//===- SparseTensorCodegen.cpp - Sparse tensor primitives conversion ------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // A pass that converts sparse tensor types and primitives to actual compiler // visible buffers and actual compiler IR that implements these primitives on // the selected sparse tensor storage schemes. This pass provides an alternative // to the SparseTensorConversion pass, eliminating the dependence on a runtime // support library, and providing much more opportunities for subsequent // compiler optimization of the generated code. // //===----------------------------------------------------------------------===// #include "CodegenUtils.h" #include "mlir/Dialect/Bufferization/IR/Bufferization.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/Dialect/Linalg/Utils/Utils.h" #include "mlir/Dialect/MemRef/IR/MemRef.h" #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h" #include "mlir/Dialect/SparseTensor/Transforms/Passes.h" #include "mlir/Dialect/Tensor/IR/Tensor.h" #include "mlir/Transforms/DialectConversion.h" using namespace mlir; using namespace mlir::sparse_tensor; namespace { static constexpr uint64_t DimSizesIdx = 0; static constexpr uint64_t MemSizesIdx = 1; static constexpr uint64_t FieldsIdx = 2; //===----------------------------------------------------------------------===// // Helper methods. //===----------------------------------------------------------------------===// /// Returns the "tuple" value of the adapted tensor. static UnrealizedConversionCastOp getTuple(Value tensor) { return llvm::cast(tensor.getDefiningOp()); } /// Packs the given values as a "tuple" value. static Value genTuple(OpBuilder &builder, Location loc, Type tp, ValueRange values) { return builder.create(loc, TypeRange(tp), values) .getResult(0); } /// Flatten a list of operands that may contain sparse tensors. static void flattenOperands(ValueRange operands, SmallVectorImpl &flattened) { // In case of // sparse_tensor, c, sparse_tensor // ==> // memref ..., c, memref ... for (auto operand : operands) { if (auto tuple = getTuple(operand); tuple && getSparseTensorEncoding(tuple->getResultTypes()[0])) // An unrealized_conversion_cast will be inserted by type converter to // inter-mix the gap between 1:N conversion between sparse tensors and // fields. In this case, take the operands in the cast and replace the // sparse tensor output with the flattened type array. flattened.append(tuple.getOperands().begin(), tuple.getOperands().end()); else flattened.push_back(operand); } } /// Adds index conversions where needed. static Value toType(OpBuilder &builder, Location loc, Value value, Type tp) { if (value.getType() != tp) return builder.create(loc, tp, value); return value; } /// Generates a load with proper index typing. static Value genLoad(OpBuilder &builder, Location loc, Value mem, Value idx) { idx = toType(builder, loc, idx, builder.getIndexType()); return builder.create(loc, mem, idx); } /// Generates a store with proper index typing and (for indices) proper value. static void genStore(OpBuilder &builder, Location loc, Value val, Value mem, Value idx) { idx = toType(builder, loc, idx, builder.getIndexType()); val = toType(builder, loc, val, mem.getType().cast().getElementType()); builder.create(loc, val, mem, idx); } /// Creates a straightforward counting for-loop. static scf::ForOp createFor(OpBuilder &builder, Location loc, Value upper, SmallVectorImpl &fields, Value lower = Value()) { Type indexType = builder.getIndexType(); if (!lower) lower = constantZero(builder, loc, indexType); Value one = constantOne(builder, loc, indexType); scf::ForOp forOp = builder.create(loc, lower, upper, one, fields); for (unsigned i = 0, e = fields.size(); i < e; i++) fields[i] = forOp.getRegionIterArg(i); builder.setInsertionPointToStart(forOp.getBody()); return forOp; } /// Gets the dimension size for the given sparse tensor at the given /// original dimension 'dim'. Returns None if no sparse encoding is /// attached to the given tensor type. static Optional sizeFromTensorAtDim(OpBuilder &builder, Location loc, RankedTensorType tensorTp, Value adaptedValue, unsigned dim) { auto enc = getSparseTensorEncoding(tensorTp); if (!enc) return llvm::None; // Access into static dimension can query original type directly. // Note that this is typically already done by DimOp's folding. auto shape = tensorTp.getShape(); if (!ShapedType::isDynamic(shape[dim])) return constantIndex(builder, loc, shape[dim]); // Any other query can consult the dimSizes array at field DimSizesIdx, // accounting for the reordering applied to the sparse storage. auto tuple = getTuple(adaptedValue); Value idx = constantIndex(builder, loc, toStoredDim(tensorTp, dim)); return builder .create(loc, tuple.getInputs()[DimSizesIdx], idx) .getResult(); } // Gets the dimension size at the given stored dimension 'd', either as a // constant for a static size, or otherwise dynamically through memSizes. Value sizeAtStoredDim(OpBuilder &builder, Location loc, RankedTensorType rtp, SmallVectorImpl &fields, unsigned d) { unsigned dim = toOrigDim(rtp, d); auto shape = rtp.getShape(); if (!ShapedType::isDynamic(shape[dim])) return constantIndex(builder, loc, shape[dim]); return genLoad(builder, loc, fields[DimSizesIdx], constantIndex(builder, loc, d)); } /// Translates field index to memSizes index. static unsigned getMemSizesIndex(unsigned field) { assert(FieldsIdx <= field); return field - FieldsIdx; } /// Creates a pushback op for given field and updates the fields array /// accordingly. This operation also updates the memSizes contents. static void createPushback(OpBuilder &builder, Location loc, SmallVectorImpl &fields, unsigned field, Value value, Value repeat = Value()) { assert(FieldsIdx <= field && field < fields.size()); Type etp = fields[field].getType().cast().getElementType(); fields[field] = builder.create( loc, fields[field].getType(), fields[MemSizesIdx], fields[field], toType(builder, loc, value, etp), APInt(64, getMemSizesIndex(field)), repeat); } /// Returns field index of sparse tensor type for pointers/indices, when set. static unsigned getFieldIndex(Type type, unsigned ptrDim, unsigned idxDim) { assert(getSparseTensorEncoding(type)); RankedTensorType rType = type.cast(); unsigned field = FieldsIdx; // start past header for (unsigned r = 0, rank = rType.getShape().size(); r < rank; r++) { if (isCompressedDim(rType, r)) { if (r == ptrDim) return field; field++; if (r == idxDim) return field; field++; } else if (isSingletonDim(rType, r)) { if (r == idxDim) return field; field++; } else { assert(isDenseDim(rType, r)); // no fields } } assert(ptrDim == -1u && idxDim == -1u); return field + 1; // return values field index } /// Maps a sparse tensor type to the appropriate compounded buffers. static Optional convertSparseTensorType(Type type, SmallVectorImpl &fields) { auto enc = getSparseTensorEncoding(type); if (!enc) return llvm::None; // Construct the basic types. auto *context = type.getContext(); unsigned idxWidth = enc.getIndexBitWidth(); unsigned ptrWidth = enc.getPointerBitWidth(); RankedTensorType rType = type.cast(); Type indexType = IndexType::get(context); Type idxType = idxWidth ? IntegerType::get(context, idxWidth) : indexType; Type ptrType = ptrWidth ? IntegerType::get(context, ptrWidth) : indexType; Type eltType = rType.getElementType(); // // Sparse tensor storage scheme for rank-dimensional tensor is organized // as a single compound type with the following fields. Note that every // memref with ? size actually behaves as a "vector", i.e. the stored // size is the capacity and the used size resides in the memSizes array. // // struct { // memref dimSizes ; size in each dimension // memref memSizes ; sizes of ptrs/inds/values // ; per-dimension d: // ; if dense: // // ; if compresed: // memref pointers-d ; pointers for sparse dim d // memref indices-d ; indices for sparse dim d // ; if singleton: // memref indices-d ; indices for singleton dim d // memref values ; values // }; // unsigned rank = rType.getShape().size(); unsigned lastField = getFieldIndex(type, -1u, -1u); // The dimSizes array and memSizes array. fields.push_back(MemRefType::get({rank}, indexType)); fields.push_back(MemRefType::get({getMemSizesIndex(lastField)}, indexType)); // Per-dimension storage. for (unsigned r = 0; r < rank; r++) { // Dimension level types apply in order to the reordered dimension. // As a result, the compound type can be constructed directly in the given // order. Clients of this type know what field is what from the sparse // tensor type. if (isCompressedDim(rType, r)) { fields.push_back(MemRefType::get({ShapedType::kDynamicSize}, ptrType)); fields.push_back(MemRefType::get({ShapedType::kDynamicSize}, idxType)); } else if (isSingletonDim(rType, r)) { fields.push_back(MemRefType::get({ShapedType::kDynamicSize}, idxType)); } else { assert(isDenseDim(rType, r)); // no fields } } // The values array. fields.push_back(MemRefType::get({ShapedType::kDynamicSize}, eltType)); assert(fields.size() == lastField); return success(); } /// Generates code that allocates a sparse storage scheme for given rank. static void allocSchemeForRank(OpBuilder &builder, Location loc, RankedTensorType rtp, SmallVectorImpl &fields, unsigned