//===-- VPlanTransforms.cpp - Utility VPlan to VPlan transforms -----------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// \file /// This file implements a set of utility VPlan to VPlan transformations. /// //===----------------------------------------------------------------------===// #include "VPlanTransforms.h" #include "VPlanDominatorTree.h" #include "VPRecipeBuilder.h" #include "VPlanCFG.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/ADT/SetVector.h" #include "llvm/Analysis/IVDescriptors.h" #include "llvm/Analysis/VectorUtils.h" #include "llvm/IR/Intrinsics.h" using namespace llvm; void VPlanTransforms::VPInstructionsToVPRecipes( Loop *OrigLoop, VPlanPtr &Plan, function_ref GetIntOrFpInductionDescriptor, SmallPtrSetImpl &DeadInstructions, ScalarEvolution &SE, const TargetLibraryInfo &TLI) { ReversePostOrderTraversal> RPOT( Plan->getEntry()); for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly(RPOT)) { VPRecipeBase *Term = VPBB->getTerminator(); auto EndIter = Term ? Term->getIterator() : VPBB->end(); // Introduce each ingredient into VPlan. for (VPRecipeBase &Ingredient : make_early_inc_range(make_range(VPBB->begin(), EndIter))) { VPValue *VPV = Ingredient.getVPSingleValue(); Instruction *Inst = cast(VPV->getUnderlyingValue()); if (DeadInstructions.count(Inst)) { VPValue DummyValue; VPV->replaceAllUsesWith(&DummyValue); Ingredient.eraseFromParent(); continue; } VPRecipeBase *NewRecipe = nullptr; if (auto *VPPhi = dyn_cast(&Ingredient)) { auto *Phi = cast(VPPhi->getUnderlyingValue()); if (const auto *II = GetIntOrFpInductionDescriptor(Phi)) { VPValue *Start = Plan->getOrAddVPValue(II->getStartValue()); VPValue *Step = vputils::getOrCreateVPValueForSCEVExpr(*Plan, II->getStep(), SE); NewRecipe = new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, *II, true); } else { Plan->addVPValue(Phi, VPPhi); continue; } } else { assert(isa(&Ingredient) && "only VPInstructions expected here"); assert(!isa(Inst) && "phis should be handled above"); // Create VPWidenMemoryInstructionRecipe for loads and stores. if (LoadInst *Load = dyn_cast(Inst)) { NewRecipe = new VPWidenMemoryInstructionRecipe( *Load, Plan->getOrAddVPValue(getLoadStorePointerOperand(Inst)), nullptr /*Mask*/, false /*Consecutive*/, false /*Reverse*/); } else if (StoreInst *Store = dyn_cast(Inst)) { NewRecipe = new VPWidenMemoryInstructionRecipe( *Store, Plan->getOrAddVPValue(getLoadStorePointerOperand(Inst)), Plan->getOrAddVPValue(Store->getValueOperand()), nullptr /*Mask*/, false /*Consecutive*/, false /*Reverse*/); } else if (GetElementPtrInst *GEP = dyn_cast(Inst)) { NewRecipe = new VPWidenGEPRecipe( GEP, Plan->mapToVPValues(GEP->operands()), OrigLoop); } else if (CallInst *CI = dyn_cast(Inst)) { NewRecipe = new VPWidenCallRecipe(*CI, Plan->mapToVPValues(CI->args()), getVectorIntrinsicIDForCall(CI, &TLI)); } else if (SelectInst *SI = dyn_cast(Inst)) { bool InvariantCond = SE.isLoopInvariant(SE.getSCEV(SI->getOperand(0)), OrigLoop); NewRecipe = new VPWidenSelectRecipe( *SI, Plan->mapToVPValues(SI->operands()), InvariantCond); } else { NewRecipe = new VPWidenRecipe(*Inst, Plan->mapToVPValues(Inst->operands())); } } NewRecipe->insertBefore(&Ingredient); if (NewRecipe->getNumDefinedValues() == 1) VPV->replaceAllUsesWith(NewRecipe->getVPSingleValue()); else assert(NewRecipe->getNumDefinedValues() == 0 && "Only recpies with zero or one