//===---------------- DecoderEmitter.cpp - Decoder Generator --------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // It contains the tablegen backend that emits the decoder functions for // targets with fixed/variable length instruction set. // //===----------------------------------------------------------------------===// #include "Common/CodeGenHwModes.h" #include "Common/CodeGenInstruction.h" #include "Common/CodeGenTarget.h" #include "Common/InfoByHwMode.h" #include "Common/VarLenCodeEmitterGen.h" #include "TableGenBackends.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/CachedHashString.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallBitVector.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringRef.h" #include "llvm/MC/MCDecoderOps.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/FormatVariadic.h" #include "llvm/Support/FormattedStream.h" #include "llvm/Support/KnownBits.h" #include "llvm/Support/LEB128.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include "llvm/TableGen/Error.h" #include "llvm/TableGen/Record.h" #include #include #include #include #include #include #include #include #include #include using namespace llvm; #define DEBUG_TYPE "decoder-emitter" extern cl::OptionCategory DisassemblerEmitterCat; enum SuppressLevel { SUPPRESSION_DISABLE, SUPPRESSION_LEVEL1, SUPPRESSION_LEVEL2 }; static cl::opt DecoderEmitterSuppressDuplicates( "suppress-per-hwmode-duplicates", cl::desc("Suppress duplication of instrs into per-HwMode decoder tables"), cl::values( clEnumValN( SUPPRESSION_DISABLE, "O0", "Do not prevent DecoderTable duplications caused by HwModes"), clEnumValN( SUPPRESSION_LEVEL1, "O1", "Remove duplicate DecoderTable entries generated due to HwModes"), clEnumValN( SUPPRESSION_LEVEL2, "O2", "Extract HwModes-specific instructions into new DecoderTables, " "significantly reducing Table Duplications")), cl::init(SUPPRESSION_DISABLE), cl::cat(DisassemblerEmitterCat)); static cl::opt LargeTable( "large-decoder-table", cl::desc("Use large decoder table format. This uses 24 bits for offset\n" "in the table instead of the default 16 bits."), cl::init(false), cl::cat(DisassemblerEmitterCat)); static cl::opt UseFnTableInDecodeToMCInst( "use-fn-table-in-decode-to-mcinst", cl::desc( "Use a table of function pointers instead of a switch case in the\n" "generated `decodeToMCInst` function. Helps improve compile time\n" "of the generated code."), cl::init(false), cl::cat(DisassemblerEmitterCat)); STATISTIC(NumEncodings, "Number of encodings considered"); STATISTIC(NumEncodingsLackingDisasm, "Number of encodings without disassembler info"); STATISTIC(NumInstructions, "Number of instructions considered"); STATISTIC(NumEncodingsSupported, "Number of encodings supported"); STATISTIC(NumEncodingsOmitted, "Number of encodings omitted"); static unsigned getNumToSkipInBytes() { return LargeTable ? 3 : 2; } /// Similar to KnownBits::print(), but allows you to specify a character to use /// to print unknown bits. static void printKnownBits(raw_ostream &OS, const KnownBits &Bits, char Unknown) { for (unsigned I = Bits.getBitWidth(); I--;) { if (Bits.Zero[I] && Bits.One[I]) OS << '!'; else if (Bits.Zero[I]) OS << '0'; else if (Bits.One[I]) OS << '1'; else OS << Unknown; } } namespace { struct EncodingField { unsigned Base, Width, Offset; EncodingField(unsigned B, unsigned W, unsigned O) : Base(B), Width(W), Offset(O) {} }; struct OperandInfo { std::vector Fields; std::string Decoder; bool HasCompleteDecoder; uint64_t InitValue = 0; OperandInfo(std::string D, bool HCD) : Decoder(D), HasCompleteDecoder(HCD) {} void addField(unsigned Base, unsigned Width, unsigned Offset) { Fields.push_back(EncodingField(Base, Width, Offset)); } unsigned numFields() const { return Fields.size(); } typedef std::vector::const_iterator const_iterator; const_iterator begin() const { return Fields.begin(); } const_iterator end() const { return Fields.end(); } }; /// Represents a parsed InstructionEncoding record or a record derived from it. class InstructionEncoding { /// The Record this encoding originates from. const Record *EncodingDef; /// The instruction this encoding is for. const CodeGenInstruction *Inst; /// The name of this encoding (for debugging purposes). std::string Name; /// The size of this encoding, in bits. unsigned BitWidth; /// The name of the function to use for decoding. May be an empty string, /// meaning the decoder is generated. StringRef DecoderMethod; /// Whether the custom decoding function always succeeds. If a custom decoder /// function is specified, the value is taken from the target description, /// otherwise it is inferred. bool HasCompleteDecoder; /// Information about the operands' contribution to this encoding. SmallVector Operands; public: InstructionEncoding(const Record *EncodingDef, const CodeGenInstruction *Inst); /// Returns the Record this encoding originates from. const Record *getRecord() const { return EncodingDef; } /// Returns the instruction this encoding is for. const CodeGenInstruction *getInstruction() const { return Inst; } /// Returns the name of this encoding, for debugging purposes. StringRef getName() const { return Name; } /// Returns the size of this encoding, in bits. unsigned getBitWidth() const { return BitWidth; } /// Returns the name of the function to use for decoding, or an empty string /// if the decoder is generated. StringRef getDecoderMethod() const { return DecoderMethod; } /// Returns whether the decoder (either generated or specified by the user) /// always succeeds. bool hasCompleteDecoder() const { return HasCompleteDecoder; } /// Returns information about the operands' contribution to this encoding. ArrayRef getOperands() const { return Operands; } private: void parseVarLenOperands(const VarLenInst &VLI); void parseFixedLenOperands(const BitsInit &Bits); }; typedef std::vector FixupList; typedef std::vector FixupScopeList; typedef SmallSetVector PredicateSet; typedef SmallSetVector DecoderSet; class DecoderTable { public: DecoderTable() { Data.reserve(16384); } void clear() { Data.clear(); } void push_back(uint8_t Item) { Data.push_back(Item); } size_t size() const { return Data.size(); } const uint8_t *data() const { return Data.data(); } using const_iterator = std::vector::const_iterator; const_iterator begin() const { return Data.begin(); } const_iterator end() const { return Data.end(); } // Insert a ULEB128 encoded value into the table. void insertULEB128(uint64_t Value) { // Encode and emit the value to filter against. uint8_t Buffer[16]; unsigned Len = encodeULEB128(Value, Buffer); Data.insert(Data.end(), Buffer, Buffer + Len); } // Insert space for `NumToSkip` and return the position // in the table for patching. size_t insertNumToSkip() { size_t Size = Data.size(); Data.insert(Data.end(), getNumToSkipInBytes(), 0); return Size; } void patchNumToSkip(size_t FixupIdx, uint32_t DestIdx) { // Calculate the distance from the byte following the fixup entry byte // to the destination. The Target is calculated from after the // `getNumToSkipInBytes()`-byte NumToSkip entry itself, so subtract // `getNumToSkipInBytes()` from the displacement here to account for that. assert(DestIdx >= FixupIdx + getNumToSkipInBytes() && "Expecting a forward jump in the decoding table"); uint32_t Delta = DestIdx - FixupIdx - getNumToSkipInBytes(); if (!isUIntN(8 * getNumToSkipInBytes(), Delta)) PrintFatalError( "disassembler decoding table too large, try --large-decoder-table"); Data[FixupIdx] = static_cast(Delta); Data[FixupIdx + 1] = static_cast(Delta >> 8); if (getNumToSkipInBytes() == 3) Data[FixupIdx + 2] = static_cast(Delta >> 16); } private: std::vector Data; }; struct DecoderTableInfo { DecoderTable Table; FixupScopeList FixupStack; PredicateSet Predicates; DecoderSet Decoders; bool isOutermostScope() const { return FixupStack.size() == 1; } void pushScope() { FixupStack.emplace_back(); } void popScope() { // Resolve any remaining fixups in the current scope before popping it. // All fixups resolve to the current location. uint32_t DestIdx = Table.size(); for (uint32_t FixupIdx : FixupStack.back()) Table.patchNumToSkip(FixupIdx, DestIdx); FixupStack.pop_back(); } }; using NamespacesHwModesMap = std::map>; class DecoderEmitter { const RecordKeeper &RK; CodeGenTarget Target; const CodeGenHwModes &CGH; /// All parsed encodings. std::vector Encodings; /// Encodings IDs for each HwMode. An ID is an index into Encodings. SmallDenseMap> EncodingIDsByHwMode; public: DecoderEmitter(const RecordKeeper &RK, StringRef PredicateNamespace); const CodeGenTarget &getTarget() const { return Target; } // Emit the decoder state machine table. Returns a mask of MCD decoder ops // that were emitted. unsigned emitTable(formatted_raw_ostream &OS, DecoderTable &Table, StringRef Namespace, unsigned HwModeID, unsigned BitWidth, ArrayRef EncodingIDs) const; void emitInstrLenTable(formatted_raw_ostream &OS, ArrayRef InstrLen) const; void emitPredicateFunction(formatted_raw_ostream &OS, PredicateSet &Predicates) const; void emitDecoderFunction(formatted_raw_ostream &OS, DecoderSet &Decoders) const; // run - Output the code emitter void run(raw_ostream &o) const; private: void collectHwModesReferencedForEncodings( std::vector &HwModeIDs, NamespacesHwModesMap &NamespacesWithHwModes) const; void handleHwModesUnrelatedEncodings(unsigned EncodingID, ArrayRef HwModeIDs, NamespacesHwModesMap &NamespacesWithHwModes); void parseInstructionEncodings(); public: StringRef PredicateNamespace; }; } // end anonymous namespace static const BitsInit &getBitsField(const Record &Def, StringRef FieldName) { const RecordVal *RV = Def.getValue(FieldName); if (const BitsInit *Bits = dyn_cast(RV->getValue())) return *Bits; // Handle variable length instructions. VarLenInst VLI(cast(RV->getValue()), RV); SmallVector Bits; for (const auto &SI : VLI) { if (const BitsInit *BI = dyn_cast(SI.Value)) llvm::append_range(Bits, BI->getBits()); else if (const BitInit *BI = dyn_cast(SI.Value)) Bits.push_back(BI); else Bits.append(SI.BitWidth, UnsetInit::get(Def.getRecords())); } return *BitsInit::get(Def.getRecords(), Bits); } namespace { class FilterChooser; /// Filter - Filter works with FilterChooser to produce the decoding tree for /// the ISA. /// /// It is useful to think of a Filter as governing the switch stmts of the /// decoding tree in a certain level. Each case stmt delegates to an inferior /// FilterChooser to decide what further decoding logic to employ, or in another /// words, what other remaining bits to look at. The FilterChooser eventually /// chooses a best Filter to do its job. /// /// This recursive scheme ends when the number of Opcodes assigned to the /// FilterChooser becomes 1 or if there is a conflict. A conflict happens when /// the Filter/FilterChooser combo does not know how to distinguish among the /// Opcodes assigned. /// /// An example of a conflict is /// /// Decoding Conflict: /// ................................ /// 1111............................ /// 1111010......................... /// 1111010...00.................... /// 1111010...00........0001........ /// 111101000.00........0001........ /// 111101000.00........00010000.... /// 111101000_00________00010000____ VST4q8a /// 111101000_00________00010000____ VST4q8b /// /// The Debug output shows the path that the decoding tree follows to reach the /// the conclusion that there is a conflict. VST4q8a is a vst4 to double-spaced /// even registers, while VST4q8b is a vst4 to double-spaced odd registers. /// /// The encoding info in the .td files does not specify this meta information, /// which could have been used by the decoder to resolve the conflict. The /// decoder could try to decode the even/odd register numbering and assign to /// VST4q8a or VST4q8b, but for the time being, the decoder chooses the "a" /// version and return the Opcode since the two have the same Asm format string. class Filter { protected: const FilterChooser &Owner; // FilterChooser who owns this filter unsigned StartBit; // the starting bit position unsigned NumBits; // number of bits to filter // Map of well-known segment value to the set of uid's with that value. std::map> FilteredIDs; // Set of uid's with non-constant segment values. std::vector VariableIDs; // Map of well-known segment value to its delegate. std::map> FilterChooserMap; // A filter chooser for encodings that contain some '?' in the filtered range. std::unique_ptr VariableFC; // Number of instructions which fall under FilteredInstructions category. unsigned NumFiltered; public: Filter(Filter &&f); Filter(const FilterChooser &owner, unsigned startBit, unsigned numBits); ~Filter() = default; unsigned getNumFiltered() const { return NumFiltered; } unsigned getSingletonEncodingID() const { assert(NumFiltered == 1); return FilteredIDs.begin()->second.front(); } // Return the filter chooser for the group of instructions without constant // segment values. const FilterChooser &getVariableFC() const { assert(NumFiltered == 1 && FilterChooserMap.empty()); return *VariableFC; } // Divides the decoding task into sub tasks and delegates them to the // inferior FilterChooser's. // // A special case arises when there's only one entry in the filtered // instructions. In order to unambiguously decode the singleton, we need to // match the remaining undecoded encoding bits against the singleton. void recurse(); // Emit table entries to decode instructions given a segment or segments of // bits. void emitTableEntry(DecoderTableInfo &TableInfo) const; // Returns the number of fanout produced by the filter. More fanout implies // the filter distinguishes more categories of instructions. unsigned usefulness() const; }; // end class Filter // These are states of our finite state machines used in FilterChooser's // filterProcessor() which produces the filter candidates to use. enum bitAttr_t { ATTR_NONE, ATTR_FILTERED, ATTR_ALL_SET, ATTR_ALL_UNSET, ATTR_MIXED }; /// FilterChooser - FilterChooser chooses the best filter among a set of Filters /// in order to perform the decoding of instructions at the current level. /// /// Decoding proceeds from the top down. Based on the well-known encoding bits /// of instructions available, FilterChooser builds up the possible Filters that /// can further the task of decoding by distinguishing among the remaining /// candidate instructions. /// /// Once a filter has been chosen, it is called upon to divide the decoding task /// into sub-tasks and delegates them to its inferior FilterChoosers for further /// processings. /// /// It is useful to think of a Filter as governing the switch stmts of the /// decoding tree. And each case is delegated to an inferior FilterChooser to /// decide what further remaining bits to look at. class FilterChooser { protected: friend class Filter; // Vector of encodings to choose our filter. ArrayRef Encodings; // Vector of encoding IDs for this filter chooser to work on. ArrayRef EncodingIDs; // The selected filter, if any. std::unique_ptr BestFilter; // Array of bit values passed down from our parent. // Set to all unknown for Parent == nullptr. KnownBits FilterBits; // Links to the FilterChooser above us in the decoding tree. const FilterChooser *Parent; // Width of instructions unsigned BitWidth; // Parent emitter const DecoderEmitter *Emitter; struct Island { unsigned StartBit; unsigned NumBits; uint64_t FieldVal; }; public: FilterChooser(ArrayRef Encodings, ArrayRef EncodingIDs, unsigned BW, const DecoderEmitter *E) : Encodings(Encodings), EncodingIDs(EncodingIDs), FilterBits(BW), Parent(nullptr), BitWidth(BW), Emitter(E) { doFilter(); } FilterChooser(ArrayRef Encodings, ArrayRef EncodingIDs, const KnownBits &ParentFilterBits, const FilterChooser &parent) : Encodings(Encodings), EncodingIDs(EncodingIDs), FilterBits(ParentFilterBits), Parent(&parent), BitWidth(parent.BitWidth), Emitter(parent.Emitter) { assert(!FilterBits.hasConflict() && "Broken filter"); doFilter(); } FilterChooser(const FilterChooser &) = delete; void operator=(const FilterChooser &) = delete; unsigned getBitWidth() const { return BitWidth; } protected: KnownBits getMandatoryEncodingBits(unsigned EncodingID) const { const Record *EncodingDef = Encodings[EncodingID].getRecord(); const BitsInit &Bits = getBitsField(*EncodingDef, "Inst"); KnownBits Insn(std::max(BitWidth, Bits.getNumBits())); // We may have a SoftFail bitmask, which specifies a mask where an encoding // may differ from the value in "Inst" and yet still be valid, but the // disassembler should return SoftFail instead of Success. // // This is used for marking UNPREDICTABLE instructions in the ARM world. const RecordVal *RV = EncodingDef->getValue("SoftFail"); const BitsInit *SFBits = RV ? dyn_cast(RV->getValue()) : nullptr; for (unsigned i = 0; i < Bits.getNumBits(); ++i) { if (SFBits) { const auto *B = dyn_cast(SFBits->getBit(i)); if (B && B->getValue()) continue; } if (const auto *B = dyn_cast(Bits.getBit(i))) { if (B->getValue()) Insn.One.setBit(i); else Insn.Zero.setBit(i); } } return Insn; } /// dumpStack - dumpStack traverses the filter chooser chain and calls /// dumpFilterArray on each filter chooser up to the top level one. void dumpStack(raw_ostream &OS, indent Indent) const; bool isPositionFiltered(unsigned Idx) const { return FilterBits.Zero[Idx] || FilterBits.One[Idx]; } // Calculates the island(s) needed to decode the instruction. // This returns a list of undecoded bits of an instructions, for example, // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be // decoded bits in order to verify that the instruction matches the Opcode. std::vector getIslands(const KnownBits &EncodingBits) const; // Emits code to check the Predicates member of an instruction are true. // Returns true if predicate matches were emitted, false otherwise. bool emitPredicateMatch(raw_ostream &OS, unsigned EncodingID) const; bool emitPredicateMatchAux(const Init &Val, bool ParenIfBinOp, raw_ostream &OS) const; bool doesOpcodeNeedPredicate(unsigned EncodingID) const; unsigned getPredicateIndex(DecoderTableInfo &TableInfo, StringRef P) const; void emitPredicateTableEntry(DecoderTableInfo &TableInfo, unsigned EncodingID) const; void emitSoftFailTableEntry(DecoderTableInfo &TableInfo, unsigned EncodingID) const; // Emits table entries to decode the singleton. void emitSingletonTableEntry(DecoderTableInfo &TableInfo, unsigned EncodingID) const; // Emits code to decode the singleton, and then to decode the rest. void emitSingletonTableEntry(DecoderTableInfo &TableInfo, const Filter &Best) const; void emitBinaryParser(raw_ostream &OS, indent Indent, const OperandInfo &OpInfo) const; void emitDecoder(raw_ostream &OS, indent Indent, unsigned EncodingID) const; unsigned getDecoderIndex(DecoderSet &Decoders, unsigned EncodingID) const; // Assign a single filter and run with it. void runSingleFilter(unsigned startBit, unsigned numBit); // reportRegion is a helper function for filterProcessor to mark a region as // eligible for use as a filter region. void reportRegion(std::vector> &Filters, bitAttr_t RA, unsigned StartBit, unsigned BitIndex, bool AllowMixed); // FilterProcessor scans the well-known encoding bits of the instructions and // builds up a list of candidate filters. It chooses the best filter and // recursively descends down the decoding tree. bool filterProcessor(ArrayRef BitAttrs, bool AllowMixed, bool Greedy = true); // Decides on the best configuration of filter(s) to use in order to decode // the instructions. A conflict of instructions may occur, in which case we // dump the conflict set to the standard error. void doFilter(); public: // emitTableEntries - Emit state machine entries to decode our share of // instructions. void emitTableEntries(DecoderTableInfo &TableInfo) const; }; } // end anonymous namespace /////////////////////////// // // // Filter Implementation // // // /////////////////////////// Filter::Filter(Filter &&f) : Owner(f.Owner), StartBit(f.StartBit), NumBits(f.NumBits), FilteredIDs(std::move(f.FilteredIDs)), VariableIDs(std::move(f.VariableIDs)), FilterChooserMap(std::move(f.FilterChooserMap)), VariableFC(std::move(f.VariableFC)), NumFiltered(f.NumFiltered) {} Filter::Filter(const FilterChooser &owner, unsigned startBit, unsigned numBits) : Owner(owner), StartBit(startBit), NumBits(numBits) { assert(StartBit + NumBits - 1 < Owner.BitWidth); NumFiltered = 0; for (unsigned EncodingID : Owner.EncodingIDs) { // Populates the insn given the uid. KnownBits EncodingBits = Owner.getMandatoryEncodingBits(EncodingID); // Scans the segment for possibly well-specified encoding bits. KnownBits FieldBits = EncodingBits.extractBits(NumBits, StartBit); if (FieldBits.isConstant()) { // The encoding bits are well-known. Lets add the uid of the // instruction into the bucket keyed off the constant field value. FilteredIDs[FieldBits.getConstant().getZExtValue()].push_back(EncodingID); ++NumFiltered; } else { // Some of the encoding bit(s) are unspecified. This contributes to // one additional member of "Variable" instructions. VariableIDs.push_back(EncodingID); } } assert((FilteredIDs.size() + VariableIDs.size() > 0) && "Filter returns no instruction categories"); } // Divides the decoding task into sub tasks and delegates them to the // inferior FilterChooser's. // // A special case arises when there's only one entry in the filtered // instructions. In order to unambiguously decode the singleton, we need to // match the remaining undecoded encoding bits against the singleton. void Filter::recurse() { // Starts by inheriting our parent filter chooser's filter bit values. KnownBits FilterBits = Owner.FilterBits; assert(FilterBits.extractBits(NumBits, StartBit).isUnknown()); if (!VariableIDs.empty()) { // Delegates to an inferior filter chooser for further processing on this // group of instructions whose segment values are variable. VariableFC = std::make_unique(Owner.Encodings, VariableIDs, FilterBits, Owner); } // No need to recurse for a singleton filtered instruction. // See also Filter::emit*(). if (getNumFiltered() == 1) { assert(VariableFC && "Shouldn't have created a filter for one encoding!"); return; } // Otherwise, create sub choosers. for (const auto &[FilterVal, EncodingIDs] : FilteredIDs) { // Create a new filter by inserting the field bits into the parent filter. APInt FieldBits(NumBits, FilterVal); FilterBits.insertBits(KnownBits::makeConstant(FieldBits), StartBit); // Delegates to an inferior filter chooser for further processing on this // category of instructions. FilterChooserMap.try_emplace( FilterVal, std::make_unique(Owner.Encodings, EncodingIDs, FilterBits, Owner)); } } // Emit table entries to decode instructions given a segment or segments // of bits. void Filter::emitTableEntry(DecoderTableInfo &TableInfo) const { assert(isUInt<8>(NumBits) && "NumBits overflowed uint8 table entry!"); TableInfo.Table.push_back(MCD::OPC_ExtractField); TableInfo.Table.insertULEB128(StartBit); TableInfo.Table.push_back(NumBits); // If VariableFC is present, we need to add a new scope for this filter. // Otherwise, we can skip adding a new scope and any patching added will // automatically be added to the enclosing scope. const uint64_t LastFilter = FilterChooserMap.rbegin()->first; if (VariableFC) TableInfo.FixupStack.emplace_back(); DecoderTable &Table = TableInfo.Table; size_t PrevFilter = 0; for (const auto &[FilterVal, Delegate] : FilterChooserMap) { // The last filtervalue emitted can be OPC_FilterValue if we are at // outermost scope. const uint8_t DecoderOp = FilterVal == LastFilter && TableInfo.isOutermostScope() ? MCD::OPC_FilterValueOrFail : MCD::OPC_FilterValue; Table.push_back(DecoderOp); Table.insertULEB128(FilterVal); if (DecoderOp == MCD::OPC_FilterValue) { // Reserve space for the NumToSkip entry. We'll backpatch the value later. PrevFilter = Table.insertNumToSkip(); } else { PrevFilter = 0; } // We arrive at a category of instructions with the same segment value. // Now delegate to the sub filter chooser for further decodings. // The case may fallthrough, which happens if the remaining well-known // encoding bits do not match exactly. Delegate->emitTableEntries(TableInfo); // Now that we've emitted the body of the handler, update the NumToSkip // of the filter itself to be able to skip forward when false. if (PrevFilter) Table.patchNumToSkip(PrevFilter, Table.size()); } if (VariableFC) { // Each scope should always have at least one filter value to check for. assert(PrevFilter != 0 && "empty filter set!"); TableInfo.popScope(); PrevFilter = 0; // Don't re-process the filter's fallthrough. // Delegate to the sub filter chooser for further decoding. VariableFC->emitTableEntries(TableInfo); } // If there is no fallthrough and the final filter was not in the outermost // scope, then it must be fixed up according to the enclosing scope rather // than the current position. if (PrevFilter) TableInfo.FixupStack.back().push_back(PrevFilter); } // Returns the number of fanout produced by the filter. More fanout implies // the filter distinguishes more categories of instructions. unsigned Filter::usefulness() const { return FilteredIDs.size() + VariableIDs.empty(); } ////////////////////////////////// // // // Filterchooser Implementation // // // ////////////////////////////////// // Emit the decoder state machine table. Returns a mask of MCD decoder ops // that were emitted. unsigned DecoderEmitter::emitTable(formatted_raw_ostream &OS, DecoderTable &Table, StringRef Namespace, unsigned HwModeID, unsigned BitWidth, ArrayRef EncodingIDs) const { // We'll need to be able to map from a decoded opcode into the corresponding // EncodingID for this specific combination of BitWidth and Namespace. This // is used below to index into Encodings. DenseMap OpcodeToEncodingID; OpcodeToEncodingID.reserve(EncodingIDs.size()); for (unsigned EncodingID : EncodingIDs) { const Record *InstDef = Encodings[EncodingID].getInstruction()->TheDef; OpcodeToEncodingID[Target.getInstrIntValue(InstDef)] = EncodingID; } OS << "static const uint8_t DecoderTable" << Namespace; if (HwModeID != DefaultMode) OS << '_' << Target.getHwModes().getModeName(HwModeID); OS << BitWidth << "[] = {\n"; // Emit ULEB128 encoded value to OS, returning the number of bytes emitted. auto emitULEB128 = [](DecoderTable::const_iterator &I, formatted_raw_ostream &OS) { while (*I >= 128) OS << (unsigned)*I++ << ", "; OS << (unsigned)*I++ << ", "; }; // Emit `getNumToSkipInBytes()`-byte numtoskip value to OS, returning the // NumToSkip value. auto emitNumToSkip = [](DecoderTable::const_iterator &I, formatted_raw_ostream &OS) { uint8_t Byte = *I++; uint32_t NumToSkip = Byte; OS << (unsigned)Byte << ", "; Byte = *I++; OS << (unsigned)Byte << ", "; NumToSkip |= Byte << 8; if (getNumToSkipInBytes() == 3) { Byte = *I++; OS << (unsigned)(Byte) << ", "; NumToSkip |= Byte << 16; } return NumToSkip; }; // FIXME: We may be able to use the NumToSkip values to recover // appropriate indentation levels. DecoderTable::const_iterator I = Table.begin(); DecoderTable::const_iterator E = Table.end(); const uint8_t *const EndPtr = Table.data() + Table.size(); auto emitNumToSkipComment = [&](uint32_t NumToSkip, bool InComment = false) { uint32_t Index = ((I - Table.begin()) + NumToSkip); OS << (InComment ? ", " : "// "); OS << "Skip to: " << Index; if (*(I + NumToSkip) == MCD::OPC_Fail) OS << " (Fail)"; }; unsigned OpcodeMask = 0; while (I != E) { assert(I < E && "incomplete decode table entry!"); uint64_t Pos = I - Table.begin(); OS << "/* " << Pos << " */"; OS.PadToColumn(12); const uint8_t DecoderOp = *I++; OpcodeMask |= (1 << DecoderOp); switch (DecoderOp) { default: PrintFatalError("Invalid decode table opcode: " + Twine((int)DecoderOp) + " at index " + Twine(Pos)); case MCD::OPC_ExtractField: { OS << " MCD::OPC_ExtractField, "; // ULEB128 encoded start value. const char *ErrMsg = nullptr; unsigned Start = decodeULEB128(&*I, nullptr, EndPtr, &ErrMsg); assert(ErrMsg == nullptr && "ULEB128 value too large!"); emitULEB128(I, OS); unsigned Len = *I++; OS << Len << ", // Inst{"; if (Len > 1) OS << (Start + Len - 1) << "-"; OS << Start << "} ...\n"; break; } case MCD::OPC_FilterValue: case MCD::OPC_FilterValueOrFail: { bool IsFail = DecoderOp == MCD::OPC_FilterValueOrFail; OS << " MCD::OPC_FilterValue" << (IsFail ? "OrFail, " : ", "); // The filter value is ULEB128 encoded. emitULEB128(I, OS); if (!IsFail) { uint32_t NumToSkip = emitNumToSkip(I, OS); emitNumToSkipComment(NumToSkip); } OS << '\n'; break; } case MCD::OPC_CheckField: case MCD::OPC_CheckFieldOrFail: { bool IsFail = DecoderOp == MCD::OPC_CheckFieldOrFail; OS << " MCD::OPC_CheckField" << (IsFail ? "OrFail, " : ", "); // ULEB128 encoded start value. emitULEB128(I, OS); // 8-bit length. unsigned Len = *I++; OS << Len << ", "; // ULEB128 encoded field value. emitULEB128(I, OS); if (!IsFail) { uint32_t NumToSkip = emitNumToSkip(I, OS); emitNumToSkipComment(NumToSkip); } OS << '\n'; break; } case MCD::OPC_CheckPredicate: case MCD::OPC_CheckPredicateOrFail: { bool IsFail = DecoderOp == MCD::OPC_CheckPredicateOrFail; OS << " MCD::OPC_CheckPredicate" << (IsFail ? "OrFail, " : ", "); emitULEB128(I, OS); if (!IsFail) { uint32_t NumToSkip = emitNumToSkip(I, OS); emitNumToSkipComment(NumToSkip); } OS << '\n'; break; } case MCD::OPC_Decode: case MCD::OPC_TryDecode: case MCD::OPC_TryDecodeOrFail: { bool IsFail = DecoderOp == MCD::OPC_TryDecodeOrFail; bool IsTry = DecoderOp == MCD::OPC_TryDecode || IsFail; // Decode the Opcode value. const char *ErrMsg = nullptr; unsigned Opc = decodeULEB128(&*I, nullptr, EndPtr, &ErrMsg); assert(ErrMsg == nullptr && "ULEB128 value too large!"); OS << " MCD::OPC_" << (IsTry ? "Try" : "") << "Decode" << (IsFail ? "OrFail, " : ", "); emitULEB128(I, OS); // Decoder index. unsigned DecodeIdx = decodeULEB128(&*I, nullptr, EndPtr, &ErrMsg); assert(ErrMsg == nullptr && "ULEB128 value too large!"); emitULEB128(I, OS); auto EncI = OpcodeToEncodingID.find(Opc); assert(EncI != OpcodeToEncodingID.end() && "no encoding entry"); auto EncodingID = EncI->second; if (!IsTry) { OS << "// Opcode: " << Encodings[EncodingID].getName() << ", DecodeIdx: " << DecodeIdx << '\n'; break; } // Fallthrough for OPC_TryDecode. if (!IsFail) { uint32_t NumToSkip = emitNumToSkip(I, OS); OS << "// Opcode: " << Encodings[EncodingID].getName() << ", DecodeIdx: " << DecodeIdx; emitNumToSkipComment(NumToSkip, /*InComment=*/true); } OS << '\n'; break; } case MCD::OPC_SoftFail: { OS << " MCD::OPC_SoftFail, "; // Decode the positive mask. const char *ErrMsg = nullptr; uint64_t PositiveMask = decodeULEB128(&*I, nullptr, EndPtr, &ErrMsg); assert(ErrMsg == nullptr && "ULEB128 value too large!"); emitULEB128(I, OS); // Decode the negative mask. uint64_t NegativeMask = decodeULEB128(&*I, nullptr, EndPtr, &ErrMsg); assert(ErrMsg == nullptr && "ULEB128 value too large!"); emitULEB128(I, OS); OS << "// +ve mask: 0x"; OS.write_hex(PositiveMask); OS << ", -ve mask: 0x"; OS.write_hex(NegativeMask); OS << '\n'; break; } case MCD::OPC_Fail: OS << " MCD::OPC_Fail,\n"; break; } } OS << " 0\n"; OS << "};\n\n"; return OpcodeMask; } void DecoderEmitter::emitInstrLenTable(formatted_raw_ostream &OS, ArrayRef InstrLen) const { OS << "static const uint8_t InstrLenTable[] = {\n"; for (unsigned Len : InstrLen) OS << Len << ",\n"; OS << "};\n\n"; } void DecoderEmitter::emitPredicateFunction(formatted_raw_ostream &OS, PredicateSet &Predicates) const { // The predicate function is just a big switch statement based on the // input predicate index. OS << "static bool checkDecoderPredicate(unsigned Idx, const FeatureBitset " "&Bits) {\n"; OS << " switch (Idx) {\n"; OS << " default: llvm_unreachable(\"Invalid index!\");\n"; for (const auto &[Index, Predicate] : enumerate(Predicates)) { OS << " case " << Index << ":\n"; OS << " return (" << Predicate << ");\n"; } OS << " }\n"; OS << "}\n\n"; } void DecoderEmitter::emitDecoderFunction(formatted_raw_ostream &OS, DecoderSet &Decoders) const { // The decoder function is just a big switch statement or a table of function // pointers based on the input decoder index. // TODO: When InsnType is large, using uint64_t limits all fields to 64 bits // It would be better for emitBinaryParser to use a 64-bit tmp whenever // possible but fall back to an InsnType-sized tmp for truly large fields. StringRef TmpTypeDecl = "using TmpType = std::conditional_t::value, " "InsnType, uint64_t>;\n"; StringRef DecodeParams = "DecodeStatus S, InsnType insn, MCInst &MI, uint64_t Address, const " "MCDisassembler *Decoder, bool &DecodeComplete"; if (UseFnTableInDecodeToMCInst) { // Emit a function for each case first. for (const auto &[Index, Decoder] : enumerate(Decoders)) { OS << "template \n"; OS << "static DecodeStatus decodeFn" << Index << "(" << DecodeParams << ") {\n"; OS << " using namespace llvm::MCD;\n"; OS << " " << TmpTypeDecl; OS << " [[maybe_unused]] TmpType tmp;\n"; OS << Decoder; OS << " return S;\n"; OS << "}\n\n"; } } OS << "// Handling " << Decoders.size() << " cases.\n"; OS << "template \n"; OS << "static DecodeStatus decodeToMCInst(unsigned Idx, " << DecodeParams << ") {\n"; OS << " using namespace llvm::MCD;\n"; OS << " DecodeComplete = true;\n"; if (UseFnTableInDecodeToMCInst) { // Build a table of function pointers OS << " using DecodeFnTy = DecodeStatus (*)(" << DecodeParams << ");\n"; OS << " static constexpr DecodeFnTy decodeFnTable[] = {\n"; for (size_t Index : llvm::seq(Decoders.size())) OS << " decodeFn" << Index << ",\n"; OS << " };\n"; OS << " if (Idx >= " << Decoders.size() << ")\n"; OS << " llvm_unreachable(\"Invalid decoder index!\");\n"; OS << " return decodeFnTable[Idx](S, insn, MI, Address, Decoder, " "DecodeComplete);\n"; } else { OS << " " << TmpTypeDecl; OS << " TmpType tmp;\n"; OS << " switch (Idx) {\n"; OS << " default: llvm_unreachable(\"Invalid decoder index!\");\n"; for (const auto &[Index, Decoder] : enumerate(Decoders)) { OS << " case " << Index << ":\n"; OS << Decoder; OS << " return S;\n"; } OS << " }\n"; } OS << "}\n"; } /// dumpStack - dumpStack traverses the filter chooser chain and calls /// dumpFilterArray on each filter chooser up to the top level one. void FilterChooser::dumpStack(raw_ostream &OS, indent Indent) const { if (Parent) Parent->dumpStack(OS, Indent); OS << Indent; printKnownBits(OS, FilterBits, '.'); OS << '\n'; } // Calculates the island(s) needed to decode the instruction. // This returns a list of undecoded bits of an instructions, for example, // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be // decoded bits in order to verify that the instruction matches the Opcode. std::vector FilterChooser::getIslands(const KnownBits &EncodingBits) const { std::vector Islands; uint64_t FieldVal; unsigned StartBit; // 0: Init // 1: Water (the bit value does not affect decoding) // 2: Island (well-known bit value needed for decoding) unsigned State = 0; for (unsigned i = 0; i < BitWidth; ++i) { bool IsKnown = EncodingBits.Zero[i] || EncodingBits.One[i]; bool Filtered = isPositionFiltered(i); switch (State) { default: llvm_unreachable("Unreachable code!"); case 0: case 1: if (Filtered || !IsKnown) { State = 1; // Still in Water } else { State = 2; // Into the Island StartBit = i; FieldVal = static_cast(EncodingBits.One[i]); } break; case 2: if (Filtered || !IsKnown) { State = 1; // Into the Water Islands.push_back({StartBit, i - StartBit, FieldVal}); } else { State = 2; // Still in Island FieldVal |= static_cast(EncodingBits.One[i]) << (i - StartBit); } break; } } // If we are still in Island after the loop, do some housekeeping. if (State == 2) Islands.push_back({StartBit, BitWidth - StartBit, FieldVal}); return Islands; } void FilterChooser::emitBinaryParser(raw_ostream &OS, indent Indent, const OperandInfo &OpInfo) const { const std::string &Decoder = OpInfo.Decoder; bool UseInsertBits = OpInfo.numFields() != 1 || OpInfo.InitValue != 0; if (UseInsertBits) { OS << Indent << "tmp = 0x"; OS.write_hex(OpInfo.InitValue); OS << ";\n"; } for (const EncodingField &EF : OpInfo) { OS << Indent; if (UseInsertBits) OS << "insertBits(tmp, "; else OS << "tmp = "; OS << "fieldFromInstruction(insn, " << EF.Base << ", " << EF.Width << ')'; if (UseInsertBits) OS << ", " << EF.Offset << ", " << EF.Width << ')'; else if (EF.Offset != 0) OS << " << " << EF.Offset; OS << ";\n"; } if (!Decoder.empty()) { OS << Indent << "if (!Check(S, " << Decoder << "(MI, tmp, Address, Decoder))) { " << (OpInfo.HasCompleteDecoder ? "" : "DecodeComplete = false; ") << "return MCDisassembler::Fail; }\n"; } else { OS << Indent << "MI.addOperand(MCOperand::createImm(tmp));\n"; } } void FilterChooser::emitDecoder(raw_ostream &OS, indent Indent, unsigned EncodingID) const { const InstructionEncoding &Encoding = Encodings[EncodingID]; // If a custom instruction decoder was specified, use that. StringRef DecoderMethod = Encoding.getDecoderMethod(); if (!DecoderMethod.empty()) { OS << Indent << "if (!Check(S, " << DecoderMethod << "(MI, insn, Address, Decoder))) { " << (Encoding.hasCompleteDecoder() ? "" : "DecodeComplete = false; ") << "return MCDisassembler::Fail; }\n"; return; } for (const OperandInfo &Op : Encoding.getOperands()) if (Op.numFields()) emitBinaryParser(OS, Indent, Op); } unsigned FilterChooser::getDecoderIndex(DecoderSet &Decoders, unsigned EncodingID) const { // Build up the predicate string. SmallString<256> Decoder; // FIXME: emitDecoder() function can take a buffer directly rather than // a stream. raw_svector_ostream S(Decoder); indent Indent(UseFnTableInDecodeToMCInst ? 2 : 4); emitDecoder(S, Indent, EncodingID); // Using the full decoder string as the key value here is a bit // heavyweight, but is effective. If the string comparisons become a // performance concern, we can implement a mangling of the predicate // data easily enough with a map back to the actual string. That's // overkill for now, though. // Make sure the predicate is in the table. Decoders.insert(CachedHashString(Decoder)); // Now figure out the index for when we write out the table. DecoderSet::const_iterator P = find(Decoders, Decoder.str()); return std::distance(Decoders.begin(), P); } // If ParenIfBinOp is true, print a surrounding () if Val uses && or ||. bool FilterChooser::emitPredicateMatchAux(const Init &Val, bool ParenIfBinOp, raw_ostream &OS) const { if (const auto *D = dyn_cast(&Val)) { if (!D->getDef()->isSubClassOf("SubtargetFeature")) return true; OS << "Bits[" << Emitter->PredicateNamespace << "::" << D->getAsString() << "]"; return false; } if (const auto *D = dyn_cast(&Val)) { std::string Op = D->getOperator()->getAsString(); if (Op == "not" && D->getNumArgs() == 1) { OS << '!'; return emitPredicateMatchAux(*D->getArg(0), true, OS); } if ((Op == "any_of" || Op == "all_of") && D->getNumArgs() > 0) { bool Paren = D->getNumArgs() > 1 && std::exchange(ParenIfBinOp, true); if (Paren) OS << '('; ListSeparator LS(Op == "any_of" ? " || " : " && "); for (auto *Arg : D->getArgs()) { OS << LS; if (emitPredicateMatchAux(*Arg, ParenIfBinOp, OS)) return true; } if (Paren) OS << ')'; return false; } } return true; } bool FilterChooser::emitPredicateMatch(raw_ostream &OS, unsigned EncodingID) const { const ListInit *Predicates = Encodings[EncodingID].getRecord()->getValueAsListInit("Predicates"); bool IsFirstEmission = true; for (unsigned i = 0; i < Predicates->size(); ++i) { const Record *Pred = Predicates->getElementAsRecord(i); if (!Pred->getValue("AssemblerMatcherPredicate")) continue; if (!isa(Pred->getValue("AssemblerCondDag")->getValue())) continue; if (!IsFirstEmission) OS << " && "; if (emitPredicateMatchAux(*Pred->getValueAsDag("AssemblerCondDag"), Predicates->size() > 1, OS)) PrintFatalError(Pred->getLoc(), "Invalid AssemblerCondDag!"); IsFirstEmission = false; } return !Predicates->empty(); } bool FilterChooser::doesOpcodeNeedPredicate(unsigned EncodingID) const { const ListInit *Predicates = Encodings[EncodingID].getRecord()->getValueAsListInit("Predicates"); for (unsigned i = 0; i < Predicates->size(); ++i) { const Record *Pred = Predicates->getElementAsRecord(i); if (!Pred->getValue("AssemblerMatcherPredicate")) continue; if (isa(Pred->getValue("AssemblerCondDag")->getValue())) return true; } return false; } unsigned FilterChooser::getPredicateIndex(DecoderTableInfo &TableInfo, StringRef Predicate) const { // Using the full predicate string as the key value here is a bit // heavyweight, but is effective. If the string comparisons become a // performance concern, we can implement a mangling of the predicate // data easily enough with a map back to the actual string. That's // overkill for now, though. // Make sure the predicate is in the table. TableInfo.Predicates.insert(CachedHashString(Predicate)); // Now figure out the index for when we write out the table. PredicateSet::const_iterator P = find(TableInfo.Predicates, Predicate); return (unsigned)(P - TableInfo.Predicates.begin()); } void FilterChooser::emitPredicateTableEntry(DecoderTableInfo &TableInfo, unsigned EncodingID) const { if (!doesOpcodeNeedPredicate(EncodingID)) return; // Build up the predicate string. SmallString<256> Predicate; // FIXME: emitPredicateMatch() functions can take a buffer directly rather // than a stream. raw_svector_ostream PS(Predicate); emitPredicateMatch(PS, EncodingID); // Figure out the index into the predicate table for the predicate just // computed. unsigned PIdx = getPredicateIndex(TableInfo, PS.str()); const uint8_t DecoderOp = TableInfo.isOutermostScope() ? MCD::OPC_CheckPredicateOrFail : MCD::OPC_CheckPredicate; TableInfo.Table.push_back(DecoderOp); TableInfo.Table.insertULEB128(PIdx); if (DecoderOp == MCD::OPC_CheckPredicate) { // Push location for NumToSkip backpatching. TableInfo.FixupStack.back().push_back(TableInfo.Table.insertNumToSkip()); } } void FilterChooser::emitSoftFailTableEntry(DecoderTableInfo &TableInfo, unsigned EncodingID) const { const Record *EncodingDef = Encodings[EncodingID].getRecord(); const RecordVal *RV = EncodingDef->getValue("SoftFail"); const BitsInit *SFBits = RV ? dyn_cast(RV->getValue()) : nullptr; if (!SFBits) return; const BitsInit *InstBits = EncodingDef->getValueAsBitsInit("Inst"); APInt PositiveMask(BitWidth, 0ULL); APInt NegativeMask(BitWidth, 0ULL); for (unsigned i = 0; i < BitWidth; ++i) { if (!isa(SFBits->getBit(i)) || !cast(SFBits->getBit(i))->getValue()) continue; if (!isa(InstBits->getBit(i))) { // The bit is not set; this must be an error! errs() << "SoftFail Conflict: bit SoftFail{" << i << "} in " << Encodings[EncodingID].getName() << " is set but Inst{" << i << "} is unset!\n" << " - You can only mark a bit as SoftFail if it is fully defined" << " (1/0 - not '?') in Inst\n"; return; } bool IB = cast(InstBits->getBit(i))->getValue(); if (!IB) { // The bit is meant to be false, so emit a check to see if it is true. PositiveMask.setBit(i); } else { // The bit is meant to be true, so emit a check to see if it is false. NegativeMask.setBit(i); } } bool NeedPositiveMask = PositiveMask.getBoolValue(); bool NeedNegativeMask = NegativeMask.getBoolValue(); if (!NeedPositiveMask && !NeedNegativeMask) return; TableInfo.Table.push_back(MCD::OPC_SoftFail); TableInfo.Table.insertULEB128(PositiveMask.getZExtValue()); TableInfo.Table.insertULEB128(NegativeMask.getZExtValue()); } // Emits table entries to decode the singleton. void FilterChooser::emitSingletonTableEntry(DecoderTableInfo &TableInfo, unsigned EncodingID) const { KnownBits EncodingBits = getMandatoryEncodingBits(EncodingID); // Look for islands of undecoded bits of the singleton. std::vector Islands = getIslands(EncodingBits); // Emit the predicate table entry if one is needed. emitPredicateTableEntry(TableInfo, EncodingID); // Check any additional encoding fields needed. for (const Island &Ilnd : reverse(Islands)) { unsigned NumBits = Ilnd.NumBits; assert(isUInt<8>(NumBits) && "NumBits overflowed uint8 table entry!"); const uint8_t DecoderOp = TableInfo.isOutermostScope() ? MCD::OPC_CheckFieldOrFail : MCD::OPC_CheckField; TableInfo.Table.push_back(DecoderOp); TableInfo.Table.insertULEB128(Ilnd.StartBit); TableInfo.Table.push_back(NumBits); TableInfo.Table.insertULEB128(Ilnd.FieldVal); if (DecoderOp == MCD::OPC_CheckField) { // Allocate space in the table for fixup so all our relative position // calculations work OK even before we fully resolve the real value here. // Push location for NumToSkip backpatching. TableInfo.FixupStack.back().push_back(TableInfo.Table.insertNumToSkip()); } } // Check for soft failure of the match. emitSoftFailTableEntry(TableInfo, EncodingID); unsigned DIdx = getDecoderIndex(TableInfo.Decoders, EncodingID); // Produce OPC_Decode or OPC_TryDecode opcode based on the information // whether the instruction decoder is complete or not. If it is complete // then it handles all possible values of remaining variable/unfiltered bits // and for any value can determine if the bitpattern is a valid instruction // or not. This means OPC_Decode will be the final step in the decoding // process. If it is not complete, then the Fail return code from the // decoder method indicates that additional processing should be done to see // if there is any other instruction that also matches the bitpattern and // can decode it. const InstructionEncoding &Encoding = Encodings[EncodingID]; const uint8_t DecoderOp = Encoding.hasCompleteDecoder() ? MCD::OPC_Decode : (TableInfo.isOutermostScope() ? MCD::OPC_TryDecodeOrFail : MCD::OPC_TryDecode); TableInfo.Table.push_back(DecoderOp); const Record *InstDef = Encodings[EncodingID].getInstruction()->TheDef; TableInfo.Table.insertULEB128(Emitter->getTarget().getInstrIntValue(InstDef)); TableInfo.Table.insertULEB128(DIdx); if (DecoderOp == MCD::OPC_TryDecode) { // Push location for NumToSkip backpatching. TableInfo.FixupStack.back().push_back(TableInfo.Table.insertNumToSkip()); } } // Emits table entries to decode the singleton, and then to decode the rest. void FilterChooser::emitSingletonTableEntry(DecoderTableInfo &TableInfo, const Filter &Best) const { // complex singletons need predicate checks from the first singleton // to refer forward to the variable filterchooser that follows. TableInfo.pushScope(); emitSingletonTableEntry(TableInfo, Best.getSingletonEncodingID()); TableInfo.popScope(); Best.getVariableFC().emitTableEntries(TableInfo); } // Assign a single filter and run with it. Top level API client can initialize // with a single filter to start the filtering process. void FilterChooser::runSingleFilter(unsigned startBit, unsigned numBit) { BestFilter = std::make_unique(*this, startBit, numBit); BestFilter->recurse(); } // reportRegion is a helper function for filterProcessor to mark a region as // eligible for use as a filter region. void FilterChooser::reportRegion(std::vector> &Filters, bitAttr_t RA, unsigned StartBit, unsigned BitIndex, bool AllowMixed) { if (AllowMixed ? RA == ATTR_MIXED : RA == ATTR_ALL_SET) Filters.push_back( std::make_unique(*this, StartBit, BitIndex - StartBit)); } // FilterProcessor scans the well-known encoding bits of the instructions and // builds up a list of candidate filters. It chooses the best filter and // recursively descends down the decoding tree. bool FilterChooser::filterProcessor(ArrayRef BitAttrs, bool AllowMixed, bool Greedy) { assert(EncodingIDs.size() >= 2 && "Nothing to filter"); // Heuristics. See also doFilter()'s "Heuristics" comment when num of // instructions is 3. if (AllowMixed && !Greedy) { assert(EncodingIDs.size() == 3); for (unsigned EncodingID : EncodingIDs) { KnownBits EncodingBits = getMandatoryEncodingBits(EncodingID); // Look for islands of undecoded bits of any instruction. std::vector Islands = getIslands(EncodingBits); if (!Islands.empty()) { // Found an instruction with island(s). Now just assign a filter. runSingleFilter(Islands[0].StartBit, Islands[0].NumBits); return true; } } } // The regionAttr automaton consumes the bitAttrs automatons' state, // lowest-to-highest. // // Input symbols: F(iltered), (all_)S(et), (all_)U(nset), M(ixed) // States: NONE, ALL_SET, MIXED // Initial state: NONE // // (NONE) ----- F --> (NONE) // (NONE) ----- S --> (ALL_SET) ; and set region start // (NONE) ----- U --> (NONE) // (NONE) ----- M --> (MIXED) ; and set region start // (ALL_SET) -- F --> (NONE) ; and report an ALL_SET region // (ALL_SET) -- S --> (ALL_SET) // (ALL_SET) -- U --> (NONE) ; and report an ALL_SET region // (ALL_SET) -- M --> (MIXED) ; and report an ALL_SET region // (MIXED) ---- F --> (NONE) ; and report a MIXED region // (MIXED) ---- S --> (ALL_SET) ; and report a MIXED region // (MIXED) ---- U --> (NONE) ; and report a MIXED region // (MIXED) ---- M --> (MIXED) bitAttr_t RA = ATTR_NONE; unsigned StartBit = 0; std::vector> Filters; for (unsigned BitIndex = 0; BitIndex < BitWidth; ++BitIndex) { bitAttr_t bitAttr = BitAttrs[BitIndex]; assert(bitAttr != ATTR_NONE && "Bit without attributes"); switch (RA) { case ATTR_NONE: switch (bitAttr) { case ATTR_FILTERED: break; case ATTR_ALL_SET: StartBit = BitIndex; RA = ATTR_ALL_SET; break; case ATTR_ALL_UNSET: break; case ATTR_MIXED: StartBit = BitIndex; RA = ATTR_MIXED; break; default: llvm_unreachable("Unexpected bitAttr!"); } break; case ATTR_ALL_SET: switch (bitAttr) { case ATTR_FILTERED: reportRegion(Filters, RA, StartBit, BitIndex, AllowMixed); RA = ATTR_NONE; break; case ATTR_ALL_SET: break; case ATTR_ALL_UNSET: reportRegion(Filters, RA, StartBit, BitIndex, AllowMixed); RA = ATTR_NONE; break; case ATTR_MIXED: reportRegion(Filters, RA, StartBit, BitIndex, AllowMixed); StartBit = BitIndex; RA = ATTR_MIXED; break; default: llvm_unreachable("Unexpected bitAttr!"); } break; case ATTR_MIXED: switch (bitAttr) { case ATTR_FILTERED: reportRegion(Filters, RA, StartBit, BitIndex, AllowMixed); StartBit = BitIndex; RA = ATTR_NONE; break; case ATTR_ALL_SET: reportRegion(Filters, RA, StartBit, BitIndex, AllowMixed); StartBit = BitIndex; RA = ATTR_ALL_SET; break; case ATTR_ALL_UNSET: reportRegion(Filters, RA, StartBit, BitIndex, AllowMixed); RA = ATTR_NONE; break; case ATTR_MIXED: break; default: llvm_unreachable("Unexpected bitAttr!"); } break; case ATTR_ALL_UNSET: llvm_unreachable("regionAttr state machine has no ATTR_UNSET state"); case ATTR_FILTERED: llvm_unreachable("regionAttr state machine has no ATTR_FILTERED state"); } } // At the end, if we're still in ALL_SET or MIXED states, report a region switch (RA) { case ATTR_NONE: break; case ATTR_FILTERED: break; case ATTR_ALL_SET: reportRegion(Filters, RA, StartBit, BitWidth, AllowMixed); break; case ATTR_ALL_UNSET: break; case ATTR_MIXED: reportRegion(Filters, RA, StartBit, BitWidth, AllowMixed); break; } // We have finished with the filter processings. Now it's time to choose // the best performing filter. unsigned BestIndex = 0; bool AllUseless = true; unsigned BestScore = 0; for (const auto &[Idx, Filter] : enumerate(Filters)) { unsigned Usefulness = Filter->usefulness(); if (Usefulness) AllUseless = false; if (Usefulness > BestScore) { BestIndex = Idx; BestScore = Usefulness; } } if (AllUseless) return false; BestFilter = std::move(Filters[BestIndex]); BestFilter->recurse(); return true; } // end of FilterChooser::filterProcessor(bool) // Decides on the best configuration of filter(s) to use in order to decode // the instructions. A conflict of instructions may occur, in which case we // dump the conflict set to the standard error. void FilterChooser::doFilter() { assert(!EncodingIDs.empty() && "FilterChooser created with no instructions"); // No filter needed. if (EncodingIDs.size() < 2) return; // We maintain BIT_WIDTH copies of the bitAttrs automaton. // The automaton consumes the corresponding bit from each // instruction. // // Input symbols: 0, 1, _ (unset), and . (any of the above). // States: NONE, FILTERED, ALL_SET, ALL_UNSET, and MIXED. // Initial state: NONE. // // (NONE) ------- [01] -> (ALL_SET) // (NONE) ------- _ ----> (ALL_UNSET) // (ALL_SET) ---- [01] -> (ALL_SET) // (ALL_SET) ---- _ ----> (MIXED) // (ALL_UNSET) -- [01] -> (MIXED) // (ALL_UNSET) -- _ ----> (ALL_UNSET) // (MIXED) ------ . ----> (MIXED) // (FILTERED)---- . ----> (FILTERED) SmallVector BitAttrs(BitWidth, ATTR_NONE); // FILTERED bit positions provide no entropy and are not worthy of pursuing. // Filter::recurse() set either 1 or 0 for each position. for (unsigned BitIndex = 0; BitIndex < BitWidth; ++BitIndex) if (isPositionFiltered(BitIndex)) BitAttrs[BitIndex] = ATTR_FILTERED; for (unsigned EncodingID : EncodingIDs) { KnownBits EncodingBits = getMandatoryEncodingBits(EncodingID); for (unsigned BitIndex = 0; BitIndex < BitWidth; ++BitIndex) { bool IsKnown = EncodingBits.Zero[BitIndex] || EncodingBits.One[BitIndex]; switch (BitAttrs[BitIndex]) { case ATTR_NONE: if (IsKnown) BitAttrs[BitIndex] = ATTR_ALL_SET; else BitAttrs[BitIndex] = ATTR_ALL_UNSET; break; case ATTR_ALL_SET: if (!IsKnown) BitAttrs[BitIndex] = ATTR_MIXED; break; case ATTR_ALL_UNSET: if (IsKnown) BitAttrs[BitIndex] = ATTR_MIXED; break; case ATTR_MIXED: case ATTR_FILTERED: break; } } } // Try regions of consecutive known bit values first. if (filterProcessor(BitAttrs, /*AllowMixed=*/false)) return; // Then regions of mixed bits (both known and unitialized bit values allowed). if (filterProcessor(BitAttrs, /*AllowMixed=*/true)) return; // Heuristics to cope with conflict set {t2CMPrs, t2SUBSrr, t2SUBSrs} where // no single instruction for the maximum ATTR_MIXED region Inst{14-4} has a // well-known encoding pattern. In such case, we backtrack and scan for the // the very first consecutive ATTR_ALL_SET region and assign a filter to it. if (EncodingIDs.size() == 3 && filterProcessor(BitAttrs, /*AllowMixed=*/true, /*Greedy=*/false)) return; // We don't know how to decode these instructions! Dump the // conflict set and bail. assert(!BestFilter); // Print out useful conflict information for postmortem analysis. errs() << "Decoding Conflict:\n"; // Dump filters. indent Indent(4); dumpStack(errs(), Indent); // Dump encodings. for (unsigned EncodingID : EncodingIDs) { const InstructionEncoding &Enc = Encodings[EncodingID]; errs() << Indent; printKnownBits(errs(), getMandatoryEncodingBits(EncodingID), '_'); errs() << " " << Enc.getName() << '\n'; } PrintFatalError("Decoding conflict encountered"); } // emitTableEntries - Emit state machine entries to decode our share of // instructions. void FilterChooser::emitTableEntries(DecoderTableInfo &TableInfo) const { if (EncodingIDs.size() == 1) { // There is only one instruction in the set, which is great! // Call emitSingletonDecoder() to see whether there are any remaining // encodings bits. emitSingletonTableEntry(TableInfo, EncodingIDs[0]); return; } // Use the best filter to do the decoding! if (BestFilter->getNumFiltered() == 1) emitSingletonTableEntry(TableInfo, *BestFilter); else BestFilter->emitTableEntry(TableInfo); } static std::string findOperandDecoderMethod(const Record *Record) { std::string Decoder; const RecordVal *DecoderString = Record->getValue("DecoderMethod"); const StringInit *String = DecoderString ? dyn_cast(DecoderString->getValue()) : nullptr; if (String) { Decoder = String->getValue().str(); if (!Decoder.empty()) return Decoder; } if (Record->isSubClassOf("RegisterOperand")) // Allows use of a DecoderMethod in referenced RegisterClass if set. return findOperandDecoderMethod(Record->getValueAsDef("RegClass")); if (Record->isSubClassOf("RegisterClass")) { Decoder = "Decode" + Record->getName().str() + "RegisterClass"; } else if (Record->isSubClassOf("PointerLikeRegClass")) { Decoder = "DecodePointerLikeRegClass" + utostr(Record->getValueAsInt("RegClassKind")); } return Decoder; } OperandInfo getOpInfo(const Record *TypeRecord) { const RecordVal *HasCompleteDecoderVal = TypeRecord->getValue("hasCompleteDecoder"); const BitInit *HasCompleteDecoderBit = HasCompleteDecoderVal ? dyn_cast(HasCompleteDecoderVal->getValue()) : nullptr; bool HasCompleteDecoder = HasCompleteDecoderBit ? HasCompleteDecoderBit->getValue() : true; return OperandInfo(findOperandDecoderMethod(TypeRecord), HasCompleteDecoder); } void InstructionEncoding::parseVarLenOperands(const VarLenInst &VLI) { SmallVector TiedTo; for (const auto &[Idx, Op] : enumerate(Inst->Operands)) { if (Op.MIOperandInfo && Op.MIOperandInfo->getNumArgs() > 0) for (auto *Arg : Op.MIOperandInfo->getArgs()) Operands.push_back(getOpInfo(cast(Arg)->getDef())); else Operands.push_back(getOpInfo(Op.Rec)); int TiedReg = Op.getTiedRegister(); TiedTo.push_back(-1); if (TiedReg != -1) { TiedTo[Idx] = TiedReg; TiedTo[TiedReg] = Idx; } } unsigned CurrBitPos = 0; for (const auto &EncodingSegment : VLI) { unsigned Offset = 0; StringRef OpName; if (const StringInit *SI = dyn_cast(EncodingSegment.Value)) { OpName = SI->getValue(); } else if (const DagInit *DI = dyn_cast(EncodingSegment.Value)) { OpName = cast(DI->getArg(0))->getValue(); Offset = cast(DI->getArg(2))->getValue(); } if (!OpName.empty()) { auto OpSubOpPair = Inst->Operands.parseOperandName(OpName); unsigned OpIdx = Inst->Operands.getFlattenedOperandNumber(OpSubOpPair); Operands[OpIdx].addField(CurrBitPos, EncodingSegment.BitWidth, Offset); if (!EncodingSegment.CustomDecoder.empty()) Operands[OpIdx].Decoder = EncodingSegment.CustomDecoder.str(); int TiedReg = TiedTo[OpSubOpPair.first]; if (TiedReg != -1) { unsigned OpIdx = Inst->Operands.getFlattenedOperandNumber( {TiedReg, OpSubOpPair.second}); Operands[OpIdx].addField(CurrBitPos, EncodingSegment.BitWidth, Offset); } } CurrBitPos += EncodingSegment.BitWidth; } } static void debugDumpRecord(const Record &Rec) { // Dump the record, so we can see what's going on. PrintNote([&Rec](raw_ostream &OS) { OS << "Dumping record for previous error:\n"; OS << Rec; }); } /// For an operand field named OpName: populate OpInfo.InitValue with the /// constant-valued bit values, and OpInfo.Fields with the ranges of bits to /// insert from the decoded instruction. static void addOneOperandFields(const Record *EncodingDef, const BitsInit &Bits, std::map &TiedNames, StringRef OpName, OperandInfo &OpInfo) { // Some bits of the operand may be required to be 1 depending on the // instruction's encoding. Collect those bits. if (const RecordVal *EncodedValue = EncodingDef->getValue(OpName)) if (const BitsInit *OpBits = dyn_cast(EncodedValue->getValue())) for (unsigned I = 0; I < OpBits->getNumBits(); ++I) if (const BitInit *OpBit = dyn_cast(OpBits->getBit(I))) if (OpBit->getValue()) OpInfo.InitValue |= 1ULL << I; for (unsigned I = 0, J = 0; I != Bits.getNumBits(); I = J) { const VarInit *Var; unsigned Offset = 0; for (; J != Bits.getNumBits(); ++J) { const VarBitInit *BJ = dyn_cast(Bits.getBit(J)); if (BJ) { Var = dyn_cast(BJ->getBitVar()); if (I == J) Offset = BJ->getBitNum(); else if (BJ->getBitNum() != Offset + J - I) break; } else { Var = dyn_cast(Bits.getBit(J)); } if (!Var || (Var->getName() != OpName && Var->getName() != TiedNames[OpName])) break; } if (I == J) ++J; else OpInfo.addField(I, J - I, Offset); } } void InstructionEncoding::parseFixedLenOperands(const BitsInit &Bits) { const Record &Def = *Inst->TheDef; // Gather the outputs/inputs of the instruction, so we can find their // positions in the encoding. This assumes for now that they appear in the // MCInst in the order that they're listed. std::vector> InOutOperands; const DagInit *Out = Def.getValueAsDag("OutOperandList"); const DagInit *In = Def.getValueAsDag("InOperandList"); for (const auto &[Idx, Arg] : enumerate(Out->getArgs())) InOutOperands.emplace_back(Arg, Out->getArgNameStr(Idx)); for (const auto &[Idx, Arg] : enumerate(In->getArgs())) InOutOperands.emplace_back(Arg, In->getArgNameStr(Idx)); // Search for tied operands, so