field, unsigned r0) { unsigned rank = rtp.getShape().size(); Value linear = constantIndex(builder, loc, 1); for (unsigned r = r0; r < rank; r++) { if (isCompressedDim(rtp, r)) { // Append linear x pointers, initialized to zero. Since each compressed // dimension initially already has a single zero entry, this maintains // the desired "linear + 1" length property at all times. unsigned ptrWidth = getSparseTensorEncoding(rtp).getPointerBitWidth(); Type indexType = builder.getIndexType(); Type ptrType = ptrWidth ? builder.getIntegerType(ptrWidth) : indexType; Value ptrZero = constantZero(builder, loc, ptrType); createPushback(builder, loc, fields, field, ptrZero, linear); return; } else if (isSingletonDim(rtp, r)) { return; // nothing to do } else { // Keep compounding the size, but nothing needs to be initialized // at this level. We will eventually reach a compressed level or // otherwise the values array for the from-here "all-dense" case. assert(isDenseDim(rtp, r)); Value size = sizeAtStoredDim(builder, loc, rtp, fields, r); linear = builder.create(loc, linear, size); } } // Reached values array so prepare for an insertion. Value valZero = constantZero(builder, loc, rtp.getElementType()); createPushback(builder, loc, fields, field, valZero, linear); assert(fields.size() == ++field); } /// Creates allocation operation. static Value createAllocation(OpBuilder &builder, Location loc, Type type, Value sz, bool enableInit) { auto memType = MemRefType::get({ShapedType::kDynamicSize}, type); Value buffer = builder.create(loc, memType, sz); if (enableInit) { Value fillValue = builder.create(loc, type, builder.getZeroAttr(type)); builder.create(loc, fillValue, buffer); } return buffer; } /// Creates allocation for each field in sparse tensor type. Note that /// for all dynamic memrefs, the memory size is really the capacity of /// the "vector", while the actual size resides in the sizes array. /// /// TODO: for efficiency, we will need heuristis to make educated guesses /// on the required capacities (see heuristic variable). /// static void createAllocFields(OpBuilder &builder, Location loc, Type type, ValueRange dynSizes, bool enableInit, SmallVectorImpl &fields) { auto enc = getSparseTensorEncoding(type); assert(enc); // Construct the basic types. unsigned idxWidth = enc.getIndexBitWidth(); unsigned ptrWidth = enc.getPointerBitWidth(); RankedTensorType rtp = type.cast(); Type indexType = builder.getIndexType(); Type idxType = idxWidth ? builder.getIntegerType(idxWidth) : indexType; Type ptrType = ptrWidth ? builder.getIntegerType(ptrWidth) : indexType; Type eltType = rtp.getElementType(); auto shape = rtp.getShape(); unsigned rank = shape.size(); Value heuristic = constantIndex(builder, loc, 16); // Build original sizes. SmallVector sizes; for (unsigned r = 0, o = 0; r < rank; r++) { if (ShapedType::isDynamic(shape[r])) sizes.push_back(dynSizes[o++]); else sizes.push_back(constantIndex(builder, loc, shape[r])); } // The dimSizes array and memSizes array. unsigned lastField = getFieldIndex(type, -1u, -1u); Value dimSizes = builder.create(loc, MemRefType::get({rank}, indexType)); Value memSizes = builder.create( loc, MemRefType::get({getMemSizesIndex(lastField)}, indexType)); fields.push_back(dimSizes); fields.push_back(memSizes); // Per-dimension storage. for (unsigned r = 0; r < rank; r++) { if (isCompressedDim(rtp, r)) { fields.push_back( createAllocation(builder, loc, ptrType, heuristic, enableInit)); fields.push_back( createAllocation(builder, loc, idxType, heuristic, enableInit)); } else if (isSingletonDim(rtp, r)) { fields.push_back( createAllocation(builder, loc, idxType, heuristic, enableInit)); } else { assert(isDenseDim(rtp, r)); // no fields } } // The values array. fields.push_back( createAllocation(builder, loc, eltType, heuristic, enableInit)); assert(fields.size() == lastField); // Initialize the storage scheme to an empty tensor. Initialized memSizes // to all zeros, sets the dimSizes to known values and gives all pointer // fields an initial zero entry, so that it is easier to maintain the // "linear + 1" length property. builder.create( loc, ValueRange{constantZero(builder, loc, indexType)}, ValueRange{memSizes}); // zero memSizes Value ptrZero = constantZero(builder, loc, ptrType); for (unsigned r = 0, field = FieldsIdx; r < rank; r++) { unsigned ro = toOrigDim(rtp, r); genStore(builder, loc, sizes[ro], dimSizes, constantIndex(builder, loc, r)); if (isCompressedDim(rtp, r)) { createPushback(builder, loc, fields, field, ptrZero); field += 2; } else if (isSingletonDim(rtp, r)) { field += 1; } } allocSchemeForRank(builder, loc, rtp, fields, FieldsIdx, /*rank=*/0); } /// Helper