defined values expected"); Ingredient.eraseFromParent(); Plan->removeVPValueFor(Inst); for (auto *Def : NewRecipe->definedValues()) { Plan->addVPValue(Inst, Def); } } } } bool VPlanTransforms::sinkScalarOperands(VPlan &Plan) { auto Iter = vp_depth_first_deep(Plan.getEntry()); bool Changed = false; // First, collect the operands of all recipes in replicate blocks as seeds for // sinking. SetVector> WorkList; for (VPRegionBlock *VPR : VPBlockUtils::blocksOnly(Iter)) { VPBasicBlock *EntryVPBB = VPR->getEntryBasicBlock(); if (!VPR->isReplicator() || EntryVPBB->getSuccessors().size() != 2) continue; VPBasicBlock *VPBB = dyn_cast(EntryVPBB->getSuccessors()[0]); if (!VPBB || VPBB->getSingleSuccessor() != VPR->getExitingBasicBlock()) continue; for (auto &Recipe : *VPBB) { for (VPValue *Op : Recipe.operands()) if (auto *Def = Op->getDefiningRecipe()) WorkList.insert(std::make_pair(VPBB, Def)); } } bool ScalarVFOnly = Plan.hasScalarVFOnly(); // Try to sink each replicate or scalar IV steps recipe in the worklist. for (unsigned I = 0; I != WorkList.size(); ++I) { VPBasicBlock *SinkTo; VPRecipeBase *SinkCandidate; std::tie(SinkTo, SinkCandidate) = WorkList[I]; if (SinkCandidate->getParent() == SinkTo || SinkCandidate->mayHaveSideEffects() || SinkCandidate->mayReadOrWriteMemory()) continue; if (auto *RepR = dyn_cast(SinkCandidate)) { if (!ScalarVFOnly && RepR->isUniform()) continue; } else if (!isa(SinkCandidate)) continue; bool NeedsDuplicating = false; // All recipe users of the sink candidate must be in the same block SinkTo // or all users outside of SinkTo must be uniform-after-vectorization ( // i.e., only first lane is used) . In the latter case, we need to duplicate // SinkCandidate. auto CanSinkWithUser = [SinkTo, &NeedsDuplicating, SinkCandidate](VPUser *U) { auto *UI = dyn_cast(U); if (!UI) return false; if (UI->getParent() == SinkTo) return true; NeedsDuplicating = UI->onlyFirstLaneUsed(SinkCandidate->getVPSingleValue()); // We only know how to duplicate VPRecipeRecipes for now. return NeedsDuplicating && isa(SinkCandidate); }; if (!all_of(SinkCandidate->getVPSingleValue()->users(), CanSinkWithUser)) continue; if (NeedsDuplicating) { if (ScalarVFOnly) continue; Instruction *I = cast( cast(SinkCandidate)->getUnderlyingValue()); auto *Clone = new VPReplicateRecipe(I, SinkCandidate->operands(), true, false); // TODO: add ".cloned" suffix to name of Clone's VPValue. Clone->insertBefore(SinkCandidate); for (auto *U : to_vector(SinkCandidate->getVPSingleValue()->users())) { auto *UI = cast(U); if (UI->getParent() == SinkTo) continue; for (unsigned Idx = 0; Idx != UI->getNumOperands(); Idx++) { if (UI->getOperand(Idx) != SinkCandidate->getVPSingleValue()) continue; UI->setOperand(Idx, Clone); } } } SinkCandidate->moveBefore(*SinkTo, SinkTo->getFirstNonPhi()); for (VPValue *Op : SinkCandidate->operands()) if (auto *Def = Op->getDefiningRecipe()) WorkList.insert(std::make_pair(SinkTo, Def)); Changed = true; } return Changed; } /// If \p R is a region with a VPBranchOnMaskRecipe in the entry block, return /// the mask. VPValue *getPredicatedMask(VPRegionBlock *R) { auto *EntryBB = dyn_cast(R->getEntry()); if (!EntryBB || EntryBB->size() != 1 || !isa(EntryBB->begin())) return nullptr; return cast(&*EntryBB->begin())->getOperand(0); } /// If \p R is a triangle region, return the 'then' block of the triangle. static VPBasicBlock *getPredicatedThenBlock(VPRegionBlock *R) { auto *EntryBB = cast(R->getEntry()); if (EntryBB->getNumSuccessors() != 2) return nullptr; auto *Succ0 = dyn_cast(EntryBB->getSuccessors()[0]); auto *Succ1 = dyn_cast(EntryBB->getSuccessors()[1]); if (!Succ0 || !Succ1) return nullptr; if (Succ0->getNumSuccessors() + Succ1->getNumSuccessors() != 1) return nullptr; if (Succ0->getSingleSuccessor() == Succ1) return Succ0; if (Succ1->getSingleSuccessor() == Succ0) return Succ1; return nullptr; } bool VPlanTransforms::mergeReplicateRegionsIntoSuccessors(VPlan &Plan) { SetVector DeletedRegions; // Collect replicate regions followed by an empty block, followed by another // replicate region with matching masks to process front. This is to avoid // iterator invalidation issues while merging regions. SmallVector WorkList; for (VPRegionBlock *Region1 : VPBlockUtils::blocksOnly( vp_depth_first_deep(Plan.getEntry()))) { if (!Region1->isReplicator()) continue; auto *MiddleBasicBlock = dyn_cast_or_null(Region1->getSingleSuccessor()); if (!MiddleBasicBlock || !MiddleBasicBlock->empty()) continue; auto *Region2 = dyn_cast_or_null(MiddleBasicBlock->getSingleSuccessor()); if (!Region2 || !Region2->isReplicator()) continue; VPValue *Mask1 = getPredicatedMask(Region1); VPValue *Mask2 = getPredicatedMask(Region2); if (!Mask1 || Mask1 != Mask2) continue; assert(Mask1 && Mask2 && "both region must have conditions"); WorkList.push_back(Region1); } // Move recipes from Region1 to its successor region, if both are triangles. for (VPRegionBlock *Region1 : WorkList) { if (DeletedRegions.contains(Region1)) continue; auto *MiddleBasicBlock = cast(Region1->getSingleSuccessor()); auto *Region2 = cast(MiddleBasicBlock->getSingleSuccessor()); VPBasicBlock *Then1 = getPredicatedThenBlock(Region1); VPBasicBlock *Then2 = getPredicatedThenBlock(Region2); if (!Then1 || !Then2) continue; // Note: No fusion-preventing memory dependencies are expected in either // region. Such dependencies should be rejected during earlier dependence // checks, which guarantee accesses can be re-ordered for vectorization. // // Move recipes to the successor region. for (VPRecipeBase &ToMove : make_early_inc_range(reverse(*Then1))) ToMove.moveBefore(*Then2, Then2->getFirstNonPhi()); auto *Merge1 = cast(Then1->getSingleSuccessor()); auto *Merge2 = cast(Then2->getSingleSuccessor()); // Move VPPredInstPHIRecipes from the merge block to the successor region's // merge block. Update all users inside the successor region to use the // original values. for (VPRecipeBase &Phi1ToMove : make_early_inc_range(reverse(*Merge1))) { VPValue *PredInst1 = cast(&Phi1ToMove)->getOperand(0); VPValue *Phi1ToMoveV = Phi1ToMove.getVPSingleValue(); for (VPUser *U : to_vector(Phi1ToMoveV->users())) { auto *UI = dyn_cast(U); if (!UI || UI->getParent() != Then2) continue; for (unsigned I = 0, E = U->getNumOperands(); I != E; ++I) { if (Phi1ToMoveV != U->getOperand(I)) continue; U->setOperand(I, PredInst1); } } Phi1ToMove.moveBefore(*Merge2, Merge2->begin()); } // Finally, remove the first region. for (VPBlockBase *Pred : make_early_inc_range(Region1->getPredecessors())) { VPBlockUtils::disconnectBlocks(Pred, Region1); VPBlockUtils::connectBlocks(Pred, MiddleBasicBlock); } VPBlockUtils::disconnectBlocks(Region1, MiddleBasicBlock); DeletedRegions.insert(Region1); } for (VPRegionBlock *ToDelete : DeletedRegions) delete