); Node = isl_schedule_node_child(Node, 0); } if (DimToVectorize < ScheduleDimensions - 1) Node = isl_schedule_node_band_split(Node, 1); Space = isl_schedule_node_band_get_space(Node); auto Sizes = isl_multi_val_zero(Space); auto Ctx = isl_schedule_node_get_ctx(Node); Sizes = isl_multi_val_set_val(Sizes, 0, isl_val_int_from_si(Ctx, VectorWidth)); Node = isl_schedule_node_band_tile(Node, Sizes); Node = isolateFullPartialTiles(Node, VectorWidth); Node = isl_schedule_node_child(Node, 0); // Make sure the "trivially vectorizable loop" is not unrolled. Otherwise, // we will have troubles to match it in the backend. Node = isl_schedule_node_band_set_ast_build_options( Node, isl_union_set_read_from_str(Ctx, "{ unroll[x]: 1 = 0 }")); Node = isl_schedule_node_band_sink(Node); Node = isl_schedule_node_child(Node, 0); if (isl_schedule_node_get_type(Node) == isl_schedule_node_leaf) Node = isl_schedule_node_parent(Node); isl_id *LoopMarker = isl_id_alloc(Ctx, "SIMD", nullptr); Node = isl_schedule_node_insert_mark(Node, LoopMarker); return Node; } __isl_give isl_schedule_node * ScheduleTreeOptimizer::tileNode(__isl_take isl_schedule_node *Node, const char *Identifier, ArrayRef TileSizes, int DefaultTileSize) { auto Ctx = isl_schedule_node_get_ctx(Node); auto Space = isl_schedule_node_band_get_space(Node); auto Dims = isl_space_dim(Space, isl_dim_set); auto Sizes = isl_multi_val_zero(Space); std::string IdentifierString(Identifier); for (unsigned i = 0; i < Dims; i++) { auto tileSize = i < TileSizes.size() ? TileSizes[i] : DefaultTileSize; Sizes = isl_multi_val_set_val(Sizes, i, isl_val_int_from_si(Ctx, tileSize)); } auto TileLoopMarkerStr = IdentifierString + " - Tiles"; isl_id *TileLoopMarker = isl_id_alloc(Ctx, TileLoopMarkerStr.c_str(), nullptr); Node = isl_schedule_node_insert_mark(Node, TileLoopMarker); Node = isl_schedule_node_child(Node, 0); Node = isl_schedule_node_band_tile(Node, Sizes); Node = isl_schedule_node_child(Node, 0); auto PointLoopMarkerStr = IdentifierString + " - Points"; isl_id *PointLoopMarker = isl_id_alloc(Ctx, PointLoopMarkerStr.c_str(), nullptr); Node = isl_schedule_node_insert_mark(Node, PointLoopMarker); Node = isl_schedule_node_child(Node, 0); return Node; } __isl_give isl_schedule_node * ScheduleTreeOptimizer::applyRegisterTiling(__isl_take isl_schedule_node *Node, llvm::ArrayRef TileSizes, int DefaultTileSize) { auto *Ctx = isl_schedule_node_get_ctx(Node); Node = tileNode(Node, "Register tiling", TileSizes, DefaultTileSize); Node = isl_schedule_node_band_set_ast_build_options( Node, isl_union_set_read_from_str(Ctx, "{unroll[x]}")); return Node; } bool ScheduleTreeOptimizer::isTileableBandNode( __isl_keep isl_schedule_node *Node) { if (isl_schedule_node_get_type(Node) != isl_schedule_node_band) return false; if (isl_schedule_node_n_children(Node) != 1) return false; if (!isl_schedule_node_band_get_permutable(Node)) return false; auto Space = isl_schedule_node_band_get_space(Node); auto Dims = isl_space_dim(Space, isl_dim_set); isl_space_free(Space); if (Dims <= 1) return false; auto Child = isl_schedule_node_get_child(Node, 0); auto Type = isl_schedule_node_get_type(Child); isl_schedule_node_free(Child); if (Type != isl_schedule_node_leaf) return false; return true; } __isl_give isl_schedule_node * ScheduleTreeOptimizer::standardBandOpts(__isl_take isl_schedule_node *Node, void *User) { if (FirstLevelTiling) Node = tileNode(Node, "1st level tiling", FirstLevelTileSizes, FirstLevelDefaultTileSize); if (SecondLevelTiling) Node = tileNode(Node, "2nd level tiling", SecondLevelTileSizes, SecondLevelDefaultTileSize); if (RegisterTiling) Node = applyRegisterTiling(Node, RegisterTileSizes, RegisterDefaultTileSize); if (PollyVectorizerChoice == VECTORIZER_NONE) return Node; auto Space = isl_schedule_node_band_get_space(Node); auto Dims = isl_space_dim(Space, isl_dim_set); isl_space_free(Space); for (int i = Dims - 1; i >= 0; i--) if (isl_schedule_node_band_member_get_coincident(Node, i)) { Node = prevectSchedBand(Node, i, PrevectorWidth); break; } return Node; } /// @brief Check whether output dimensions of the map rely on the specified /// input dimension. /// /// @param IslMap The isl map to be considered. /// @param DimNum The number of an input dimension to be checked. static bool isInputDimUsed(__isl_take isl_map *IslMap, unsigned DimNum) { auto *CheckedAccessRelation = isl_map_project_out(isl_map_copy(IslMap), isl_dim_in, DimNum, 1); CheckedAccessRelation = isl_map_insert_dims(CheckedAccessRelation, isl_dim_in, DimNum, 1); auto *InputDimsId = isl_map_get_tuple_id(IslMap, isl_dim_in); CheckedAccessRelation = isl_map_set_tuple_id(CheckedAccessRelation, isl_dim_in, InputDimsId); InputDimsId = isl_map_get_tuple_id(IslMap, isl_dim_out); CheckedAccessRelation = isl_map_set_tuple_id(CheckedAccessRelation, isl_dim_out, InputDimsId); auto res = !isl_map_is_equal(CheckedAccessRelation, IslMap); isl_map_free(CheckedAccessRelation); isl_map_free(IslMap); return res; } /// @brief Check if the SCoP statement could probably be optimized with /// analytical modeling. /// /// containsMatrMult tries to determine whether the following conditions /// are true: /// 1. all memory accesses of the statement will have stride 0 or 1, /// if we interchange loops (switch the variable used in the inner /// loop to the outer loop). /// 2. all memory accesses of the statement except from the last one, are /// read memory access and the last one is write memory access. /// 3. all subscripts of the last memory access of the statement don't contain /// the variable used in the inner loop. /// /// @param PartialSchedule The PartialSchedule that contains a SCoP statement /// to check. static bool containsMatrMult(__isl_keep isl_map *PartialSchedule) { auto InputDimsId = isl_map_get_tuple_id(PartialSchedule, isl_dim_in); auto *ScpStmt = static_cast(isl_id_get_user(InputDimsId)); isl_id_free(InputDimsId); if (ScpStmt->size() <= 1) return false; auto MemA = ScpStmt->begin(); for (unsigned i = 0; i < ScpStmt->size() - 2 && MemA != ScpStmt->end(); i++, MemA++) if (!(*MemA)->isRead() || ((*MemA)->isArrayKind() && !((*MemA)->isStrideOne(isl_map_copy(PartialSchedule)) || (*MemA)->isStrideZero(isl_map_copy(PartialSchedule))))) return false; MemA++; if (!(*MemA)->isWrite() || !(*MemA)->isArrayKind() || !((*MemA)->isStrideOne(isl_map_copy(PartialSchedule)) || (*MemA)->isStrideZero(isl_map_copy(PartialSchedule)))) return false; auto DimNum = isl_map_dim(PartialSchedule, isl_dim_in); return !isInputDimUsed((*MemA)->getAccessRelation(), DimNum - 1); } /// @brief Circular shift of output dimensions of the integer map. /// /// @param IslMap The isl map to be modified. static __isl_give isl_map *circularShiftOutputDims(__isl_take isl_map *IslMap) { auto DimNum = isl_map_dim(IslMap, isl_dim_out); if (DimNum == 0) return IslMap; auto InputDimsId = isl_map_get_tuple_id(IslMap, isl_dim_in); IslMap = isl_map_move_dims(IslMap, isl_dim_in, 0, isl_dim_out, DimNum - 1, 1); IslMap = isl_map_move_dims(IslMap, isl_dim_out, 0, isl_dim_in, 0, 1); return isl_map_set_tuple_id(IslMap, isl_dim_in, InputDimsId); } __isl_give isl_schedule_node *ScheduleTreeOptimizer::createMicroKernel( __isl_take isl_schedule_node *Node, MicroKernelParamsTy MicroKernelParams) { return applyRegisterTiling(Node, {MicroKernelParams.Mr, MicroKernelParams.Nr}, 1); } /// Get parameters of the BLIS micro kernel. /// /// We choose the Mr and Nr parameters of the micro kernel to be large enough /// such that no stalls caused by the combination of latencies and dependencies /// are introduced during the updates of the resulting matrix of the matrix /// multiplication. However, they should also be as small as possible to /// release more registers for entries of multiplied matrices. /// /// @param TTI Target Transform Info. /// @return The structure of type MicroKernelParamsTy. /// @see MicroKernelParamsTy static struct MicroKernelParamsTy getMicroKernelParams(const llvm::TargetTransformInfo *TTI) { assert(TTI && "The target transform info should be provided."); // Nvec - Number of double-precision floating-point numbers that can be hold // by a vector register. Use 2 by default. auto Nvec = TTI->getRegisterBitWidth(true) / 64; if (Nvec == 0) Nvec = 2; int Nr = ceil(sqrt(Nvec * LatencyVectorFma * ThrougputVectorFma) / Nvec) * Nvec; int Mr = ceil(Nvec * LatencyVectorFma * ThrougputVectorFma / Nr); return {Mr, Nr}; } __isl_give isl_schedule_node *ScheduleTreeOptimizer::optimizeMatMulPattern( __isl_take isl_schedule_node *Node, const llvm::TargetTransformInfo *TTI) { assert(TTI && "The target transform info should be provided."); auto MicroKernelParams = getMicroKernelParams(TTI); Node = createMicroKernel(Node, MicroKernelParams); return Node; } bool ScheduleTreeOptimizer::isMatrMultPattern( __isl_keep isl_schedule_node *Node) { auto *PartialSchedule = isl_schedule_node_band_get_partial_schedule_union_map(Node); if (isl_schedule_node_band_n_member(Node) != 3 || isl_union_map_n_map(PartialSchedule) != 1) { isl_union_map_free(PartialSchedule); return false; } auto *NewPartialSchedule = isl_map_from_union_map(PartialSchedule); NewPartialSchedule = circularShiftOutputDims(NewPartialSchedule); if (containsMatrMult(NewPartialSchedule)) { isl_map_free(NewPartialSchedule); return true; } isl_map_free(NewPartialSchedule); return false; } __isl_give isl_schedule_node * ScheduleTreeOptimizer::optimizeBand(__isl_take isl_schedule_node *Node, void *User) { if (!isTileableBandNode(Node)) return Node; if (PMBasedOpts && User && isMatrMultPattern(Node)) { DEBUG(dbgs() << "The matrix multiplication pattern was detected\n"); const llvm::TargetTransformInfo *TTI; TTI = static_cast(User); Node = optimizeMatMulPattern(Node, TTI); } return standardBandOpts(Node, User); } __isl_give isl_schedule * ScheduleTreeOptimizer::optimizeSchedule(__isl_take isl_schedule *Schedule, const llvm::TargetTransformInfo *TTI) { isl_schedule_node *Root = isl_schedule_get_root(Schedule); Root = optimizeScheduleNode(Root, TTI); isl_schedule_free(Schedule); auto S = isl_schedule_node_get_schedule(Root); isl_schedule_node_free(Root); return S; } __isl_give isl_schedule_node *ScheduleTreeOptimizer::optimizeScheduleNode( __isl_take isl_schedule_node *Node, const llvm::TargetTransformInfo *TTI) { Node = isl_schedule_node_map_descendant_bottom_up( Node, optimizeBand, const_cast(static_cast(TTI))); return Node; } bool ScheduleTreeOptimizer::isProfitableSchedule( Scop &S, __isl_keep isl_union_map *NewSchedule) { // To understand if the schedule has been optimized we check if the schedule // has changed at all. // TODO: We can improve this by tracking if any necessarily beneficial // transformations have been performed. This can e.g. be tiling, loop // interchange, or ...) We can track this either at the place where