method that generates block specific to compressed case: /// /// plo = pointers[d][pos[d-1]] /// phi = pointers[d][pos[d-1]+1] /// msz = indices[d].size() /// if (plo < phi) { /// present = indices[d][phi-1] == i[d] /// } else { // first insertion /// present = false /// pointers[d][pos[d-1]] = msz /// } /// if (present) { // index already present /// next = phi-1 /// } else { /// indices[d].push_back(i[d]) /// pointers[d][pos[d-1]+1] = msz+1 /// next = msz /// /// } /// pos[d] = next static Value genCompressed(OpBuilder &builder, Location loc, RankedTensorType rtp, SmallVectorImpl &fields, SmallVectorImpl &indices, Value value, Value pos, unsigned field, unsigned d) { unsigned rank = rtp.getShape().size(); SmallVector types; Type indexType = builder.getIndexType(); Type boolType = builder.getIntegerType(1); Value one = constantIndex(builder, loc, 1); Value pp1 = builder.create(loc, pos, one); Value plo = genLoad(builder, loc, fields[field], pos); Value phi = genLoad(builder, loc, fields[field], pp1); Value psz = constantIndex(builder, loc, getMemSizesIndex(field + 1)); Value msz = genLoad(builder, loc, fields[MemSizesIdx], psz); Value phim1 = builder.create( loc, toType(builder, loc, phi, indexType), one); // Conditional expression. Value lt = builder.create(loc, arith::CmpIPredicate::ult, plo, phi); types.push_back(boolType); scf::IfOp ifOp1 = builder.create(loc, types, lt, /*else*/ true); types.pop_back(); builder.setInsertionPointToStart(&ifOp1.getThenRegion().front()); Value crd = genLoad(builder, loc, fields[field + 1], phim1); Value eq = builder.create(loc, arith::CmpIPredicate::eq, toType(builder, loc, crd, indexType), indices[d]); builder.create(loc, eq); builder.setInsertionPointToStart(&ifOp1.getElseRegion().front()); if (d > 0) genStore(builder, loc, msz, fields[field], pos); builder.create(loc, constantI1(builder, loc, false)); builder.setInsertionPointAfter(ifOp1); Value p = ifOp1.getResult(0); // If present construct. Note that for a non-unique dimension level, we simply // set the condition to false and rely on CSE/DCE to clean up the IR. // // TODO: generate less temporary IR? // for (unsigned i = 0, e = fields.size(); i < e; i++) types.push_back(fields[i].getType()); types.push_back(indexType); if (!isUniqueDim(rtp, d)) p = constantI1(builder, loc, false); scf::IfOp ifOp2 = builder.create(loc, types, p, /*else*/ true); // If present (fields unaffected, update next to phim1). builder.setInsertionPointToStart(&ifOp2.getThenRegion().front()); fields.push_back(phim1); builder.create(loc, fields); fields.pop_back(); // If !present (changes fields, update next). builder.setInsertionPointToStart(&ifOp2.getElseRegion().front()); Value mszp1 = builder.create(loc, msz, one); genStore(builder, loc, mszp1, fields[field], pp1); createPushback(builder, loc, fields, field + 1, indices[d]); // Prepare the next dimension "as needed". if ((d + 1) < rank) allocSchemeForRank(builder, loc, rtp, fields, field + 2, d + 1); fields.push_back(msz); builder.create(loc, fields); fields.pop_back(); // Update fields and return next pos. builder.setInsertionPointAfter(ifOp2); unsigned o = 0; for (unsigned i = 0, e = fields.size(); i < e; i++) fields[i] = ifOp2.getResult(o++); return ifOp2.getResult(o); } /// Generates code along an insertion path without the need for a "cursor". /// This current insertion strategy comes at the expense of some testing /// overhead for each insertion. The strategy will be optimized later for /// common insertion patterns. The current insertion strategy also assumes /// insertions occur in "a reasonable order" that enables building the /// storage scheme in an appending/inserting kind of fashion (i.e. no /// in-between insertions that need data movement). The implementation /// relies on CSE/DCE to clean up all bookkeeping that is not needed. /// /// TODO: better unord/not-unique; also generalize, optimize, specialize! /// static void genInsert(OpBuilder &builder, Location loc, RankedTensorType rtp, SmallVectorImpl &fields, SmallVectorImpl &indices, Value value) { unsigned rank = rtp.getShape().size(); assert(rank == indices.size()); unsigned field = FieldsIdx; // start past header Value pos = constantZero(builder, loc, builder.getIndexType()); // Generate code for every dimension. for (unsigned d = 0; d < rank; d++) { if (isCompressedDim(rtp, d)) { // Create: // if (!present) { // indices[d].push_back(i[d]) // // } // pos[d] = indices.size() - 1 // pos = genCompressed(builder, loc, rtp, fields, indices, value, pos, field, d); field += 2; } else if (isSingletonDim(rtp, d)) { // Create: // indices[d].push_back(i[d]) // pos[d] = pos[d-1] // createPushback(builder, loc, fields, field, indices[d]); field += 1; } else { assert(isDenseDim(rtp, d)); // Construct the new position as: // pos[d] = size * pos[d-1] + i[d] // Value size = sizeAtStoredDim(builder, loc, rtp, fields, d); Value mult = builder.create(loc, size, pos); pos = builder.create(loc, mult, indices[d]); } } // Reached the actual value append/insert. if (!isDenseDim(rtp, rank - 1)) createPushback(builder, loc, fields, field++, value); else genStore(builder, loc, value, fields[field++], pos); assert(fields.size() == field); } /// Generations insertion finalization code. static void genEndInsert(OpBuilder &builder, Location loc, RankedTensorType rtp, SmallVectorImpl &fields) { unsigned rank = rtp.getShape().size(); unsigned field = FieldsIdx; // start past header for (unsigned d = 0; d < rank; d++) { if (isCompressedDim(rtp, d)) { // Compressed dimensions need a pointer cleanup for all entries // that were not visited during the insertion pass. // // TODO: avoid cleanup and keep compressed scheme consistent at all times? // if (d > 0) { unsigned ptrWidth = getSparseTensorEncoding(rtp).getPointerBitWidth(); Type indexType = builder.getIndexType(); Type ptrType = ptrWidth ? builder.getIntegerType(ptrWidth) : indexType; Value mz = constantIndex(builder, loc, getMemSizesIndex(field)); Value hi = genLoad(builder, loc, fields[MemSizesIdx], mz); Value zero = constantIndex(builder, loc, 0); Value one = constantIndex(builder, loc, 1); SmallVector inits; inits.push_back(genLoad(builder, loc, fields[field], zero)); scf::ForOp loop = createFor(builder, loc, hi, inits, one); Value i = loop.getInductionVar(); Value oldv = loop.getRegionIterArg(0); Value newv = genLoad(builder, loc, fields[field], i); Value ptrZero = constantZero(builder, loc, ptrType); Value cond = builder.create( loc, arith::CmpIPredicate::eq, newv, ptrZero); scf::IfOp ifOp = builder.create(loc, TypeRange(ptrType), cond, /*else*/ true); builder.setInsertionPointToStart(&ifOp.getThenRegion().front()); genStore(builder, loc, oldv, fields[field], i); builder.create(loc, oldv); builder.setInsertionPointToStart(&ifOp.getElseRegion().front()); builder.create(loc, newv); builder.setInsertionPointAfter(ifOp); builder.create(loc, ifOp.getResult(0)); builder.setInsertionPointAfter(loop); } field += 2; } else if (isSingletonDim(rtp, d)) { field++; } else { assert(isDenseDim(rtp, d)); } } assert(fields.size() == ++field); } //===----------------------------------------------------------------------===// // Codegen rules. //===----------------------------------------------------------------------===// /// Sparse tensor storage conversion rule for returns. class SparseReturnConverter : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; LogicalResult matchAndRewrite(func::ReturnOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const override { SmallVector flattened; flattenOperands(adaptor.getOperands(), flattened); // Create a return with the flattened value extracted from sparse tensors. rewriter.replaceOpWithNewOp(op, flattened); return success(); } }; /// Sparse tensor storage conversion rule for calls. class SparseCallConverter : public OpConversionPattern { public: // The default CallOp converter can not handle 1:N type conversion. using OpConversionPattern::OpConversionPattern; LogicalResult matchAndRewrite(func::CallOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const override { Location loc = op.getLoc(); // In case of: // sparse_tensor, f, sparse_tensor = call @foo(...) // ==> // memref..., f, memref = call @foo(...) replace with // cast(memref...)->sparse_tensor, f, cast(memref...)->sparse_tensor SmallVector finalRetTy; if (failed(typeConverter->convertTypes(op.getResultTypes(), finalRetTy))) return failure(); // (1) Genereates new call with flattened return value. SmallVector flattened; flattenOperands(adaptor.getOperands(), flattened); auto newCall = rewriter.create(loc, op.getCallee(), finalRetTy, flattened); // (2) Create cast operation for sparse tensor returns. SmallVector castedRet; // Tracks the offset of current return value (of the orignal call) // relative to the new call (after sparse tensor flattening); unsigned retOffset = 0; // Temporal buffer to hold the flattened list of type for // a sparse tensor. SmallVector sparseFlat; for (auto ret : op.getResults()) { assert(retOffset < newCall.getNumResults()); auto retType = ret.getType(); if (failed(typeConverter->convertType(retType, sparseFlat))) // This should never happen. llvm_unreachable("Failed to convert type in sparse tensor codegen"); // Converted