that we can correctly instantiate // operands that are not explicitly represented in the encoding. std::map TiedNames; for (const auto &Op : Inst->Operands) { for (const auto &[J, CI] : enumerate(Op.Constraints)) { if (!CI.isTied()) continue; std::pair SO = Inst->Operands.getSubOperandNumber(CI.getTiedOperand()); StringRef TiedName = Inst->Operands[SO.first].SubOpNames[SO.second]; if (TiedName.empty()) TiedName = Inst->Operands[SO.first].Name; StringRef MyName = Op.SubOpNames[J]; if (MyName.empty()) MyName = Op.Name; TiedNames[MyName] = TiedName; TiedNames[TiedName] = MyName; } } // For each operand, see if we can figure out where it is encoded. for (const auto &Op : InOutOperands) { const Init *OpInit = Op.first; StringRef OpName = Op.second; // We're ready to find the instruction encoding locations for this // operand. // First, find the operand type ("OpInit"), and sub-op names // ("SubArgDag") if present. const DagInit *SubArgDag = dyn_cast(OpInit); if (SubArgDag) OpInit = SubArgDag->getOperator(); const Record *OpTypeRec = cast(OpInit)->getDef(); // Lookup the sub-operands from the operand type record (note that only // Operand subclasses have MIOperandInfo, see CodeGenInstruction.cpp). const DagInit *SubOps = OpTypeRec->isSubClassOf("Operand") ? OpTypeRec->getValueAsDag("MIOperandInfo") : nullptr; // Lookup the decoder method and construct a new OperandInfo to hold our // result. OperandInfo OpInfo = getOpInfo(OpTypeRec); // If we have named sub-operands... if (SubArgDag) { // Then there should not be a custom decoder specified on the top-level // type. if (!OpInfo.Decoder.empty()) { PrintError(EncodingDef, "DecoderEmitter: operand \"" + OpName + "\" has type \"" + OpInit->getAsString() + "\" with a custom DecoderMethod, but also named " "sub-operands."); continue; } // Decode each of the sub-ops separately. assert(SubOps && SubArgDag->getNumArgs() == SubOps->getNumArgs()); for (const auto &[I, Arg] : enumerate(SubOps->getArgs())) { StringRef SubOpName = SubArgDag->getArgNameStr(I); OperandInfo SubOpInfo = getOpInfo(cast(Arg)->getDef()); addOneOperandFields(EncodingDef, Bits, TiedNames, SubOpName, SubOpInfo); Operands.push_back(std::move(SubOpInfo)); } continue; } // Otherwise, if we have an operand with sub-operands, but they aren't // named... if (SubOps && OpInfo.Decoder.empty()) { // If it's a single sub-operand, and no custom decoder, use the decoder // from the one sub-operand. if (SubOps->getNumArgs() == 1) OpInfo = getOpInfo(cast(SubOps->getArg(0))->getDef()); // If we have multiple sub-ops, there'd better have a custom // decoder. (Otherwise we don't know how to populate them properly...) if (SubOps->getNumArgs() > 1) { PrintError(EncodingDef, "DecoderEmitter: operand \"" + OpName + "\" uses MIOperandInfo with multiple ops, but doesn't " "have a custom decoder!"); debugDumpRecord(*EncodingDef); continue; } } addOneOperandFields(EncodingDef, Bits, TiedNames, OpName, OpInfo); // FIXME: it should be an error not to find a definition for a given // operand, rather than just failing to add it to the resulting // instruction! (This is a longstanding bug, which will be addressed in an // upcoming change.) if (OpInfo.numFields() > 0) Operands.push_back(std::move(OpInfo)); } } InstructionEncoding::InstructionEncoding(const Record *EncodingDef, const CodeGenInstruction *Inst) : EncodingDef(EncodingDef), Inst(Inst) { const Record *InstDef = Inst->TheDef; // Give this encoding a name. if (EncodingDef != InstDef) Name = (EncodingDef->getName() + Twine(':')).str(); Name.append(InstDef->getName()); DecoderMethod = EncodingDef->getValueAsString("DecoderMethod"); if (!DecoderMethod.empty()) HasCompleteDecoder = EncodingDef->getValueAsBit("hasCompleteDecoder"); const RecordVal *InstField = EncodingDef->getValue("Inst"); if (const auto *DI = dyn_cast(InstField->getValue())) { VarLenInst VLI(DI, InstField); BitWidth = VLI.size(); // If the encoding has a custom decoder, don't bother parsing the operands. if (DecoderMethod.empty()) parseVarLenOperands(VLI); } else { const auto *BI = cast(InstField->getValue()); BitWidth = BI->getNumBits(); // If the encoding has a custom decoder, don't bother parsing the operands. if (DecoderMethod.empty()) parseFixedLenOperands(*BI); } if (DecoderMethod.empty()) { // A generated decoder is always successful if none of the operand // decoders can fail (all are always successful). HasCompleteDecoder = all_of(Operands, [](const OperandInfo &Op) { // By default, a generated operand decoder is assumed to always succeed. // This can be overridden by the user. return Op.Decoder.empty() || Op.HasCompleteDecoder; }); } } // emitDecodeInstruction - Emit the templated helper function // decodeInstruction(). static void emitDecodeInstruction(formatted_raw_ostream &OS, bool IsVarLenInst, unsigned OpcodeMask) { const bool HasTryDecode = OpcodeMask & ((1 << MCD::OPC_TryDecode) | (1 << MCD::OPC_TryDecodeOrFail)); const bool HasCheckPredicate = OpcodeMask & ((1 << MCD::OPC_CheckPredicate) | (1 << MCD::OPC_CheckPredicateOrFail)); const bool HasSoftFail = OpcodeMask & (1 << MCD::OPC_SoftFail); OS << R"( static unsigned decodeNumToSkip(const uint8_t *&Ptr) { unsigned NumToSkip = *Ptr++; NumToSkip |= (*Ptr++) << 8; )"; if (getNumToSkipInBytes() == 3) OS << " NumToSkip |= (*Ptr++) << 16;\n"; OS << R"( return NumToSkip; } template static DecodeStatus decodeInstruction(const uint8_t DecodeTable[], MCInst &MI, InsnType insn, uint64_t Address, const MCDisassembler *DisAsm, const MCSubtargetInfo &STI)"; if (IsVarLenInst) { OS << ",\n " "llvm::function_ref makeUp"; } OS << ") {\n"; if (HasCheckPredicate) OS << " const FeatureBitset &Bits = STI.getFeatureBits();\n"; OS << " using namespace llvm::MCD;\n"; OS << R"( const uint8_t *Ptr = DecodeTable; uint64_t CurFieldValue = 0; DecodeStatus S = MCDisassembler::Success; while (true) { ptrdiff_t Loc = Ptr - DecodeTable; const uint8_t DecoderOp = *Ptr++; switch (DecoderOp) { default: errs() << Loc << ": Unexpected decode table opcode: " << (int)DecoderOp << '\n'; return MCDisassembler::Fail; case MCD::OPC_ExtractField: { // Decode the start value. unsigned Start = decodeULEB128AndIncUnsafe(Ptr); unsigned Len = *Ptr++;)"; if (IsVarLenInst) OS << "\n makeUp(insn, Start + Len);"; OS << R"( CurFieldValue = fieldFromInstruction(insn, Start, Len); LLVM_DEBUG(dbgs() << Loc << ": OPC_ExtractField(" << Start << ", " << Len << "): " << CurFieldValue << "\n"); break; } case MCD::OPC_FilterValue: case MCD::OPC_FilterValueOrFail: { bool IsFail = DecoderOp == MCD::OPC_FilterValueOrFail; // Decode the field value. uint64_t Val = decodeULEB128AndIncUnsafe(Ptr); bool Failed = Val != CurFieldValue; unsigned NumToSkip = IsFail ? 0 : decodeNumToSkip(Ptr); // Note: Print NumToSkip even for OPC_FilterValueOrFail to simplify debug // prints. LLVM_DEBUG({ StringRef OpName = IsFail ? "OPC_FilterValueOrFail" : "OPC_FilterValue"; dbgs() << Loc << ": " << OpName << '(' << Val << ", " << NumToSkip << ") " << (Failed ? "FAIL:" : "PASS:") << " continuing at " << (Ptr - DecodeTable) << '\n'; }); // Perform the filter operation. if (Failed) { if (IsFail) return MCDisassembler::Fail; Ptr += NumToSkip; } break; } case MCD::OPC_CheckField: case MCD::OPC_CheckFieldOrFail: { bool IsFail = DecoderOp == MCD::OPC_CheckFieldOrFail; // Decode the start value. unsigned Start = decodeULEB128AndIncUnsafe(Ptr); unsigned Len = *Ptr;)"; if (IsVarLenInst) OS << "\n makeUp(insn, Start + Len);"; OS << R"( uint64_t FieldValue = fieldFromInstruction(insn, Start, Len); // Decode the field value. unsigned PtrLen = 0; uint64_t ExpectedValue = decodeULEB128(++Ptr, &PtrLen); Ptr += PtrLen; bool Failed = ExpectedValue != FieldValue; unsigned NumToSkip = IsFail ? 0 : decodeNumToSkip(Ptr); LLVM_DEBUG({ StringRef OpName = IsFail ? "OPC_CheckFieldOrFail" : "OPC_CheckField"; dbgs() << Loc << ": " << OpName << '(' << Start << ", " << Len << ", " << ExpectedValue << ", " << NumToSkip << "): FieldValue = " << FieldValue << ", ExpectedValue = " << ExpectedValue << ": " << (Failed ? "FAIL\n" : "PASS\n"); }); // If the actual and expected values don't match, skip or fail. if (Failed) { if (IsFail) return MCDisassembler::Fail; Ptr += NumToSkip; } break; })"; if (HasCheckPredicate) { OS << R"( case MCD::OPC_CheckPredicate: case MCD::OPC_CheckPredicateOrFail: { bool IsFail = DecoderOp == MCD::OPC_CheckPredicateOrFail; // Decode the Predicate Index value. unsigned PIdx = decodeULEB128AndIncUnsafe(Ptr); unsigned NumToSkip = IsFail ? 0 : decodeNumToSkip(Ptr); // Check the predicate. bool Failed = !checkDecoderPredicate(PIdx, Bits); LLVM_DEBUG({ StringRef OpName = IsFail ? "OPC_CheckPredicateOrFail" : "OPC_CheckPredicate"; dbgs() << Loc << ": " << OpName << '(' << PIdx << ", " << NumToSkip << "): " << (Failed ? "FAIL\n" : "PASS\n"); }); if (Failed) { if (IsFail) return MCDisassembler::Fail; Ptr += NumToSkip; } break; })"; } OS << R"( case MCD::OPC_Decode: { // Decode the Opcode value. unsigned Opc = decodeULEB128AndIncUnsafe(Ptr); unsigned DecodeIdx = decodeULEB128AndIncUnsafe(Ptr); MI.clear(); MI.setOpcode(Opc); bool DecodeComplete;)"; if (IsVarLenInst) { OS << "\n unsigned Len = InstrLenTable[Opc];\n" << " makeUp(insn, Len);"; } OS << R"( S = decodeToMCInst(DecodeIdx, S, insn, MI, Address, DisAsm, DecodeComplete); assert(DecodeComplete); LLVM_DEBUG(dbgs() << Loc << ": OPC_Decode: opcode " << Opc << ", using decoder " << DecodeIdx << ": " << (S != MCDisassembler::Fail ? "PASS\n" : "FAIL\n")); return S; })"; if (HasTryDecode) { OS << R"( case MCD::OPC_TryDecode: case MCD::OPC_TryDecodeOrFail: { bool IsFail = DecoderOp == MCD::OPC_TryDecodeOrFail; // Decode the Opcode value. unsigned Opc = decodeULEB128AndIncUnsafe(Ptr); unsigned DecodeIdx = decodeULEB128AndIncUnsafe(Ptr); unsigned NumToSkip = IsFail ? 