the // transformation has been performed or, in case of automatic ILP based // optimizations, by comparing (yet to be defined) performance metrics // before/after the scheduling optimizer // (e.g., #stride-one accesses) isl_union_map *OldSchedule = S.getSchedule(); bool changed = !isl_union_map_is_equal(OldSchedule, NewSchedule); isl_union_map_free(OldSchedule); return changed; } namespace { class IslScheduleOptimizer : public ScopPass { public: static char ID; explicit IslScheduleOptimizer() : ScopPass(ID) { LastSchedule = nullptr; } ~IslScheduleOptimizer() { isl_schedule_free(LastSchedule); } /// @brief Optimize the schedule of the SCoP @p S. bool runOnScop(Scop &S) override; /// @brief Print the new schedule for the SCoP @p S. void printScop(raw_ostream &OS, Scop &S) const override; /// @brief Register all analyses and transformation required. void getAnalysisUsage(AnalysisUsage &AU) const override; /// @brief Release the internal memory. void releaseMemory() override { isl_schedule_free(LastSchedule); LastSchedule = nullptr; } private: isl_schedule *LastSchedule; }; } // namespace char IslScheduleOptimizer::ID = 0; bool IslScheduleOptimizer::runOnScop(Scop &S) { // Skip empty SCoPs but still allow code generation as it will delete the // loops present but not needed. if (S.getSize() == 0) { S.markAsOptimized(); return false; } const Dependences &D = getAnalysis().getDependences(Dependences::AL_Statement); if (!D.hasValidDependences()) return false; isl_schedule_free(LastSchedule); LastSchedule = nullptr; // Build input data. int ValidityKinds = Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW; int ProximityKinds; if (OptimizeDeps == "all") ProximityKinds = Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW; else if (OptimizeDeps == "raw") ProximityKinds = Dependences::TYPE_RAW; else { errs() << "Do not know how to optimize for '" << OptimizeDeps << "'" << " Falling back to optimizing all dependences.\n"; ProximityKinds = Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW; } isl_union_set *Domain = S.getDomains(); if (!Domain) return false; isl_union_map *Validity = D.getDependences(ValidityKinds); isl_union_map *Proximity = D.getDependences(ProximityKinds); // Simplify the dependences by removing the constraints introduced by the // domains. This can speed up the scheduling time significantly, as large // constant coefficients will be removed from the dependences. The // introduction of some additional dependences reduces the possible // transformations, but in most cases, such transformation do not seem to be // interesting anyway. In some cases this option may stop the scheduler to // find any schedule. if (SimplifyDeps == "yes") { Validity = isl_union_map_gist_domain(Validity, isl_union_set_copy(Domain)); Validity = isl_union_map_gist_range(Validity, isl_union_set_copy(Domain)); Proximity = isl_union_map_gist_domain(Proximity, isl_union_set_copy(Domain)); Proximity = isl_union_map_gist_range(Proximity, isl_union_set_copy(Domain)); } else if (SimplifyDeps != "no") { errs() << "warning: Option -polly-opt-simplify-deps should either be 'yes' " "or 'no'. Falling back to default: 'yes'\n"; } DEBUG(dbgs() << "\n\nCompute schedule from: "); DEBUG(dbgs() << "Domain := " << stringFromIslObj(Domain) << ";\n"); DEBUG(dbgs() << "Proximity := " << stringFromIslObj(Proximity) << ";\n"); DEBUG(dbgs() << "Validity := " << stringFromIslObj(Validity) << ";\n"); unsigned IslSerializeSCCs; if (FusionStrategy == "max") { IslSerializeSCCs = 0; } else if (FusionStrategy == "min") { IslSerializeSCCs = 1; } else { errs() << "warning: Unknown fusion strategy. Falling back to maximal " "fusion.