types can not be empty when the type conversion succeed. assert(!sparseFlat.empty()); if (sparseFlat.size() > 1) { auto flatSize = sparseFlat.size(); ValueRange fields(iterator_range( newCall.result_begin() + retOffset, newCall.result_begin() + retOffset + flatSize)); castedRet.push_back(genTuple(rewriter, loc, retType, fields)); retOffset += flatSize; } else { // If this is an 1:1 conversion, no need for casting. castedRet.push_back(newCall.getResult(retOffset)); retOffset++; } sparseFlat.clear(); } assert(castedRet.size() == op.getNumResults()); rewriter.replaceOp(op, castedRet); return success(); } }; /// Sparse codegen rule for dimension accesses. class SparseDimOpConverter : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; LogicalResult matchAndRewrite(tensor::DimOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const override { Optional index = op.getConstantIndex(); if (!index) return failure(); auto sz = sizeFromTensorAtDim(rewriter, op.getLoc(), op.getSource().getType().cast(), adaptor.getSource(), *index); if (!sz) return failure(); rewriter.replaceOp(op, *sz); return success(); } }; /// Sparse codegen rule for trivial tensor casts. class SparseCastConverter : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; LogicalResult matchAndRewrite(tensor::CastOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const override { // Only rewrite identically annotated source/dest. auto encDst = getSparseTensorEncoding(op.getType()); auto encSrc = getSparseTensorEncoding(op.getSource().getType()); if (!encDst || encDst != encSrc) return failure(); rewriter.replaceOp(op, adaptor.getOperands()); return success(); } }; /// Sparse codgen rule for the alloc operator. class SparseTensorAllocConverter : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; SparseTensorAllocConverter(TypeConverter &typeConverter, MLIRContext *context, bool enableInit) : OpConversionPattern(typeConverter, context), enableBufferInitialization(enableInit) {} LogicalResult matchAndRewrite(bufferization::AllocTensorOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const override { RankedTensorType resType = op.getType(); auto enc = getSparseTensorEncoding(resType); if (!enc) return failure(); if (op.getCopy()) return rewriter.notifyMatchFailure(op, "tensor copy not implemented"); // Construct allocation for each field. Location loc = op.getLoc(); SmallVector fields; createAllocFields(rewriter, loc, resType, adaptor.getOperands(), enableBufferInitialization, fields); // Replace operation with resulting memrefs. rewriter.replaceOp(op, genTuple(rewriter, loc, resType, fields)); return success(); } private: bool enableBufferInitialization; }; /// Sparse codegen rule for the dealloc operator. class SparseTensorDeallocConverter : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; LogicalResult matchAndRewrite(bufferization::DeallocTensorOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const override { auto enc = getSparseTensorEncoding(op.getTensor().getType()); if (!enc) return failure(); // Replace the sparse tensor deallocation with field deallocations. Location loc = op.getLoc(); auto tuple = getTuple(adaptor.getTensor()); for (auto input : tuple.getInputs()) // Deallocate every buffer used to store the sparse tensor handler. rewriter.create(loc, input); rewriter.eraseOp(op); return success(); } }; /// Sparse codegen rule for tensor rematerialization. class SparseTensorLoadConverter : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; LogicalResult matchAndRewrite(LoadOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const override { RankedTensorType srcType = op.getTensor().getType().cast(); auto tuple = getTuple(adaptor.getTensor()); // Prepare fields. SmallVector fields(tuple.getInputs()); // Generate optional insertion finalization code. if (op.getHasInserts()) genEndInsert(rewriter, op.getLoc(), srcType, fields); // Replace operation with resulting memrefs. rewriter.replaceOp(op, genTuple(rewriter, op.getLoc(), srcType, fields)); return success(); } }; /// Sparse codegen rule for the expand op. class SparseExpandConverter : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; LogicalResult matchAndRewrite(ExpandOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const override { Location loc = op->getLoc(); RankedTensorType srcType = op.getTensor().getType().cast(); Type eltType = srcType.getElementType(); Type boolType = rewriter.getIntegerType(1); Type idxType = rewriter.getIndexType(); // All initialization should be done on entry of the loop nest. rewriter.setInsertionPointAfter(op.getTensor().getDefiningOp()); // Determine the