0 : decodeNumToSkip(Ptr); // Perform the decode operation. MCInst TmpMI; TmpMI.setOpcode(Opc); bool DecodeComplete; S = decodeToMCInst(DecodeIdx, S, insn, TmpMI, Address, DisAsm, DecodeComplete); LLVM_DEBUG(dbgs() << Loc << ": OPC_TryDecode: opcode " << Opc << ", using decoder " << DecodeIdx << ": "); if (DecodeComplete) { // Decoding complete. LLVM_DEBUG(dbgs() << (S != MCDisassembler::Fail ? "PASS\n" : "FAIL\n")); MI = TmpMI; return S; } assert(S == MCDisassembler::Fail); if (IsFail) { LLVM_DEBUG(dbgs() << "FAIL: returning FAIL\n"); return MCDisassembler::Fail; } // If the decoding was incomplete, skip. Ptr += NumToSkip; LLVM_DEBUG(dbgs() << "FAIL: continuing at " << (Ptr - DecodeTable) << "\n"); // Reset decode status. This also drops a SoftFail status that could be // set before the decode attempt. S = MCDisassembler::Success; break; })"; } if (HasSoftFail) { OS << R"( case MCD::OPC_SoftFail: { // Decode the mask values. uint64_t PositiveMask = decodeULEB128AndIncUnsafe(Ptr); uint64_t NegativeMask = decodeULEB128AndIncUnsafe(Ptr); bool Failed = (insn & PositiveMask) != 0 || (~insn & NegativeMask) != 0; if (Failed) S = MCDisassembler::SoftFail; LLVM_DEBUG(dbgs() << Loc << ": OPC_SoftFail: " << (Failed ? "FAIL\n" : "PASS\n")); break; })"; } OS << R"( case MCD::OPC_Fail: { LLVM_DEBUG(dbgs() << Loc << ": OPC_Fail\n"); return MCDisassembler::Fail; } } } llvm_unreachable("bogosity detected in disassembler state machine!"); } )"; } /// Collects all HwModes referenced by the target for encoding purposes. void DecoderEmitter::collectHwModesReferencedForEncodings( std::vector &HwModeIDs, NamespacesHwModesMap &NamespacesWithHwModes) const { SmallBitVector BV(CGH.getNumModeIds()); for (const auto &MS : CGH.getHwModeSelects()) { for (auto [HwModeID, EncodingDef] : MS.second.Items) { if (EncodingDef->isSubClassOf("InstructionEncoding")) { std::string DecoderNamespace = EncodingDef->getValueAsString("DecoderNamespace").str(); NamespacesWithHwModes[DecoderNamespace].insert(HwModeID); BV.set(HwModeID); } } } // FIXME: Can't do `HwModeIDs.assign(BV.set_bits_begin(), BV.set_bits_end())` // because const_set_bits_iterator_impl is not copy-assignable. // This breaks some MacOS builds. llvm::copy(BV.set_bits(), std::back_inserter(HwModeIDs)); } void DecoderEmitter::handleHwModesUnrelatedEncodings( unsigned EncodingID, ArrayRef HwModeIDs, NamespacesHwModesMap &NamespacesWithHwModes) { switch (DecoderEmitterSuppressDuplicates) { case SUPPRESSION_DISABLE: { for (unsigned HwModeID : HwModeIDs) EncodingIDsByHwMode[HwModeID].push_back(EncodingID); break; } case SUPPRESSION_LEVEL1: { const Record *InstDef = Encodings[EncodingID].getInstruction()->TheDef; std::string DecoderNamespace = InstDef->getValueAsString("DecoderNamespace").str(); auto It = NamespacesWithHwModes.find(DecoderNamespace); if (It != NamespacesWithHwModes.end()) { for (unsigned HwModeID : It->second) EncodingIDsByHwMode[HwModeID].push_back(EncodingID); } else { // Only emit the encoding once, as it's DecoderNamespace doesn't // contain any HwModes. EncodingIDsByHwMode[DefaultMode].push_back(EncodingID); } break; } case SUPPRESSION_LEVEL2: EncodingIDsByHwMode[DefaultMode].push_back(EncodingID); break; } } /// Checks if the given target-specific non-pseudo instruction /// is a candidate for decoding. static bool isDecodableInstruction(const Record *InstDef) { return !InstDef->getValueAsBit("isAsmParserOnly") && !InstDef->getValueAsBit("isCodeGenOnly"); } /// Checks if the given encoding is valid. static bool isValidEncoding(const Record *EncodingDef) { const RecordVal *InstField = EncodingDef->getValue("Inst"); if (!InstField) return false; if (const auto *InstInit = dyn_cast(InstField->getValue())) { // Fixed-length encoding. Size must be non-zero. if (!EncodingDef->getValueAsInt("Size")) return false; // At least one of the encoding bits must be complete (not '?'). return !InstInit->allInComplete(); } if (const auto *InstInit = dyn_cast(InstField->getValue())) { // Variable-length encoding. // At least one of the encoding bits must be complete (not '?'). VarLenInst VLI(InstInit, InstField); return !all_of(VLI, [](const EncodingSegment &Segment) { return isa(Segment.Value); }); } // Inst field is neither BitsInit nor DagInit. This is something unsupported. return false; } /// Parses all InstructionEncoding instances and fills internal data structures. void DecoderEmitter::parseInstructionEncodings() { // First, collect all encoding-related HwModes referenced by the target. // And establish a mapping table between DecoderNamespace and HwMode. // If HwModeNames is empty, add the default mode so we always have one HwMode. std::vector HwModeIDs; NamespacesHwModesMap NamespacesWithHwModes; collectHwModesReferencedForEncodings(HwModeIDs, NamespacesWithHwModes); if (HwModeIDs.empty()) HwModeIDs.push_back(DefaultMode); ArrayRef Instructions = Target.getTargetNonPseudoInstructions(); Encodings.reserve(Instructions.size()); for (const CodeGenInstruction *Inst : Instructions) { const Record *InstDef = Inst->TheDef; if (!isDecodableInstruction(InstDef)) { ++NumEncodingsLackingDisasm; continue; } if (const Record *RV = InstDef->getValueAsOptionalDef("EncodingInfos")) { EncodingInfoByHwMode EBM(RV, CGH); for (auto [HwModeID, EncodingDef] : EBM) { if (!isValidEncoding(EncodingDef)) { // TODO: Should probably give a warning. ++NumEncodingsOmitted; continue; } unsigned EncodingID = Encodings.size(); Encodings.emplace_back(EncodingDef, Inst); EncodingIDsByHwMode[HwModeID].push_back(EncodingID); } continue; // Ignore encoding specified by Instruction itself. } if (!isValidEncoding(InstDef)) { ++NumEncodingsOmitted; continue; } unsigned EncodingID = Encodings.size(); Encodings.emplace_back(InstDef, Inst); // This instruction is encoded the same on all HwModes. // According to user needs, add it to all, some, or only the default HwMode. handleHwModesUnrelatedEncodings(EncodingID, HwModeIDs, NamespacesWithHwModes); } for (const Record *EncodingDef : RK.getAllDerivedDefinitions("AdditionalEncoding")) { const Record *InstDef = EncodingDef->getValueAsDef("AliasOf"); // TODO: Should probably give a warning in these cases. // What's the point of specifying an additional encoding // if it is invalid or if the instruction is not decodable? if (!isDecodableInstruction(InstDef)) { ++NumEncodingsLackingDisasm; continue; } if (!isValidEncoding(EncodingDef)) { ++NumEncodingsOmitted; continue; } Encodings.emplace_back(EncodingDef, &Target.getInstruction(InstDef)); } // Do some statistics. NumInstructions = Instructions.size(); NumEncodingsSupported = Encodings.size(); NumEncodings = NumEncodingsSupported + NumEncodingsOmitted; } DecoderEmitter::DecoderEmitter(const RecordKeeper &RK, StringRef PredicateNamespace) : RK(RK), Target(RK), CGH(Target.getHwModes()), PredicateNamespace(PredicateNamespace) { Target.reverseBitsForLittleEndianEncoding(); parseInstructionEncodings(); } // Emits disassembler code for instruction decoding. void DecoderEmitter::run(raw_ostream &o) const { formatted_raw_ostream OS(o); OS << R"( #include "llvm/MC/MCInst.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/Support/DataTypes.h" #include "llvm/Support/Debug.h" #include "llvm/Support/LEB128.h" #include "llvm/Support/raw_ostream.h" #include "llvm/TargetParser/SubtargetFeature.h" #include namespace { )"; // Do extra bookkeeping for variable-length encodings. std::vector InstrLen; bool IsVarLenInst = Target.hasVariableLengthEncodings(); unsigned MaxInstLen = 0; if (IsVarLenInst) { InstrLen.resize(Target.getInstructions().size(), 0); for (const InstructionEncoding &Encoding : Encodings) { MaxInstLen = std::max(MaxInstLen, Encoding.getBitWidth()); InstrLen[Target.getInstrIntValue(Encoding.getInstruction()->TheDef)] = Encoding.getBitWidth(); } } // Map of (namespace, hwmode, size) tuple to encoding IDs. std::map, std::vector> EncMap; for (const auto &[HwModeID, EncodingIDs] : EncodingIDsByHwMode) { for (unsigned EncodingID : EncodingIDs) { const InstructionEncoding &Encoding = Encodings[EncodingID]; const Record *EncodingDef = Encoding.getRecord(); unsigned Size = EncodingDef->getValueAsInt("Size"); StringRef DecoderNamespace = EncodingDef->getValueAsString("DecoderNamespace"); EncMap[{DecoderNamespace, HwModeID, Size}].push_back(EncodingID); } } DecoderTableInfo TableInfo; unsigned OpcodeMask = 0; for (const auto &[Key, EncodingIDs] : EncMap) { auto [DecoderNamespace, HwModeID, Size] = Key; const unsigned BitWidth = IsVarLenInst ? MaxInstLen : 8 * Size; // Emit the decoder for this (namespace, hwmode, width) combination. FilterChooser FC(Encodings, EncodingIDs, BitWidth, this); // The decode table is cleared for each top level decoder function. The // predicates and decoders themselves, however, are shared across all // decoders to give more opportunities for uniqueing. TableInfo.Table.clear(); TableInfo.pushScope(); FC.emitTableEntries(TableInfo); // Any NumToSkip fixups in the top level scope can resolve to the // OPC_Fail at the end of the table. assert(TableInfo.isOutermostScope() && "fixup stack phasing error!"); TableInfo.popScope(); TableInfo.Table.push_back(MCD::OPC_Fail); // Print the table to the output stream. OpcodeMask |= emitTable(OS, TableInfo.Table, DecoderNamespace, HwModeID, BitWidth, EncodingIDs); } // For variable instruction, we emit a instruction length table // to let the decoder know how long the instructions are. // You can see example usage in M68k's disassembler. if (IsVarLenInst) emitInstrLenTable(OS, InstrLen); const bool HasCheckPredicate = OpcodeMask & ((1 << MCD::OPC_CheckPredicate) | (1 << MCD::OPC_CheckPredicateOrFail)); // Emit the predicate function. if (HasCheckPredicate) emitPredicateFunction(OS, TableInfo.Predicates); // Emit the decoder function. emitDecoderFunction(OS, TableInfo.Decoders); // Emit the main entry point for the decoder, decodeInstruction(). emitDecodeInstruction(OS, IsVarLenInst, OpcodeMask); OS << "\n} // namespace\n"; } void llvm::EmitDecoder(const RecordKeeper &RK, raw_ostream &OS, StringRef PredicateNamespace) { DecoderEmitter(RK, PredicateNamespace).run(OS); }