ToDelete; return !DeletedRegions.empty(); } bool VPlanTransforms::mergeBlocksIntoPredecessors(VPlan &Plan) { SmallVector WorkList; for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly( vp_depth_first_deep(Plan.getEntry()))) { auto *PredVPBB = dyn_cast_or_null(VPBB->getSinglePredecessor()); if (PredVPBB && PredVPBB->getNumSuccessors() == 1) WorkList.push_back(VPBB); } for (VPBasicBlock *VPBB : WorkList) { VPBasicBlock *PredVPBB = cast(VPBB->getSinglePredecessor()); for (VPRecipeBase &R : make_early_inc_range(*VPBB)) R.moveBefore(*PredVPBB, PredVPBB->end()); VPBlockUtils::disconnectBlocks(PredVPBB, VPBB); auto *ParentRegion = cast_or_null(VPBB->getParent()); if (ParentRegion && ParentRegion->getExiting() == VPBB) ParentRegion->setExiting(PredVPBB); for (auto *Succ : to_vector(VPBB->successors())) { VPBlockUtils::disconnectBlocks(VPBB, Succ); VPBlockUtils::connectBlocks(PredVPBB, Succ); } delete VPBB; } return !WorkList.empty(); } void VPlanTransforms::removeRedundantInductionCasts(VPlan &Plan) { for (auto &Phi : Plan.getVectorLoopRegion()->getEntryBasicBlock()->phis()) { auto *IV = dyn_cast(&Phi); if (!IV || IV->getTruncInst()) continue; // A sequence of IR Casts has potentially been recorded for IV, which // *must be bypassed* when the IV is vectorized, because the vectorized IV // will produce the desired casted value. This sequence forms a def-use // chain and is provided in reverse order, ending with the cast that uses // the IV phi. Search for the recipe of the last cast in the chain and // replace it with the original IV. Note that only the final cast is // expected to have users outside the cast-chain and the dead casts left // over will be cleaned up later. auto &Casts = IV->getInductionDescriptor().getCastInsts(); VPValue *FindMyCast = IV; for (Instruction *IRCast : reverse(Casts)) { VPRecipeBase *FoundUserCast = nullptr; for (auto *U : FindMyCast->users()) { auto *UserCast = cast(U); if (UserCast->getNumDefinedValues() == 1 && UserCast->getVPSingleValue()->getUnderlyingValue() == IRCast) { FoundUserCast = UserCast; break; } } FindMyCast = FoundUserCast->getVPSingleValue(); } FindMyCast->replaceAllUsesWith(IV); } } void VPlanTransforms::removeRedundantCanonicalIVs(VPlan &Plan) { VPCanonicalIVPHIRecipe *CanonicalIV = Plan.getCanonicalIV(); VPWidenCanonicalIVRecipe *WidenNewIV = nullptr; for (VPUser *U : CanonicalIV->users()) { WidenNewIV = dyn_cast(U); if (WidenNewIV) break; } if (!WidenNewIV) return; VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock(); for (VPRecipeBase &Phi : HeaderVPBB->phis()) { auto *WidenOriginalIV = dyn_cast(&Phi); if (!WidenOriginalIV || !WidenOriginalIV->isCanonical() || WidenOriginalIV->getScalarType() != WidenNewIV->getScalarType()) continue; // Replace WidenNewIV with WidenOriginalIV if WidenOriginalIV provides // everything WidenNewIV's users need. That is, WidenOriginalIV will // generate a vector phi or all users of WidenNewIV demand the first lane // only. if (WidenOriginalIV->needsVectorIV() || vputils::onlyFirstLaneUsed(WidenNewIV)) { WidenNewIV->replaceAllUsesWith(WidenOriginalIV); WidenNewIV->eraseFromParent(); return; } } } void VPlanTransforms::removeDeadRecipes(VPlan &Plan) { ReversePostOrderTraversal> RPOT( Plan.getEntry()); for (VPBasicBlock *VPBB : reverse(VPBlockUtils::blocksOnly(RPOT))) { // The recipes in the block are processed in reverse order, to catch