//===-- RISCVAsmBackend.cpp - RISC-V Assembler Backend --------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "RISCVAsmBackend.h" #include "RISCVFixupKinds.h" #include "llvm/ADT/APInt.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCAssembler.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCELFObjectWriter.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCObjectWriter.h" #include "llvm/MC/MCSymbol.h" #include "llvm/MC/MCValue.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/EndianStream.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/LEB128.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; // Temporary workaround for old linkers that do not support ULEB128 relocations, // which are abused by DWARF v5 DW_LLE_offset_pair/DW_RLE_offset_pair // implemented in Clang/LLVM. static cl::opt ULEB128Reloc( "riscv-uleb128-reloc", cl::init(true), cl::Hidden, cl::desc("Emit R_RISCV_SET_ULEB128/E_RISCV_SUB_ULEB128 if appropriate")); static cl::opt AlignRvc("riscv-align-rvc", cl::init(true), cl::Hidden, cl::desc("When generating R_RISCV_ALIGN, insert $alignment-2 " "bytes of NOPs even in norvc code")); RISCVAsmBackend::RISCVAsmBackend(const MCSubtargetInfo &STI, uint8_t OSABI, bool Is64Bit, const MCTargetOptions &Options) : MCAsmBackend(llvm::endianness::little), STI(STI), OSABI(OSABI), Is64Bit(Is64Bit), TargetOptions(Options) { RISCVFeatures::validate(STI.getTargetTriple(), STI.getFeatureBits()); } std::optional RISCVAsmBackend::getFixupKind(StringRef Name) const { if (STI.getTargetTriple().isOSBinFormatELF()) { unsigned Type; Type = llvm::StringSwitch(Name) #define ELF_RELOC(NAME, ID) .Case(#NAME, ID) #include "llvm/BinaryFormat/ELFRelocs/RISCV.def" #undef ELF_RELOC #define ELF_RISCV_NONSTANDARD_RELOC(_VENDOR, NAME, ID) .Case(#NAME, ID) #include "llvm/BinaryFormat/ELFRelocs/RISCV_nonstandard.def" #undef ELF_RISCV_NONSTANDARD_RELOC .Case("BFD_RELOC_NONE", ELF::R_RISCV_NONE) .Case("BFD_RELOC_32", ELF::R_RISCV_32) .Case("BFD_RELOC_64", ELF::R_RISCV_64) .Default(-1u); if (Type != -1u) return static_cast(FirstLiteralRelocationKind + Type); } return std::nullopt; } MCFixupKindInfo RISCVAsmBackend::getFixupKindInfo(MCFixupKind Kind) const { const static MCFixupKindInfo Infos[] = { // This table *must* be in the order that the fixup_* kinds are defined in // RISCVFixupKinds.h. // // name offset bits flags {"fixup_riscv_hi20", 12, 20, 0}, {"fixup_riscv_lo12_i", 20, 12, 0}, {"fixup_riscv_12_i", 20, 12, 0}, {"fixup_riscv_lo12_s", 0, 32, 0}, {"fixup_riscv_pcrel_hi20", 12, 20, 0}, {"fixup_riscv_pcrel_lo12_i", 20, 12, 0}, {"fixup_riscv_pcrel_lo12_s", 0, 32, 0}, {"fixup_riscv_jal", 12, 20, 0}, {"fixup_riscv_branch", 0, 32, 0}, {"fixup_riscv_rvc_jump", 2, 11, 0}, {"fixup_riscv_rvc_branch", 0, 16, 0}, {"fixup_riscv_rvc_imm", 0, 16, 0}, {"fixup_riscv_call", 0, 64, 0}, {"fixup_riscv_call_plt", 0, 64, 0}, {"fixup_riscv_qc_e_branch", 0, 48, 0}, {"fixup_riscv_qc_e_32", 16, 32, 0}, {"fixup_riscv_qc_abs20_u", 0, 32, 0}, {"fixup_riscv_qc_e_call_plt", 0, 48, 0}, // Andes fixups {"fixup_riscv_nds_branch_10", 0, 32, 0}, }; static_assert((std::size(Infos)) == RISCV::NumTargetFixupKinds, "Not all fixup kinds added to Infos array"); // Fixup kinds from raw relocation types and .reloc directives force // relocations and do not use these fields. if (mc::isRelocation(Kind)) return {}; if (Kind < FirstTargetFixupKind) return MCAsmBackend::getFixupKindInfo(Kind); assert(unsigned(Kind - FirstTargetFixupKind) < RISCV::NumTargetFixupKinds && "Invalid kind!"); return Infos[Kind - FirstTargetFixupKind]; } bool RISCVAsmBackend::fixupNeedsRelaxationAdvanced(const MCFragment &, const MCFixup &Fixup, const MCValue &, uint64_t Value, bool Resolved) const { int64_t Offset = int64_t(Value); auto Kind = Fixup.getKind(); // Return true if the symbol is unresolved. if (!Resolved) return true; switch (Kind) { default: return false; case RISCV::fixup_riscv_rvc_branch: // For compressed branch instructions the immediate must be // in the range [-256, 254]. return Offset > 254 || Offset < -256; case RISCV::fixup_riscv_rvc_jump: // For compressed jump instructions the immediate must be // in the range [-2048, 2046]. return Offset > 2046 || Offset < -2048; case RISCV::fixup_riscv_branch: case RISCV::fixup_riscv_qc_e_branch: // For conditional branch instructions the immediate must be // in the range [-4096, 4094]. return Offset > 4094 || Offset < -4096; case RISCV::fixup_riscv_jal: // For jump instructions the immediate must be in the range // [-1048576, 1048574] return Offset > 1048574 || Offset < -1048576; case RISCV::fixup_riscv_rvc_imm: // This fixup can never be emitted as a relocation, so always needs to be // relaxed. return true; } } // Given a compressed control flow instruction this function returns // the expanded instruction, or the original instruction code if no // expansion is available. static unsigned getRelaxedOpcode(unsigned Opcode, ArrayRef Operands, const MCSubtargetInfo &STI) { switch (Opcode) { case RISCV::C_BEQZ: return RISCV::BEQ; case RISCV::C_BNEZ: return RISCV::BNE; case RISCV::C_J: case RISCV::C_JAL: // fall through. // This only relaxes one "step" - i.e. from C.J to JAL, not from C.J to // QC.E.J, because we can always relax again if needed. return RISCV::JAL; case RISCV::C_LI: if (!STI.hasFeature(RISCV::FeatureVendorXqcili)) break; // We only need this because `QC.E.LI` can be compressed into a `C.LI`. This // happens because the `simm6` MCOperandPredicate accepts bare symbols, and // `QC.E.LI` is the only instruction that accepts bare symbols at parse-time // and compresses to `C.LI`. `C.LI` does not itself accept bare symbols at // parse time. // // If we have a bare symbol, we need to turn this back to a `QC.E.LI`, as we // have no way to emit a relocation on a `C.LI` instruction. return RISCV::QC_E_LI; case RISCV::JAL: { // We can only relax JAL if we have Xqcilb if (!STI.hasFeature(RISCV::FeatureVendorXqcilb)) break; // And only if it is using X0 or X1 for rd. MCRegister Reg = Operands[0].getReg(); if (Reg == RISCV::X0) return RISCV::QC_E_J; if (Reg == RISCV::X1) return RISCV::QC_E_JAL; break; } case RISCV::BEQ: return RISCV::PseudoLongBEQ; case RISCV::BNE: return RISCV::PseudoLongBNE; case RISCV::BLT: return RISCV::PseudoLongBLT; case RISCV::BGE: return RISCV::PseudoLongBGE; case RISCV::BLTU: return RISCV::PseudoLongBLTU; case RISCV::BGEU: return RISCV::PseudoLongBGEU; case RISCV::QC_BEQI: return RISCV::PseudoLongQC_BEQI; case RISCV::QC_BNEI: return RISCV::PseudoLongQC_BNEI; case RISCV::QC_BLTI: return RISCV::PseudoLongQC_BLTI; case RISCV::QC_BGEI: return RISCV::PseudoLongQC_BGEI; case RISCV::QC_BLTUI: return RISCV::PseudoLongQC_BLTUI; case RISCV::QC_BGEUI: return RISCV::PseudoLongQC_BGEUI; case RISCV::QC_E_BEQI: return RISCV::PseudoLongQC_E_BEQI; case RISCV::QC_E_BNEI: return RISCV::PseudoLongQC_E_BNEI; case RISCV::QC_E_BLTI: return RISCV::PseudoLongQC_E_BLTI; case RISCV::QC_E_BGEI: return RISCV::PseudoLongQC_E_BGEI; case RISCV::QC_E_BLTUI: return RISCV::PseudoLongQC_E_BLTUI; case RISCV::QC_E_BGEUI: return RISCV::PseudoLongQC_E_BGEUI; } // Returning the original opcode means we cannot relax the instruction. return Opcode; } void RISCVAsmBackend::relaxInstruction(MCInst &Inst, const MCSubtargetInfo &STI) const { if (STI.hasFeature(RISCV::FeatureExactAssembly)) return; MCInst Res; switch (Inst.getOpcode()) { default: llvm_unreachable("Opcode not expected!"); case RISCV::C_BEQZ: case RISCV::C_BNEZ: case RISCV::C_J: case RISCV::C_JAL: { [[maybe_unused]] bool Success = RISCVRVC::uncompress(Res, Inst, STI); assert(Success && "Can't uncompress instruction"); assert(Res.getOpcode() == getRelaxedOpcode(Inst.getOpcode(), Inst.getOperands(), STI) && "Branch Relaxation Error"); break; } case RISCV::JAL: { // This has to be written manually because the QC.E.J -> JAL is // compression-only, so that it is not used when printing disassembly. assert(STI.hasFeature(RISCV::FeatureVendorXqcilb) && "JAL is only relaxable with Xqcilb"); assert((Inst.getOperand(0).getReg() == RISCV::X0 || Inst.getOperand(0).getReg() == RISCV::X1) && "JAL only relaxable with rd=x0 or rd=x1"); Res.setOpcode(getRelaxedOpcode(Inst.getOpcode(), Inst.getOperands(), STI)); Res.addOperand(Inst.getOperand(1)); break; } case RISCV::C_LI: { // This should only be hit when trying to relax a `C.LI` into a `QC.E.LI` // because the `C.LI` has a bare symbol. We cannot use // `RISCVRVC::uncompress` because it will use decompression patterns. The // `QC.E.LI` compression pattern to `C.LI` is compression-only (because we // don't want `c.li` ever printed as `qc.e.li`, which might be done if the // pattern applied to decompression), but that doesn't help much becuase // `C.LI` with a bare symbol will decompress to an `ADDI` anyway (because // `simm12`'s MCOperandPredicate accepts a bare symbol and that pattern // comes first), and we still cannot emit an `ADDI` with a bare symbol. assert(STI.hasFeature(RISCV::FeatureVendorXqcili) && "C.LI is only relaxable with Xqcili"); Res.setOpcode(getRelaxedOpcode(Inst.getOpcode(), Inst.getOperands(), STI)); Res.addOperand(Inst.getOperand(0)); Res.addOperand(Inst.getOperand(1)); break; } case RISCV::BEQ: case RISCV::BNE: case RISCV::BLT: case RISCV::BGE: case RISCV::BLTU: case RISCV::BGEU: case RISCV::QC_BEQI: case RISCV::QC_BNEI: case RISCV::QC_BLTI: case RISCV::QC_BGEI: case RISCV::QC_BLTUI: case RISCV::QC_BGEUI: case RISCV::QC_E_BEQI: case RISCV::QC_E_BNEI: case RISCV::QC_E_BLTI: case RISCV::QC_E_BGEI: case RISCV::QC_E_BLTUI: case RISCV::QC_E_BGEUI: Res.setOpcode(getRelaxedOpcode(Inst.getOpcode(), Inst.getOperands(), STI)); Res.addOperand(Inst.getOperand(0)); Res.addOperand(Inst.getOperand(1)); Res.addOperand(Inst.getOperand(2)); break; } Inst = std::move(Res); } // Check if an R_RISCV_ALIGN relocation is needed for an alignment directive. // If conditions are met, compute the padding size and create a fixup encoding // the padding size in the addend. bool RISCVAsmBackend::relaxAlign(MCFragment &F, unsigned &Size) { // Alignments before the first linker-relaxable instruction have fixed sizes // and do not require relocations. Alignments after a linker-relaxable // instruction require a relocation, even if the STI specifies norelax. // // firstLinkerRelaxable is the layout order within the subsection, which may // be smaller than the section's order. Therefore, alignments in a // lower-numbered subsection may be unnecessarily treated as linker-relaxable. auto *Sec = F.getParent(); if (F.getLayoutOrder() <= Sec->firstLinkerRelaxable()) return false; // Use default handling unless the alignment is larger than the nop size. const MCSubtargetInfo *STI = F.getSubtargetInfo(); unsigned MinNopLen = AlignRvc || STI->hasFeature(RISCV::FeatureStdExtZca) ? 