size for access expansion (always the innermost stored // dimension size, translated back to original dimension). Note that we // recursively rewrite the new DimOp on the **original** tensor. unsigned innerDim = toOrigDim(srcType, srcType.getRank() - 1); auto sz = sizeFromTensorAtDim(rewriter, loc, srcType, adaptor.getTensor(), innerDim); assert(sz); // This for sure is a sparse tensor // Generate a memref for `sz` elements of type `t`. auto genAlloc = [&](Type t) { auto memTp = MemRefType::get({ShapedType::kDynamicSize}, t); return rewriter.create(loc, memTp, ValueRange{*sz}); }; // Allocate temporary buffers for values/filled-switch and added. // We do not use stack buffers for this, since the expanded size may // be rather large (as it envelops a single expanded dense dimension). Value values = genAlloc(eltType); Value filled = genAlloc(boolType); Value added = genAlloc(idxType); Value zero = constantZero(rewriter, loc, idxType); // Reset the values/filled-switch to all-zero/false. Note that this // introduces an O(N) operation into the computation, but this reset // operation is amortized over the innermost loops for the access // pattern expansion. As noted in the operation doc, we would like // to amortize this setup cost even between kernels. rewriter.create( loc, ValueRange{constantZero(rewriter, loc, eltType)}, ValueRange{values}); rewriter.create( loc, ValueRange{constantZero(rewriter, loc, boolType)}, ValueRange{filled}); // Replace expansion op with these buffers and initial index. assert(op.getNumResults() == 4); rewriter.replaceOp(op, {values, filled, added, zero}); return success(); } }; /// Sparse codegen rule for the compress operator. class SparseCompressConverter : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; LogicalResult matchAndRewrite(CompressOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const override { Location loc = op->getLoc(); RankedTensorType dstType = op.getTensor().getType().cast(); Type eltType = dstType.getElementType(); auto tuple = getTuple(adaptor.getTensor()); Value values = adaptor.getValues(); Value filled = adaptor.getFilled(); Value added = adaptor.getAdded(); Value count = adaptor.getCount(); // Prepare fields and indices. SmallVector fields(tuple.getInputs()); SmallVector indices(adaptor.getIndices()); // If the innermost dimension is ordered, we need to sort the indices // in the "added" array prior to applying the compression. unsigned rank = dstType.getShape().size(); if (isOrderedDim(dstType, rank - 1)) rewriter.create(loc, count, ValueRange{added}, ValueRange{}); // While performing the insertions, we also need to reset the elements // of the values/filled-switch by only iterating over the set elements, // to ensure that the runtime complexity remains proportional to the // sparsity of the expanded access pattern. // // Generate // out_memrefs = for (i = 0; i < count; i++)(in_memrefs) { // index = added[i]; // value = values[index]; // insert({prev_indices, index}, value); // new_memrefs = insert(in_memrefs, {prev_indices, index}, value); // values[index] = 0; // filled[index] = false; // yield new_memrefs // } scf::ForOp loop = createFor(rewriter, loc, count, fields); Value i = loop.getInductionVar(); Value index = genLoad(rewriter, loc, added, i); Value value = genLoad(rewriter, loc, values, index); indices.push_back(index); // TODO: faster for subsequent insertions? genInsert(rewriter, loc, dstType, fields, indices, value); genStore(rewriter, loc, constantZero(rewriter, loc, eltType), values, index); genStore(rewriter, loc, constantI1(rewriter, loc, false), filled, index); rewriter.create(loc, fields); rewriter.setInsertionPointAfter(loop); Value result = genTuple(rewriter, loc, dstType, loop->getResults()); // Deallocate the buffers on exit of the full loop nest. Operation *parent = getTop(op); rewriter.setInsertionPointAfter(parent); rewriter.create(loc, values); rewriter.create(loc, filled); rewriter.create(loc, added); // Replace operation with resulting memrefs. rewriter.replaceOp(op, result); return success(); } }; /// Sparse codegen rule for the insert operator. class SparseInsertConverter : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; LogicalResult matchAndRewrite(InsertOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const override { RankedTensorType dstType = op.getTensor().getType().cast(); auto tuple = getTuple(adaptor.getTensor()); // Prepare fields and indices. SmallVector fields(tuple.getInputs()); SmallVector indices(adaptor.getIndices()); // Generate insertion. Value value = adaptor.getValue(); genInsert(rewriter, op->getLoc(), dstType, fields, indices, value); // Replace