chains // of dead recipes. for (VPRecipeBase &R : make_early_inc_range(reverse(*VPBB))) { if (R.mayHaveSideEffects() || any_of(R.definedValues(), [](VPValue *V) { return V->getNumUsers() > 0; })) continue; R.eraseFromParent(); } } } void VPlanTransforms::optimizeInductions(VPlan &Plan, ScalarEvolution &SE) { SmallVector ToRemove; VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock(); bool HasOnlyVectorVFs = !Plan.hasVF(ElementCount::getFixed(1)); for (VPRecipeBase &Phi : HeaderVPBB->phis()) { auto *WideIV = dyn_cast(&Phi); if (!WideIV) continue; if (HasOnlyVectorVFs && none_of(WideIV->users(), [WideIV](VPUser *U) { return U->usesScalars(WideIV); })) continue; auto IP = HeaderVPBB->getFirstNonPhi(); VPCanonicalIVPHIRecipe *CanonicalIV = Plan.getCanonicalIV(); Type *ResultTy = WideIV->getPHINode()->getType(); if (Instruction *TruncI = WideIV->getTruncInst()) ResultTy = TruncI->getType(); const InductionDescriptor &ID = WideIV->getInductionDescriptor(); VPValue *Step = vputils::getOrCreateVPValueForSCEVExpr(Plan, ID.getStep(), SE); VPValue *BaseIV = CanonicalIV; if (!CanonicalIV->isCanonical(ID, ResultTy)) { BaseIV = new VPDerivedIVRecipe(ID, WideIV->getStartValue(), CanonicalIV, Step, ResultTy); HeaderVPBB->insert(BaseIV->getDefiningRecipe(), IP); } VPScalarIVStepsRecipe *Steps = new VPScalarIVStepsRecipe(ID, BaseIV, Step); HeaderVPBB->insert(Steps, IP); // Update scalar users of IV to use Step instead. Use SetVector to ensure // the list of users doesn't contain duplicates. SetVector Users(WideIV->user_begin(), WideIV->user_end()); for (VPUser *U : Users) { if (HasOnlyVectorVFs && !U->usesScalars(WideIV)) continue; for (unsigned I = 0, E = U->getNumOperands(); I != E; I++) { if (U->getOperand(I) != WideIV) continue; U->setOperand(I, Steps); } } } } void VPlanTransforms::removeRedundantExpandSCEVRecipes(VPlan &Plan) { DenseMap SCEV2VPV; for (VPRecipeBase &R : make_early_inc_range(*Plan.getEntry()->getEntryBasicBlock())) { auto *ExpR = dyn_cast(&R); if (!ExpR) continue; auto I = SCEV2VPV.insert({ExpR->getSCEV(), ExpR}); if (I.second) continue; ExpR->replaceAllUsesWith(I.first->second); ExpR->eraseFromParent(); } } static bool canSimplifyBranchOnCond(VPInstruction *Term) { VPInstruction *Not = dyn_cast(Term->getOperand(0)); if (!Not || Not->getOpcode() != VPInstruction::Not) return false; VPInstruction *ALM = dyn_cast(Not->getOperand(0)); return ALM && ALM->getOpcode() == VPInstruction::ActiveLaneMask; } void VPlanTransforms::optimizeForVFAndUF(VPlan &Plan, ElementCount BestVF, unsigned BestUF, PredicatedScalarEvolution &PSE) { assert(Plan.hasVF(BestVF) && "BestVF is not available in Plan"); assert(Plan.hasUF(BestUF) && "BestUF is not available in Plan"); VPBasicBlock *ExitingVPBB = Plan.getVectorLoopRegion()->getExitingBasicBlock(); auto *Term = dyn_cast(&ExitingVPBB->back()); // Try to simplify the branch condition if TC <= VF * UF when preparing to // execute the plan for the main vector loop. We only do this if the // terminator is: // 1. BranchOnCount, or // 2. BranchOnCond where the input is Not(ActiveLaneMask). if (!Term || (Term->getOpcode() != VPInstruction::BranchOnCount && (Term->getOpcode() != VPInstruction::BranchOnCond || !canSimplifyBranchOnCond(Term)))) return; Type *IdxTy = Plan.getCanonicalIV()->getStartValue()->getLiveInIRValue()->getType(); const SCEV *TripCount = createTripCountSCEV(IdxTy, PSE); ScalarEvolution &SE = *PSE.getSE(); const SCEV *C = SE.getConstant(TripCount->getType(), BestVF.getKnownMinValue() * BestUF); if (TripCount->isZero() || !SE.isKnownPredicate(CmpInst::ICMP_ULE, TripCount, C)) return; LLVMContext &Ctx = SE.getContext(); auto *BOC = new VPInstruction(VPInstruction::BranchOnCond, {Plan.getOrAddExternalDef(ConstantInt::getTrue(Ctx))}); Term->eraseFromParent(); ExitingVPBB->appendRecipe(BOC); Plan.setVF(BestVF); Plan.setUF(BestUF); // TODO: Further simplifications are possible // 1. Replace inductions with constants. // 2. Replace vector loop region with VPBasicBlock. } static VPRegionBlock *GetReplicateRegion(VPRecipeBase *R) { auto *Region = dyn_cast_or_null(R->getParent()->getParent()); if (Region && Region->isReplicator()) { assert(Region->getNumSuccessors() == 1 && Region->getNumPredecessors() == 1 && "Expected SESE region!"); assert(R->getParent()->size() == 1 && "A recipe in an original replicator region must be the only " "recipe in its block"); return Region; } return nullptr; } static bool properlyDominates(const VPRecipeBase *A, const VPRecipeBase *B, VPDominatorTree &VPDT) { auto LocalComesBefore = [](const VPRecipeBase *A, const VPRecipeBase *B) { for (auto &R : *A->getParent()) { if (&R == A) return true; if (&R == B) return false; } llvm_unreachable("recipe not found"); }; const VPBlockBase *ParentA = A->getParent(); const VPBlockBase *ParentB = B->getParent(); if (ParentA == ParentB) return LocalComesBefore(A, B); const VPRegionBlock *RegionA = GetReplicateRegion(const_cast(A)); const VPRegionBlock *RegionB = GetReplicateRegion(const_cast(B)); if (RegionA) ParentA = RegionA->getExiting(); if (RegionB) ParentB = RegionB->getExiting(); return VPDT.properlyDominates(ParentA, ParentB); } // Sink users of \p FOR after the recipe defining the previous value \p Previous // of the recurrence. static void sinkRecurrenceUsersAfterPrevious(VPFirstOrderRecurrencePHIRecipe *FOR, VPRecipeBase *Previous, VPDominatorTree &VPDT) { // Collect recipes that need sinking. SmallVector WorkList; SmallPtrSet Seen; Seen.insert(Previous); auto TryToPushSinkCandidate = [&](VPRecipeBase *SinkCandidate) { assert( SinkCandidate != Previous && "The previous value cannot depend on the users of the recurrence phi."); if (isa(SinkCandidate) || !Seen.insert(SinkCandidate).second || properlyDominates(Previous, SinkCandidate, VPDT)) return; WorkList.push_back(SinkCandidate); }; // Recursively sink users of FOR after Previous. WorkList.push_back(FOR); for (unsigned I = 0; I != WorkList.size(); ++I) { VPRecipeBase *Current = WorkList[I]; assert(Current->getNumDefinedValues() == 1 && "only recipes with a single defined value expected"); for (VPUser *User : Current->getVPSingleValue()->users()) { if (auto *R = dyn_cast(User)) TryToPushSinkCandidate(R); } } // Keep recipes to sink ordered by dominance so earlier instructions are // processed first. sort(WorkList, [&VPDT](const VPRecipeBase *A, const VPRecipeBase *B) { return properlyDominates(A, B, VPDT); }); for (VPRecipeBase *SinkCandidate : WorkList) { // VPPredInstPHIRecipes don't need sinking, because they will be sunk when // sinking the containing replicate region. if (isa(SinkCandidate) || SinkCandidate == FOR) continue; VPRecipeBase *Target = Previous; Previous = SinkCandidate; auto *TargetRegion = GetReplicateRegion(Target); auto *SinkRegion = GetReplicateRegion(SinkCandidate); if (!SinkRegion) { // If the sink source is not a replicate region, sink the recipe // directly. if (TargetRegion) { // The target is in a replication region, make sure to move Sink to // the block after it, not into the replication region itself. VPBasicBlock *NextBlock = cast(TargetRegion->getSuccessors().front()); SinkCandidate->moveBefore(*NextBlock, NextBlock->getFirstNonPhi()); } else SinkCandidate->moveAfter(Target); continue; } // The sink source is in a replicate region. Unhook the region from the // CFG. auto *SinkPred = SinkRegion->getSinglePredecessor(); auto *SinkSucc = SinkRegion->getSingleSuccessor(); VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion); VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc); VPBlockUtils::connectBlocks(SinkPred, SinkSucc); if (TargetRegion) { // The target recipe is also in a replicate region, move the sink // region after the target region. auto *TargetSucc = TargetRegion->getSingleSuccessor(); VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc); VPBlockUtils::connectBlocks(TargetRegion, SinkRegion); VPBlockUtils::connectBlocks(SinkRegion, TargetSucc); } else { // The sink source is in a replicate region, we need to move the whole // replicate region, which should only contain a single recipe in the // main block. auto *SplitBlock = Target->getParent()->splitAt(std::next(Target->getIterator())); auto *SplitPred = SplitBlock->getSinglePredecessor(); VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock); VPBlockUtils::connectBlocks(SplitPred, SinkRegion); VPBlockUtils::connectBlocks(SinkRegion, SplitBlock); } // We modified the CFG, update dominator tree. VPDT.recalculate(*SinkRegion->getPlan()); } } void VPlanTransforms::adjustFixedOrderRecurrences(VPlan &Plan, VPBuilder &Builder) { VPDominatorTree VPDT; VPDT.recalculate(Plan); SmallVector RecurrencePhis; for (VPRecipeBase &R : Plan.getVectorLoopRegion()->getEntry()->getEntryBasicBlock()->phis()) if (auto *FOR = dyn_cast(&R)) RecurrencePhis.push_back(FOR); for (VPFirstOrderRecurrencePHIRecipe *FOR : RecurrencePhis) { SmallPtrSet SeenPhis; VPRecipeBase *Previous = FOR->getBackedgeValue()->getDefiningRecipe(); // Fixed-order recurrences do not contain cycles, so this loop is guaranteed // to terminate. while (auto *PrevPhi = dyn_cast_or_null(Previous)) { assert(PrevPhi->getParent() == FOR->getParent()); assert(SeenPhis.insert(PrevPhi).second); Previous = PrevPhi->getBackedgeValue()->getDefiningRecipe(); } sinkRecurrenceUsersAfterPrevious(FOR, Previous, VPDT); // Introduce a recipe to combine the incoming and previous values of a // fixed-order recurrence. VPBasicBlock *InsertBlock = Previous->getParent(); auto *Region = GetReplicateRegion(Previous); if (Region) InsertBlock = dyn_cast(Region->getSingleSuccessor()); if (!InsertBlock) { InsertBlock = new VPBasicBlock(Region->getName() + ".succ"); VPBlockUtils::insertBlockAfter(InsertBlock, Region); } if (Region || isa(Previous)) Builder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi()); else Builder.setInsertPoint(InsertBlock, std::next(Previous->getIterator())); auto *RecurSplice = cast( Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice, {FOR, FOR->getBackedgeValue()})); FOR->replaceAllUsesWith(RecurSplice); // Set the first operand of RecurSplice to FOR again, after replacing // all users. RecurSplice->setOperand(0, FOR); } }