2 : 4; if (F.getAlignment() <= MinNopLen) return false; Size = F.getAlignment().value() - MinNopLen; auto *Expr = MCConstantExpr::create(Size, getContext()); MCFixup Fixup = MCFixup::create(0, Expr, FirstLiteralRelocationKind + ELF::R_RISCV_ALIGN); F.setVarFixups({Fixup}); F.setLinkerRelaxable(); return true; } bool RISCVAsmBackend::relaxDwarfLineAddr(MCFragment &F, bool &WasRelaxed) const { int64_t LineDelta = F.getDwarfLineDelta(); const MCExpr &AddrDelta = F.getDwarfAddrDelta(); size_t OldSize = F.getVarSize(); int64_t Value; // If the label difference can be resolved, use the default handling, which // utilizes a shorter special opcode. if (AddrDelta.evaluateAsAbsolute(Value, *Asm)) return false; [[maybe_unused]] bool IsAbsolute = AddrDelta.evaluateKnownAbsolute(Value, *Asm); assert(IsAbsolute && "CFA with invalid expression"); SmallVector Data; raw_svector_ostream OS(Data); // INT64_MAX is a signal that this is actually a DW_LNE_end_sequence. if (LineDelta != INT64_MAX) { OS << uint8_t(dwarf::DW_LNS_advance_line); encodeSLEB128(LineDelta, OS); } // According to the DWARF specification, the `DW_LNS_fixed_advance_pc` opcode // takes a single unsigned half (unencoded) operand. The maximum encodable // value is therefore 65535. Set a conservative upper bound for relaxation. unsigned PCBytes; if (Value > 60000) { PCBytes = getContext().getAsmInfo()->getCodePointerSize(); OS << uint8_t(dwarf::DW_LNS_extended_op) << uint8_t(PCBytes + 1) << uint8_t(dwarf::DW_LNE_set_address); OS.write_zeros(PCBytes); } else { PCBytes = 2; OS << uint8_t(dwarf::DW_LNS_fixed_advance_pc); support::endian::write(OS, 0, llvm::endianness::little); } auto Offset = OS.tell() - PCBytes; if (LineDelta == INT64_MAX) { OS << uint8_t(dwarf::DW_LNS_extended_op); OS << uint8_t(1); OS << uint8_t(dwarf::DW_LNE_end_sequence); } else { OS << uint8_t(dwarf::DW_LNS_copy); } F.setVarContents(Data); F.setVarFixups({MCFixup::create(Offset, &AddrDelta, MCFixup::getDataKindForSize(PCBytes))}); WasRelaxed = OldSize != Data.size(); return true; } bool RISCVAsmBackend::relaxDwarfCFA(MCFragment &F, bool &WasRelaxed) const { const MCExpr &AddrDelta = F.getDwarfAddrDelta(); SmallVector Fixups; size_t OldSize = F.getVarSize(); int64_t Value; if (AddrDelta.evaluateAsAbsolute(Value, *Asm)) return false; [[maybe_unused]] bool IsAbsolute = AddrDelta.evaluateKnownAbsolute(Value, *Asm); assert(IsAbsolute && "CFA with invalid expression"); assert(getContext().getAsmInfo()->getMinInstAlignment() == 1 && "expected 1-byte alignment"); if (Value == 0) { F.clearVarContents(); F.clearVarFixups(); WasRelaxed = OldSize != 0; return true; } auto AddFixups = [&Fixups, &AddrDelta](unsigned Offset, std::pair Fixup) { const MCBinaryExpr &MBE = cast(AddrDelta); Fixups.push_back(MCFixup::create(Offset, MBE.getLHS(), std::get<0>(Fixup))); Fixups.push_back(MCFixup::create(Offset, MBE.getRHS(), std::get<1>(Fixup))); }; SmallVector Data; raw_svector_ostream OS(Data); if (isUIntN(6, Value)) { OS << uint8_t(dwarf::DW_CFA_advance_loc); AddFixups(0, {ELF::R_RISCV_SET6, ELF::R_RISCV_SUB6}); } else if (isUInt<8>(Value)) { OS << uint8_t(dwarf::DW_CFA_advance_loc1); support::endian::write(OS, 0, llvm::endianness::little); AddFixups(1, {ELF::R_RISCV_SET8, ELF::R_RISCV_SUB8}); } else if (isUInt<16>(Value)) { OS << uint8_t(dwarf::DW_CFA_advance_loc2); support::endian::write(OS, 0, llvm::endianness::little); AddFixups(1, {ELF::R_RISCV_SET16, ELF::R_RISCV_SUB16}); } else if (isUInt<32>(Value)) { OS << uint8_t(dwarf::DW_CFA_advance_loc4); support::endian::write(OS, 0, llvm::endianness::little); AddFixups(1, {ELF::R_RISCV_SET32, ELF::R_RISCV_SUB32}); } else { llvm_unreachable("unsupported CFA encoding"); } F.setVarContents(Data); F.setVarFixups(Fixups); WasRelaxed = OldSize != Data.size(); return true; } std::pair RISCVAsmBackend::relaxLEB128(MCFragment &LF, int64_t &Value) const { if (LF.isLEBSigned()) return std::make_pair(false, false); const