\n"; IslSerializeSCCs = 0; } int IslMaximizeBands; if (MaximizeBandDepth == "yes") { IslMaximizeBands = 1; } else if (MaximizeBandDepth == "no") { IslMaximizeBands = 0; } else { errs() << "warning: Option -polly-opt-maximize-bands should either be 'yes'" " or 'no'. Falling back to default: 'yes'\n"; IslMaximizeBands = 1; } int IslOuterCoincidence; if (OuterCoincidence == "yes") { IslOuterCoincidence = 1; } else if (OuterCoincidence == "no") { IslOuterCoincidence = 0; } else { errs() << "warning: Option -polly-opt-outer-coincidence should either be " "'yes' or 'no'. Falling back to default: 'no'\n"; IslOuterCoincidence = 0; } isl_ctx *Ctx = S.getIslCtx(); isl_options_set_schedule_outer_coincidence(Ctx, IslOuterCoincidence); isl_options_set_schedule_serialize_sccs(Ctx, IslSerializeSCCs); isl_options_set_schedule_maximize_band_depth(Ctx, IslMaximizeBands); isl_options_set_schedule_max_constant_term(Ctx, MaxConstantTerm); isl_options_set_schedule_max_coefficient(Ctx, MaxCoefficient); isl_options_set_tile_scale_tile_loops(Ctx, 0); auto OnErrorStatus = isl_options_get_on_error(Ctx); isl_options_set_on_error(Ctx, ISL_ON_ERROR_CONTINUE); isl_schedule_constraints *ScheduleConstraints; ScheduleConstraints = isl_schedule_constraints_on_domain(Domain); ScheduleConstraints = isl_schedule_constraints_set_proximity(ScheduleConstraints, Proximity); ScheduleConstraints = isl_schedule_constraints_set_validity( ScheduleConstraints, isl_union_map_copy(Validity)); ScheduleConstraints = isl_schedule_constraints_set_coincidence(ScheduleConstraints, Validity); isl_schedule *Schedule; Schedule = isl_schedule_constraints_compute_schedule(ScheduleConstraints); isl_options_set_on_error(Ctx, OnErrorStatus); // In cases the scheduler is not able to optimize the code, we just do not // touch the schedule. if (!Schedule) return false; DEBUG({ auto *P = isl_printer_to_str(Ctx); P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK); P = isl_printer_print_schedule(P, Schedule); dbgs() << "NewScheduleTree: \n" << isl_printer_get_str(P) << "\n"; isl_printer_free(P); }); Function &F = S.getFunction(); auto *TTI = &getAnalysis().getTTI(F); isl_schedule *NewSchedule = ScheduleTreeOptimizer::optimizeSchedule(Schedule, TTI); isl_union_map *NewScheduleMap = isl_schedule_get_map(NewSchedule); if (!ScheduleTreeOptimizer::isProfitableSchedule(S, NewScheduleMap)) { isl_union_map_free(NewScheduleMap); isl_schedule_free(NewSchedule); return false; } S.setScheduleTree(NewSchedule); S.markAsOptimized(); isl_union_map_free(NewScheduleMap); return false; } void IslScheduleOptimizer::printScop(raw_ostream &OS, Scop &) const { isl_printer *p; char *ScheduleStr; OS << "Calculated schedule:\n"; if (!LastSchedule) { OS << "n/a\n"; return; } p = isl_printer_to_str(isl_schedule_get_ctx(LastSchedule)); p = isl_printer_print_schedule(p, LastSchedule); ScheduleStr = isl_printer_get_str(p); isl_printer_free(p); OS << ScheduleStr << "\n"; } void IslScheduleOptimizer::getAnalysisUsage(AnalysisUsage &AU) const { ScopPass::getAnalysisUsage(AU); AU.addRequired(); AU.addRequired(); } Pass *polly::createIslScheduleOptimizerPass() { return new IslScheduleOptimizer(); } INITIALIZE_PASS_BEGIN(IslScheduleOptimizer, "polly-opt-isl", "Polly - Optimize schedule of SCoP", false, false); INITIALIZE_PASS_DEPENDENCY(DependenceInfo); INITIALIZE_PASS_DEPENDENCY(ScopInfoRegionPass); INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass); INITIALIZE_PASS_END(IslScheduleOptimizer, "polly-opt-isl", "Polly - Optimize schedule of SCoP", false, false)