operation with resulting memrefs. rewriter.replaceOp(op, genTuple(rewriter, op.getLoc(), dstType, fields)); return success(); } }; /// Base class for getter-like operations, e.g., to_indices, to_pointers. template class SparseGetterOpConverter : public OpConversionPattern { public: using OpAdaptor = typename SourceOp::Adaptor; using OpConversionPattern::OpConversionPattern; LogicalResult matchAndRewrite(SourceOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const override { // Replace the requested pointer access with corresponding field. // The cast_op is inserted by type converter to intermix 1:N type // conversion. auto tuple = getTuple(adaptor.getTensor()); unsigned idx = Base::getIndexForOp(tuple, op); auto fields = tuple.getInputs(); assert(idx < fields.size()); rewriter.replaceOp(op, fields[idx]); return success(); } }; /// Sparse codegen rule for pointer accesses. class SparseToPointersConverter : public SparseGetterOpConverter { public: using SparseGetterOpConverter::SparseGetterOpConverter; // Callback for SparseGetterOpConverter. static unsigned getIndexForOp(UnrealizedConversionCastOp /*tuple*/, ToPointersOp op) { uint64_t dim = op.getDimension().getZExtValue(); return getFieldIndex(op.getTensor().getType(), /*ptrDim=*/dim, -1u); } }; /// Sparse codegen rule for index accesses. class SparseToIndicesConverter : public SparseGetterOpConverter { public: using SparseGetterOpConverter::SparseGetterOpConverter; // Callback for SparseGetterOpConverter. static unsigned getIndexForOp(UnrealizedConversionCastOp /*tuple*/, ToIndicesOp op) { uint64_t dim = op.getDimension().getZExtValue(); return getFieldIndex(op.getTensor().getType(), -1u, /*idxDim=*/dim); } }; /// Sparse codegen rule for value accesses. class SparseToValuesConverter : public SparseGetterOpConverter { public: using SparseGetterOpConverter::SparseGetterOpConverter; // Callback for SparseGetterOpConverter. static unsigned getIndexForOp(UnrealizedConversionCastOp tuple, ToValuesOp /*op*/) { // The last field holds the value buffer. return tuple.getInputs().size() - 1; } }; /// Sparse codegen rule for the convert operator. class SparseConvertConverter : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; LogicalResult matchAndRewrite(ConvertOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const override { SparseTensorEncodingAttr encDst = getSparseTensorEncoding(op.getType()); SparseTensorEncodingAttr encSrc = getSparseTensorEncoding(op.getSource().getType()); if (encDst != encSrc) { // This should be handled by rewriting before codegen. return failure(); } rewriter.replaceOp(op, adaptor.getSource()); return success(); } }; /// Sparse codegen rule for number of entries operator. class SparseNumberOfEntriesConverter : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; LogicalResult matchAndRewrite(NumberOfEntriesOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const override { // Query memSizes for the actually stored values size. auto tuple = getTuple(adaptor.getTensor()); auto fields = tuple.getInputs(); unsigned lastField = fields.size() - 1; Value field = constantIndex(rewriter, op.getLoc(), getMemSizesIndex(lastField)); rewriter.replaceOpWithNewOp(op, fields[MemSizesIdx], field); return success(); } }; } // namespace //===----------------------------------------------------------------------===// // Sparse tensor type conversion into an actual buffer. //===----------------------------------------------------------------------===// mlir::SparseTensorTypeToBufferConverter::SparseTensorTypeToBufferConverter() { addConversion([](Type type) { return type; }); addConversion(convertSparseTensorType); // Required by scf.for 1:N type conversion. addSourceMaterialization([](OpBuilder &builder, RankedTensorType tp, ValueRange inputs, Location loc) -> Optional { if (!getSparseTensorEncoding(tp)) // Not a sparse tensor. return llvm::None; // Sparse compiler knows how to cancel out these casts. return genTuple(builder, loc, tp, inputs); }); } //===----------------------------------------------------------------------===// // Public method for populating conversion rules. //===----------------------------------------------------------------------===// /// Populates the given patterns list with conversion rules required for /// the sparsification of linear algebra operations. void mlir::populateSparseTensorCodegenPatterns( TypeConverter &typeConverter, RewritePatternSet &patterns, bool enableBufferInitialization) { patterns.add( typeConverter, patterns.getContext()); patterns.add(typeConverter, patterns.getContext(), enableBufferInitialization); }