MCExpr &Expr = LF.getLEBValue(); if (ULEB128Reloc) { LF.setVarFixups({MCFixup::create(0, &Expr, FK_Data_leb128)}); } return std::make_pair(Expr.evaluateKnownAbsolute(Value, *Asm), false); } bool RISCVAsmBackend::mayNeedRelaxation(unsigned Opcode, ArrayRef Operands, const MCSubtargetInfo &STI) const { // This function has access to two STIs, the member of the AsmBackend, and the // one passed as an argument. The latter is more specific, so we query it for // specific features. if (STI.hasFeature(RISCV::FeatureExactAssembly)) return false; return getRelaxedOpcode(Opcode, Operands, STI) != Opcode; } bool RISCVAsmBackend::writeNopData(raw_ostream &OS, uint64_t Count, const MCSubtargetInfo *STI) const { // We mostly follow binutils' convention here: align to even boundary with a // 0-fill padding. We emit up to 1 2-byte nop, though we use c.nop if RVC is // enabled or 0-fill otherwise. The remainder is now padded with 4-byte nops. // Instructions always are at even addresses. We must be in a data area or // be unaligned due to some other reason. if (Count % 2) { OS.write("\0", 1); Count -= 1; } // TODO: emit a mapping symbol right here if (Count % 4 == 2) { // The canonical nop with Zca is c.nop. For .balign 4, we generate a 2-byte // c.nop even in a norvc region. OS.write("\x01\0", 2); Count -= 2; } // The canonical nop on RISC-V is addi x0, x0, 0. for (; Count >= 4; Count -= 4) OS.write("\x13\0\0\0", 4); return true; } static uint64_t adjustFixupValue(const MCFixup &Fixup, uint64_t Value, MCContext &Ctx) { switch (Fixup.getKind()) { default: llvm_unreachable("Unknown fixup kind!"); case FK_Data_1: case FK_Data_2: case FK_Data_4: case FK_Data_8: case FK_Data_leb128: return Value; case RISCV::fixup_riscv_lo12_i: case RISCV::fixup_riscv_pcrel_lo12_i: return Value & 0xfff; case RISCV::fixup_riscv_12_i: if (!isInt<12>(Value)) { Ctx.reportError(Fixup.getLoc(), "operand must be a constant 12-bit integer"); } return Value & 0xfff; case RISCV::fixup_riscv_lo12_s: case RISCV::fixup_riscv_pcrel_lo12_s: return (((Value >> 5) & 0x7f) << 25) | ((Value & 0x1f) << 7); case RISCV::fixup_riscv_hi20: case RISCV::fixup_riscv_pcrel_hi20: // Add 1 if bit 11 is 1, to compensate for low 12 bits being negative. return ((Value + 0x800) >> 12) & 0xfffff; case RISCV::fixup_riscv_jal: { if (!isInt<21>(Value)) Ctx.reportError(Fixup.getLoc(), "fixup value out of range"); if (Value & 0x1) Ctx.reportError(Fixup.getLoc(), "fixup value must be 2-byte aligned"); // Need to produce imm[19|10:1|11|19:12] from the 21-bit Value. unsigned Sbit = (Value >> 20) & 0x1; unsigned Hi8 = (Value >> 12) & 0xff; unsigned Mid1 = (Value >> 11) & 0x1; unsigned Lo10 = (Value >> 1) & 0x3ff; // Inst{31} = Sbit; // Inst{30-21} = Lo10; // Inst{20} = Mid1; // Inst{19-12} = Hi8; Value = (Sbit << 19) | (Lo10 << 9) | (Mid1 << 8) | Hi8; return Value; } case RISCV::fixup_riscv_qc_e_branch: case RISCV::fixup_riscv_branch: { if (!isInt<13>(Value)) Ctx.reportError(Fixup.getLoc(), "fixup value out of range"); if (Value & 0x1) Ctx.reportError(Fixup.getLoc(), "fixup value must be 2-byte aligned"); // Need to extract imm[12], imm[10:5], imm[4:1], imm[11] from the 13-bit // Value. unsigned Sbit = (Value >> 12) & 0x1; unsigned Hi1 = (Value >> 11) & 0x1; unsigned Mid6 = (Value >> 5) & 0x3f; unsigned Lo4 = (Value >> 1) & 0xf; // Inst{31} = Sbit; // Inst{30-25} = Mid6; // Inst{11-8} = Lo4; // Inst{7} = Hi1; Value = (Sbit << 31) | (Mid6 << 25) | (Lo4 << 8) | (Hi1 << 7); return Value; } case RISCV::fixup_riscv_call: case RISCV::fixup_riscv_call_plt: { // Jalr will add UpperImm with the sign-extended 12-bit LowerImm, // we need to add 0x800ULL before extract upper bits to reflect the // effect of the sign extension. uint64_t UpperImm = (Value + 0x800ULL) & 0xfffff000ULL; uint64_t LowerImm = Value & 0xfffULL; return UpperImm | ((LowerImm << 20) << 32); } case RISCV::fixup_riscv_rvc_jump: { if (!isInt<12>(Value)) Ctx.reportError(Fixup.getLoc(), "fixup value out of range"); // Need to produce offset[11|4|9:8|10|6|7|3:1|5] from the 11-bit Value. unsigned Bit11 = (Value >> 11) & 0x1; unsigned Bit4 = (Value >> 4) & 0x1; unsigned Bit9_8 = (Value >> 8) & 0x3; unsigned Bit10 = (Value >> 10) & 0x1; unsigned Bit6 = (Value >> 6) & 0x1; unsigned Bit7 = (Value >> 7) & 0x1; unsigned Bit3_1 = (Value >> 1) & 0x7; unsigned Bit5 = (Value >> 5) & 0x1; Value = (Bit11 << 10) | (Bit4 << 9) | (Bit9_8 << 7) | (Bit10 << 6) | (Bit6 << 5) | (Bit7 << 4) | (Bit3_1 << 1) | Bit5; return Value; } case RISCV::fixup_riscv_rvc_branch: { if (!isInt<9>(Value)) Ctx.reportError(Fixup.getLoc(), "fixup value out of range"); // Need to produce offset[8|4:3], [reg 3 bit], offset[7:6|2:1|5] unsigned Bit8 = (Value >> 8) & 0x1; unsigned Bit7_6 = (Value >> 6) & 0x3; unsigned Bit5 = (Value >> 5) & 0x1; unsigned Bit4_3 = (Value >> 3) & 0x3; unsigned Bit2_1 = (Value >> 1) & 0x3; Value = (Bit8 << 12) | (Bit4_3 << 10) | (Bit7_6 << 5) | (Bit2_1 << 3) | (Bit5 << 2); return Value; } case RISCV::fixup_riscv_rvc_imm: { if (!isInt<6>(Value)) Ctx.reportError(Fixup.getLoc(), "fixup value out of range"); unsigned Bit5 = (Value >> 5) & 0x1; unsigned Bit4_0 = Value & 0x1f; Value = (Bit5 << 12) | (Bit4_0 << 2); return Value; } case RISCV::fixup_riscv_qc_e_32: { if (!isInt<32>(Value)) Ctx.reportError(Fixup.getLoc(), "fixup value out of range"); return Value & 0xffffffffu; } case RISCV::fixup_riscv_qc_abs20_u: { if (!isInt<20>(Value)) Ctx.reportError(Fixup.getLoc(), "fixup value out of range"); unsigned Bit19 = (Value >> 19) & 0x1; unsigned Bit14_0 = Value & 0x7fff; unsigned Bit18_15 = (Value >> 15) & 0xf; Value = (Bit19 << 31) | (Bit14_0 << 16) | (Bit18_15 << 12); return Value; } case RISCV::fixup_riscv_qc_e_call_plt: { if (!isInt<32>(Value)) Ctx.reportError(Fixup.getLoc(), "fixup value out of range"); if (Value & 0x1) Ctx.reportError(Fixup.getLoc(), "fixup value must be 2-byte aligned"); uint64_t Bit31_16 = (Value >> 16) & 0xffff; uint64_t Bit12 = (Value >> 12) & 0x1; uint64_t Bit10_5 = (Value >> 5) & 0x3f; uint64_t Bit15_13 = (Value >> 13) & 0x7; uint64_t Bit4_1 = (Value >> 1) & 0xf; uint64_t Bit11 = (Value >> 11) & 0x1; Value = (Bit31_16 << 32ull) | (Bit12 << 31) | (Bit10_5 << 25) | (Bit15_13 << 17) | (Bit4_1 << 8) | (Bit11 << 7); return Value; } case RISCV::fixup_riscv_nds_branch_10: { if (!isInt<11>(Value)) Ctx.reportError(Fixup.getLoc(), "fixup value out of range"); if (Value & 0x1) Ctx.reportError(Fixup.getLoc(), "fixup value must be 2-byte aligned"); // Need to extract imm[10], imm[9:5], imm[4:1] from the 11-bit Value. unsigned Sbit = (Value >> 10) & 0x1; unsigned Hi5 = (Value >> 5) & 0x1f; unsigned Lo4 = (Value >> 1) & 0xf; // Inst{31} = Sbit; // Inst{29-25} = Hi5; // Inst{11-8} = Lo4; Value = (Sbit << 31) | (Hi5 << 25) | (Lo4 << 8); return Value; } } } bool RISCVAsmBackend::isPCRelFixupResolved(const MCSymbol *SymA, const MCFragment &F) { // If the section does not contain linker-relaxable fragments, PC-relative // fixups can be resolved. if (!F.getParent()->isLinkerRelaxable()) return true; // Otherwise, check if the offset between the symbol and fragment is fully // resolved, unaffected by linker-relaxable fragments (e.g. instructions or // offset-affected FT_Align fragments). Complements the generic // isSymbolRefDifferenceFullyResolvedImpl. if (!PCRelTemp) PCRelTemp = getContext().createTempSymbol(); PCRelTemp->setFragment(const_cast(&F)); MCValue Res; MCExpr::evaluateSymbolicAdd(Asm, false, MCValue::get(SymA), MCValue::get(nullptr, PCRelTemp), Res); return !Res.getSubSym(); } // Get the corresponding PC-relative HI fixup that a S_PCREL_LO points to, and // optionally the fragment containing it. // // \returns nullptr if this isn't a S_PCREL_LO pointing to a known PC-relative // HI fixup. static const MCFixup *getPCRelHiFixup(const MCSpecifierExpr &Expr, const MCFragment **DFOut) { MCValue AUIPCLoc; if (!Expr.getSubExpr()->evaluateAsRelocatable(AUIPCLoc, nullptr)) return nullptr; const MCSymbol *AUIPCSymbol = AUIPCLoc.getAddSym(); if (!AUIPCSymbol) return nullptr; const auto *DF = AUIPCSymbol->getFragment(); if (!DF) return nullptr; uint64_t Offset = AUIPCSymbol->getOffset(); if (DF->getContents().size() == Offset) { DF = DF->getNext(); if (!DF) return nullptr; Offset = 0; } for (const MCFixup &F : DF->getFixups()) { if (F.getOffset() != Offset) continue; auto Kind = F.getKind(); if (!mc::isRelocation(F.getKind())) { if (Kind == RISCV::fixup_riscv_pcrel_hi20) { *DFOut = DF; return &F; } break; } switch (Kind) { case ELF::R_RISCV_GOT_HI20: case ELF::R_RISCV_TLS_GOT_HI20: case ELF::R_RISCV_TLS_GD_HI20: case ELF::R_RISCV_TLSDESC_HI20: *DFOut = DF; return &F; } } return nullptr; } std::optional RISCVAsmBackend::evaluateFixup(const MCFragment &, MCFixup &Fixup, MCValue &Target, uint64_t &Value) { const MCFixup *AUIPCFixup; const MCFragment *AUIPCDF; MCValue AUIPCTarget; switch (Fixup.getKind()) { default: // Use default handling for `Value` and `IsResolved`. return {}; case RISCV::fixup_riscv_pcrel_lo12_i: case RISCV::fixup_riscv_pcrel_lo12_s: { AUIPCFixup = getPCRelHiFixup(cast(*Fixup.getValue()), &AUIPCDF); if (!AUIPCFixup) { getContext().reportError(Fixup.getLoc(), "could not find corresponding %pcrel_hi"); return true; } // MCAssembler::evaluateFixup will emit an error for this case when it sees // the %pcrel_hi, so don't duplicate it when also seeing the %pcrel_lo. const MCExpr *AUIPCExpr = AUIPCFixup->getValue(); if (!AUIPCExpr->evaluateAsRelocatable(AUIPCTarget, Asm)) return true; break; } } if (!AUIPCTarget.getAddSym()) return false; auto &SA = static_cast(*AUIPCTarget.getAddSym()); if (SA.isUndefined()) return false; bool IsResolved = &SA.getSection() == AUIPCDF->getParent() && SA.getBinding() == ELF::STB_LOCAL && SA.getType() != ELF::STT_GNU_IFUNC; if (!IsResolved) return false; Value = Asm->getSymbolOffset(SA) + AUIPCTarget.getConstant(); Value -= Asm->getFragmentOffset(*AUIPCDF) + AUIPCFixup->getOffset(); return AUIPCFixup->getKind() == RISCV::fixup_riscv_pcrel_hi20 && isPCRelFixupResolved(AUIPCTarget.getAddSym(), *AUIPCDF); } void RISCVAsmBackend::maybeAddVendorReloc(const MCFragment &F, const MCFixup &Fixup) { StringRef VendorIdentifier; switch (Fixup.getKind()) { default: // No Vendor Relocation Required. return; case RISCV::fixup_riscv_qc_e_branch: case RISCV::fixup_riscv_qc_abs20_u: case RISCV::fixup_riscv_qc_e_32: case RISCV::fixup_riscv_qc_e_call_plt: VendorIdentifier = "QUALCOMM"; break; case RISCV::fixup_riscv_nds_branch_10: VendorIdentifier = "ANDES"; break; } // Create a local symbol for the vendor relocation to reference. It's fine if // the symbol has the same name as an existing symbol. MCContext &Ctx = Asm->getContext(); MCSymbol *VendorSymbol = Ctx.createLocalSymbol(VendorIdentifier); auto [It, Inserted] = VendorSymbols.try_emplace(VendorIdentifier, VendorSymbol); if (Inserted) { // Setup the just-created symbol VendorSymbol->setVariableValue(MCConstantExpr::create(0, Ctx)); Asm->registerSymbol(*VendorSymbol); } else { // Fetch the existing symbol VendorSymbol = It->getValue(); } MCFixup VendorFixup = MCFixup::create(Fixup.getOffset(), nullptr, ELF::R_RISCV_VENDOR); // Explicitly create MCValue rather than using an MCExpr and evaluating it so // that the absolute vendor symbol is not evaluated to constant 0. MCValue VendorTarget = MCValue::get(VendorSymbol); uint64_t VendorValue; Asm->getWriter().recordRelocation(F, VendorFixup, VendorTarget, VendorValue); } bool RISCVAsmBackend::addReloc(const MCFragment &F, const MCFixup &Fixup, const MCValue &Target, uint64_t &FixedValue, bool IsResolved) { uint64_t FixedValueA, FixedValueB; if (Target.getSubSym()) { assert(Target.getSpecifier() == 0 && "relocatable SymA-SymB cannot have relocation specifier"); unsigned TA = 0, TB = 0; switch (Fixup.getKind()) { case llvm::FK_Data_1: TA = ELF::R_RISCV_ADD8; TB = ELF::R_RISCV_SUB8; break; case llvm::FK_Data_2: TA = ELF::R_RISCV_ADD16; TB = ELF::R_RISCV_SUB16; break; case llvm::FK_Data_4: TA = ELF::R_RISCV_ADD32; TB = ELF::R_RISCV_SUB32; break; case llvm::FK_Data_8: TA = ELF::R_RISCV_ADD64; TB = ELF::R_RISCV_SUB64; break; case llvm::FK_Data_leb128: TA = ELF::R_RISCV_SET_ULEB128; TB = ELF::R_RISCV_SUB_ULEB128; break; default: llvm_unreachable("unsupported fixup size"); } MCValue A = MCValue::get(Target.getAddSym(), nullptr, Target.getConstant()); MCValue B = MCValue::get(Target.getSubSym()); auto FA = MCFixup::create(Fixup.getOffset(), nullptr, TA); auto FB = MCFixup::create(Fixup.getOffset(), nullptr, TB); Asm->getWriter().recordRelocation(F, FA, A, FixedValueA); Asm->getWriter().recordRelocation(F, FB, B, FixedValueB); FixedValue = FixedValueA - FixedValueB; return false; } // If linker relaxation is enabled and supported by the current relocation, // generate a relocation and then append a RELAX. if (Fixup.isLinkerRelaxable()) IsResolved = false; if (IsResolved && Fixup.isPCRel()) IsResolved = isPCRelFixupResolved(Target.getAddSym(), F); if (!IsResolved) { // Some Fixups require a vendor relocation, record it (directly) before we // add the relocation. maybeAddVendorReloc(F, Fixup); Asm->getWriter().recordRelocation(F, Fixup, Target, FixedValue); } if (Fixup.isLinkerRelaxable()) { auto FA = MCFixup::create(Fixup.getOffset(), nullptr, ELF::R_RISCV_RELAX); Asm->getWriter().recordRelocation(F, FA, MCValue::get(nullptr), FixedValueA); } return false; } void RISCVAsmBackend::applyFixup(const MCFragment &F, const MCFixup &Fixup, const MCValue &Target, uint8_t *Data, uint64_t Value, bool IsResolved) { IsResolved = addReloc(F, Fixup, Target, Value, IsResolved); MCFixupKind Kind = Fixup.getKind(); if (mc::isRelocation(Kind)) return; MCContext &Ctx = getContext(); MCFixupKindInfo Info = getFixupKindInfo(Kind); if (!Value) return; // Doesn't change encoding. // Apply any target-specific value adjustments. Value = adjustFixupValue(Fixup, Value, Ctx); // Shift the value into position. Value <<= Info.TargetOffset; unsigned NumBytes = alignTo(Info.TargetSize + Info.TargetOffset, 8) / 8; assert(Fixup.getOffset() + NumBytes <= F.getSize() && "Invalid fixup offset!"); // For each byte of the fragment that the fixup touches, mask in the // bits from the fixup value. for (unsigned i = 0; i != NumBytes; ++i) { Data[i] |= uint8_t((Value >> (i * 8)) & 0xff); } } std::unique_ptr RISCVAsmBackend::createObjectTargetWriter() const { return createRISCVELFObjectWriter(OSABI, Is64Bit); } MCAsmBackend *llvm::createRISCVAsmBackend(const Target &T, const MCSubtargetInfo &STI, const MCRegisterInfo &MRI, const MCTargetOptions &Options) { const Triple &TT = STI.getTargetTriple(); uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TT.getOS()); return new RISCVAsmBackend(STI, OSABI, TT.isArch64Bit(), Options); }